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Abduction is desirable for many natural language processing (NLP) tasks. While re-

cent advances in large-scale knowledge acquisition warrant applying abduction with

large knowledge bases to real-life NLP problems, as of yet, no existing approach to

abduction has achieved the efficiency necessary to be a practical solution for large-

scale reasoning on real-life problems. In this paper, we propose an efficient solution

for large-scale abduction. The contributions of our study are as follows: (i) we pro-

pose an efficient method of cost-based abduction in first-order predicate logic that

avoids computationally expensive grounding procedures; (ii) we formulate the best-

explanation search problem as an integer linear programming optimization problem,

making our approach extensible; (iii) we show how cutting plane inference, which is

an iterative optimization strategy developed in operations research, can be applied to

make abduction in first-order logic tractable; and (iv) the abductive inference engine

presented in this paper is made publicly available.
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1 Introduction

Discovering implicit information from natural language discourse is essential to a wide range

of NLP tasks, such as question answering, information extraction and recognizing textual en-

tailment (RTE). Several NLP components for processing a variety of discourse phenomena (e.g.

anaphora resolution) are exploited when inferring implicit information. In the field of computa-

tional linguistics, each NLP component has been studied extensively in recent decades; however,

less attention has been paid to how to integrate them into a single inference framework.

In this paper, we explore abduction-based discourse processing as a framework for integrating

NLP components. Abduction, defined here as inference to the best explanation, has long been

studied in a wide range of contexts. For example, abduction has been viewed as a promising

framework for describing the mechanism of human perception (Charniak and Goldman 1991;

Hobbs, Stickel, Martin, and Edwards 1993; Shanahan 2005; Peraldi, Kaya, Melzer, Möller, and

Wessel 2007). The idea is that the declarative nature of abduction enables us to infer the
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most plausible, implicitly stated information combining several types of inference and pieces of

explicitly observed information, as humans do.

Abduction-based discourse processing was studied intensively in the 1980s and 1990s; Hobbs

et al. (1993) show that the lowest-cost abductive proof provides the solution to a broad range

of natural language understanding problems, such as word sense disambiguation, anaphora, and

metonymy resolution. As detailed in Sec. 2.1, the key advantage of using abduction for discourse

processing is twofold:

• abduction-based discourse processing models interdependencies between NLP tasks and

identifies the most coherent interpretation;

• it discovers plausible new information by combining heterogeneous inference rules and

pieces of information observed from texts.

While the lack of world knowledge resources hampered applying abduction to real-life problems

in the 1980s and 1990s, a number of techniques have been developed in the last decade (Fellbaum

1998; Chambers and Jurafsky 2009; Ruppenhofer, Ellsworth, Petruck, Johnson, and Scheffczyk

2010; Schoenmackers, Davis, Etzioni, and Weld 2010; Hovy, Zhang, Hovy, and Penas 2011).

Consequently, several researchers started applying abduction to real-life problems, exploiting

large knowledge bases. For instance, inspired by Hobbs et al. (1993), Ovchinnikova et al. (2011)

proposed an abduction-based NLP framework using forty thousand axioms extracted from the

popular ontological resources WordNet (Fellbaum 1998) and FrameNet (Ruppenhofer et al. 2010).

They evaluate their approach on the real-life natural language processing task of RTE (Dagan,

Dolan, Magnini, and Roth 2010).

However, in order to apply abduction to real-life problems with a large-scale knowledge base, we

still need to address the following issue: how to search for the best explanation efficiently. In this

paper, we adopt first-order logic-based, cost-based abduction (henceforth first-order cost-based

abduction), where we use function-free first-order logic (FOL) as a representation language. In

first-order cost-based abduction, an explanation is represented by a set of literals, and the plau-

sibility of the explanation is evaluated through the sum of the costs defined on each literal. The

best explanation is defined as the lowest-cost explanation. Finding the lowest-cost explanation

can be reduced to a constrained combinatorial optimization problem with respect to the cost

function, which is an NP-hard problem (Charniak and Goldman 1991); this hampers the appli-

cation of abduction with large knowledge resources to real-life problems. In fact, Ovchinnikova

et al. (2011) report that the Mini-TACITUS cost-based abduction system (Mulkar, Hobbs, and

Hovy 2007) could not search the entire search space of explanations within 30 min in most of the

RTE problems in their experiments.
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In the literature, many researchers have tried to overcome cost-based abduction’s inefficiency

using a range of methods from approximation to exact inference (Poole 1993a; Santos 1994;

Ishizuka and Matsuo 1998; Chivers, Tagliarini, and Abdelbar 2007). For example, Santos (1994)

formulated cost-based abduction in propositional logic using integer linear programming (ILP),

and showed its efficiency. However, to the best of our knowledge, most of the proposed methods

are optimized for propositional logic. In order to employ these methods for first-order cost-

based abduction, we need to transform knowledge bases and observations to propositional logic

(henceforth, we call the transformation grounding). The process of grounding generates a huge

search space and does not scale to larger problems, as discussed in Sec. 3.

In this paper, we provide a scalable solution to first-order cost-based abduction with the fol-

lowing contributions:

(i) we propose an efficient search technique for FOL abduction, which avoids expanding first-

order logical formulae to propositional level;

(ii) we formulate the best-explanation finding problem as an ILP optimization problem to

make our framework extensible, supporting definite clauses in background knowledge;

(iii) we describe how cutting plane inference (CPI), an iterative optimization strategy devel-

oped in operations research, can be exploited for making FOL abduction tractable, showing

its efficiency by providing evaluation on a large, real-life dataset;

(iv) the abductive inference engine presented in this paper is made publicly available.1

Our paper is structured as follows. We start with a brief introduction of abduction-based

discourse processing, taking Hobbs’s interpretation as abduction framework (Hobbs et al. 1993)

as a motivating example (Sec. 2). We then describe how to perform efficient searches in FOL

abduction, and formulate the search problem as an ILP optimization problem (Secs. 3.1 and 3.2).

We then show how CPI enables us to apply FOL abduction with large knowledge bases (Sec. 3.3).

Finally, we evaluate the efficiency of our CPI-based framework on a large, real-life problem of

NLP, RTE (Sec. 4), and give a comparison of our work to prior implementations of cost-based

abduction (Sec. 5).

2 Background

2.1 Interpretation as Abduction

Hobbs et al. (1993) pioneered an abduction-based approach for natural language understand-

1https://github.com/naoya-i/henry-n700
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(∃e1,e2,x1,x2,y1,y2) 
                 john(x1) ∧ go(e1, x1, x2) ∧ bank(x2) ∧ he(y1) ∧ get(e2, y1, y2) ∧ loan(y2)   

loan(y2)  → (∃e2, y1, y3) issue(e2, y3, y2, y1) ∧ financial_inst(y3) 

Explanation	
 issue(e2, y3, y2, y1) 
→ get(e2, y1, y2) 

financial_inst(x2) 
→ bank(x2) 

x2=y3 
issue(e2, x2, x3, x1)   
  → go(e2, x1, x2) 

x1=y1 

John went to the bank.    He got a loan.  

John and he 
are coreferent	


bank refers to  
a financial bank	


went to the bank  
is the purpose of  

got a loan	


hypothesized	


Observation	


Input	

hypothesized	


Fig. 1 Example of abductive interpretation.

ing. The key idea is that “interpreting sentences is to prove the logical forms of sentences,

allowing assumptions, merging redundancies where necessary.” They demonstrated that a wide

range of NLP tasks involved in discourse interpretation, including anaphora resolution and dis-

course relation recognition, can be cast as the problem of finding an explanation to the pieces

of information observed from the discourse. Figure 1 shows an example taken from Hobbs et al.

1993. In this example, we solve three types of NLP tasks: (i) coreference resolution, e.g., the

coreference relation between John and he (x1 = y1); (ii) intent recognition, e.g., the intention

of John (backward inference on go(e1, x1, x2) to loan(y2)); and (iii) word sense disambiguation,

e.g., the meaning of bank is not a riverbank, but a financial institution (backward inference on

bank(x2) to financial inst(x2), where the inference rule means that “a financial institution is

expressed as bank in a text”).

While the lack of knowledge was a serious problem in applying abduction to real-life problems

in the 1980s and 1990s, the situation has changed. A number of techniques that acquire lexical

resources useful for language processing have been developed (Fellbaum 1998; Ruppenhofer et al.

2010; Chambers and Jurafsky 2009; Schoenmackers et al. 2010, etc.). Given the recent advances

in techniques, several researchers started pursuing abduction-based approaches for “real-life”

problems, using large knowledge bases. For instance, Ovchinnikova et al. (2011) took on the

popular, knowledge-intensive NLP task of RTE. A series of studies in machine reading projects

(Etzioni, Banko, and Cafarella 2006), which discover implicit information from texts (Penas and

Hovy 2010; Hovy et al. 2011), can also be viewed as an abductive interpretation problem.
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2.2 Cost-based abduction

Abduction is inference to the best explanation. We use function-free first-order logic as the

meaning representation of abduction in this paper. Formally, first-order logical abduction is

defined as follows:2

• Given: Background knowledge B and observations O, where B is a set of first-order

logical formulae and O is a set of literals or equalities.

• Find: An explanation (or hypothesis) H such that H ∪B |= O,H ∪B ̸|=⊥, where H is a

set of literals or equalities. Each element in H is called an elemental explanation.

Let us define some terminologies. We define equality to be the form x = y (positive equality) or

x ̸= y (negative equality), where x and y are either variables or constants. The equality x = y

means that referents of x and y are the same (i.e. {p(x), p(y), x = y} has the same meaning

as {p(x)}). We say that the literal p is the logical consequence of S if S |= p; p is (explicitly)

hypothesized w.r.t. H if p ∈ H; p is implicitly hypothesized if H ∪ B |= p w.r.t. H and B (i.e. p

is a logical consequence of H w.r.t. B); p is explained if H ∪B \ {p} |= p; otherwise p is assumed.

We refer to the operation that we unify two or more literals in set S of literals, and apply the

unifier to S as factoring of S.

In this paper, we assume that all variables occurring in a logical form of background knowl-

edge are universally quantified with the widest possible scope, unless it is explicitly stated as

existentially quantified. On the other hand, we assume that variables occurring in an explana-

tion and observation are implicitly existentially quantified. We assume that the background

knowledge has no cyclic dependencies between an explaining and an explained literal (e.g.,

B = {P (x) → Q(x), Q(x) → P (x)} has a cyclic dependency). We call this assumption knowledge

recursion-free assumption.

Typically, several explanations H explaining O exist. We call each of them a candidate ex-

planation, and represent the set of candidate explanations of O given B as HO,B . The goal of

abduction is to find the best explanation among candidate explanations by a specific evaluation

measure. In this paper, we formulate abduction as the task of finding the minimum-cost explana-

tion Ĥ among HO,B . Henceforth, we refer to abduction based on the minimum-cost explanation

finding as cost-based abduction (CBA). Formally, we find Ĥ = argminH∈HO,B
cost(H), where

cost is a function HO,B → R, which is called the cost function.

Let us describe the task of abduction with a toy example. Given B = {p(x, y) ∧ q(x) →
r(x), s(x) → r(x)}, O = {r(z)}, we have four candidate explanations: H1 = {r(z)}, H2 =

2The same framework is used in induction. While induction finds a set of plausible rules from observations,
abduction finds a set of plausible facts.
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{p(z, w), q(z)}, H3 = {s(z)}, and H4 = {p(z, w), q(z), s(z)}. The task of abduction is to select

the best explanation among them in terms of cost. Suppose cost(H1) = 5.5, cost(H2) = 12.25,

cost(H3) = 10.8, and cost(H4) = 7.13. Then, the correct prediction is then H1.

It is crucial to discuss the specificity of explanations. We say that an explanation H is more

specific than another explanation H ′ if H ∪B |= H ′. As discussed in Hobbs et al. 1993, we want

to decide the appropriate specificity of an explanation because there is often little evidence (i.e.,

observation) to support specific explanations. Traditionally, two extreme modes of abduction

have been considered. The first is most-specific abduction. In most-specific abduction, what we

can explain from background knowledge is all detailed, which is suitable for diagnostic systems.

In diagnostic systems, users might want to know, as much as possible, about what has caused the

current situation. Some cost-based and probabilistic approaches fall into this group (Charniak and

Goldman 1991; Raghavan and Mooney 2010). The second is least-specific abduction. Literally,

in this mode, an explanation is obtained by just assuming observations. Using only least-specific

abduction has little purpose, but as described below, it makes sense if it is combined with most-

specific abduction.

In natural language understanding systems, we need both modes at the same time. Adopting

only one of these levels is problematic. For example, if we adopt most-specific abduction, the sys-

tem yields too specific an explanation, such as “Bob took a gun because he would rob XYZ bank using

a machine gun which he had bought three days ago.” Conversely, if we adopt least-specific ab-

duction, the system assumes just observation, as in “Bob took a gun because he took a gun.” We

thus want to determine the suitable specificity during inference. To the best of our knowledge,

the weighted abduction of Hobbs et al. (1993) is the only framework that concerns the appro-

priateness of explanation specificity. The cost function of weighted abduction naturally handles

this by propagating costs of propositions and unification as described in Sec. 3.2.

2.3 Cost function

In the literature, several types of cost functions have been proposed, including cost- and

probability-based functions (Charniak and Goldman 1991; Poole 1993b; Hobbs et al. 1993; Ragha-

van and Mooney 2010; Singla and Mooney 2011, etc.). In this paper, we adopt the cost function

proposed by Hobbs et al. (1993). The cost function assumes that each elemental explanation

p ∈ H has the non-negative cost of hypothesizing p (intuitively, the plausibility of p being an

explanation for given observations), and sums up the costs of assumed elemental explanations.

Henceforth, we write P (x)$c to denote P (x) having a cost c.

During the construction of H, one can factor H to generate a new explanation at any time.
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When H is factored, the following things happen: (i) the literal that has the smallest cost among

a set of unified literals remains in H, and (ii) for the unifier {xi/yi}ni=1, a set of elemental explana-

tions {xi = y$0i }ni=1 is added to H. For example, one can factor H = {R(a)$20, R(b)$10, Q(a)$20}
with the unifier {a/b} to get H ′ = {R(b)$10, a = b$0, Q(b)$20}, where the smaller cost $10 is

assigned to R(b). Formally, the cost function is defined as follows:

cost(H) =
∑

h∈A(H)

cost(h), (1)

where A(H) is a set of assumed literals in H.

In Hobbs et al. (1993), each cost is determined by two factors: (i) weights, the parameters

assigned to axioms in background knowledge; and (ii) the costs of observations initially assigned.

In this paper, we do not go into detail, and just assume that each cost is given in some way.

3 ILP-based inference for cost-based abduction

We now describe our strategy to find the best explanation in first-order CBA. The key idea is

that we solve first-order CBA problems using the lifted inference technique, where each inference

operation is directly performed on a first-order level, like resolution (Robinson 1965). In principle,

this way of problem formulation gives us three benefits. First, we can reduce the search space of

candidate explanations in comparison to a grounding approach, because we can avoid instantiat-

ing FOL formulae with all possible constants. Second, the best explanation finding problem can

be reduced to the constrained combinatorial optimization problem of first-order literals and/or

equalities, meaning that we can exploit several choices of combinatorial optimization technol-

ogy developed in operations research. Specifically, our optimization problem can be naturally

formulated as an ILP problem, which can be efficiently solved by existing ILP solvers. Third,

the resulting framework is highly extensible; for example, we can easily incorporate linguistically

motivated heuristics by simply adding some ILP variables and/or constraints to an optimization

problem, keeping the overall framework unchanged.

In the rest of this section, we first formalize the best explanation finding in first-order CBA

using the lifted inference technique, and then describe how to solve it as an ILP optimization

problem.
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Candidate 
hypothesis: hq(y) hr(A) hs(x) hs(y) ht(u) hr(x) hx=A hx=y hy=A ur(A),r(x) us(x),s(y) 

H1: {q(y), r(A), s(x)} 1 1 1 0 0 0 0 0 0 0 0 
H2: {q(y), r(A), s(x), r(x)} 1 1 1 0 0 1 0 0 0 0 0 
H3: {q(y), r(A), s(x), r(x), x=A} 1 1 1 0 0 1 1 0 0 0 1 
H4: {q(y), r(A), s(x), r(x), s(y), t(u),  
x=A, x=y} 1 1 1 1 1 1 1 1 1 1 1 

Set of potential elemental hypotheses:!
  P ={s(y), t(u), r(x), q(y), r(A), s(x), x=y, A=x} 

Input:!
  B: {r(x) → s(x), s(x) ∧ t(y) → q(x)} 
  O: {q(y), r(A), s(x)} 

{q(y) ∧ r(A) ∧ s(x)} 

r(x)  s(y) ∧ t(u)  
y=x A=x 

Backward-chaining:!

ILP representation of search space:!
Output:!
  H*: {q(y), r(A), s(x), r(x), x=A} 

Step 2. Solve ILP optimization problem 

Step 1. Generate P 

 Example ILP constraints:!
 1: hq(y) = 1 
 2: hx=y + hA=x – hy=A ≤ 1 
 3: a{s(y),t(u)} ≤ hq(y) 
 4: (i) 2a{s(y),t(u)} ≤ hq(y) + ht(u) 
     (ii) hq(y) + ht(u) ≤ 1 + a{s(y),t(u)} 
 5:  hs(x) + (1-a{r(x)}) + 
            (1-us(x),s(y)) ≤  2 + cs(x) 
 6: 3ur(x), r(A) ≤ hx=A + hr(x) + hr(A)  

ILP variables:!

Fig. 2 Summary of the ILP-based approach.

3.1 Lifted first-order inference for CBA

First-order logic inherits all the theoretical properties of propositional logic, and hence a sound

and complete inference can be performed on propositional logic. However, performing first-order

logical inference on a propositional level has severe overhead, because we need grounding, which

generates the ground instances of first-order logical formulae in knowledge bases and observations

(i.e., instantiating them with all possible constants). The grounding procedure generates a lot of

formulae when a domain is large. In this paper, we thus propose to perform cost-based abduction

on a first-order level. The approach is in the spirit of resolution (Robinson 1965), but is applied

to the best explanation finding problems. In the rest of this section, we show how to solve the

abductive inference problem on first-order level.

Figure 2 summarizes our approach. In principle, our approach takes two steps: (i) Step

1: search-space generation, and (ii) Step 2: best-explanation search. In search-space genera-

tion, we first construct a set of all possible literals and/or equalities that are potentially in-

cluded in H. For example, given the toy problem in Sec. 2.2, we construct the following set:

{r(z), p(z, w), q(z), s(z)}. In the best-explanation search step, we find the best explanation for

O by finding the best combination of literals or equalities among the set of literals constructed

in the search-space generation step, according to the cost function. The problem is solved in

the form of constrained boolean optimization problem, which is the problem of finding the truth

assignment to boolean variables that maximizes or minimizes an objective function satisfying the

given constraints.

Now we move on to the detail of our approach, in which we use the following format for
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background knowledge, observations, and explanation:

• Background knowledge: a set of first-order definite clauses (i.e. p1 ∧ p2 ∧ ... ∧ pn → q,

where p1, p2, ..., pn, and q are atoms);

• Observations: a set of positive literals or positive equalities;

• Explanation: a set of positive literals or positive equalities.

Henceforth, we call each clause in background knowledge an axiom, the right-hand side the head,

and the left-hand side the body.

We give the overall algorithm in Algorithm 1. Given background knowledge B and observations

O, we first create the set P of literals or equalities that are potentially included as constituents

of the best explanation of O (line 2–10). We refer to the literal or equality p ∈ P as the potential

elemental explanation, which we enumerate by first initializing P with O. We then iteratively

apply backward inference to each p ∈ P (line 2–6). Algorithm 2 depicts the backward-inference

operation in detail (lines 5–8). We define backward inference as the following operation:

• Input: a clause in the form p1 ∧ p2 ∧ ...∧ pn → q and the literal l, where there must exist

the most general unifier θ such that lθ = qθ.

• Output: {p1, p2, ..., pn}θ, where the variables that are not substituted by θ (notSub-

stitutedVars({p1, p2, ..., pn}, θ) in Algorithm 2) are replaced with existentially quantified

variables not appearing in P so far.

For example, given the axiom p(x, y)∧q(x, y, z) → r(x) and r(a), it derives {p(a, u1), q(a, u1, u2)},
where u1 and u2 are existentially quantified variables not appearing in P . Note that P is not

equivalent to a set of resolvents that are generated by a particular proof procedure. The goal

of proof procedure is to check whether a logical formula is implied by a set of logical formulae.

Therefore, the derived proof might not contain a set of all literals that can explain observations.

For example, SLD resolution (Kowalski 1974), is a backward-inference-based proof procedure that

works on definite clauses, where literals resolved upon are selected by a particular computation

rule (e.g., leftmost), and the resolution procedure terminates when the proof is found to be a

failure or a success. However, what we want to enumerate is the set of all literals that can explain

observations. Since we have the knowledge-recursion-free assumption, lines 2–11 terminate in

finite time (i.e., until no more backward inference can be applied).

In lines 6–10, we search for the pairs of unifiable literals in P in order to represent the ap-

plication of factoring operation to H. For each pair of unifiable literals, we add the equalities

that are potentially hypothesized by the unifier (see Sec. 2.2). We do not unify such literals in P

here because we want to allow that the factoring operations are also defeasible, “possibly” true

operations. We use the cost function to determine whether they should be factored.

9
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Algorithm 1 liftedFirstOrderCBA(Background knowledge B, Observation O, Cost function

cost)

1: P ← O, S ← O

2: while S ̸= ϕ do

3: S ← getPotentialElementalExplanations(B,S)

4: P ← P ∪ S

5: end while

6: for p1, p2 ∈ P do

7: if ∃θp1θ = p2θ then

8: for x/y ∈ θ do P ← P ∪ {x = y}

9: end if

10: end for

11: return findBestExplanation(P, cost)

Algorithm 2 getPotentialElementalExplanations(Background knowledge B, set S of liter-

als)

1: R← {}

2: for l ∈ S do

3: for p1 ∧ p2 ∧ ... ∧ pn → q ∈ B do

4: if ∃θlθ = qθ then

5: for v ∈ notSubstitutedVars({p1, p2, ..., pn}, θ) do

6: θ ← θ ∪ {v/ui}; i← i+ 1

7: end for

8: R← R ∪ {p1, p2, ..., pn}θ

9: end if

10: end for

11: end for

12: return R

In line 11, we find the best explanation. Given P , the problem of best explanation finding can

be reduced to a constrained combinatorial optimization problem. Note that the number of can-

didate explanations grows exponentially (i.e. O(2|P |)), because each explanation is represented

by the combination of potential elemental explanations. We immediately see that a simple ap-

proach that finds a minimal explanation by evaluating all candidate explanations is intractable.

To improve efficiency, we formulate the best explanation finding as the 0-1 ILP optimization

10
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problem to exploit the state-of-the-art search strategy of combinatorial optimization problems.

The formulation is described in the next section.

3.2 ILP Formulation

We formulate the best-explanation finding problem as an ILP optimization problem where the

search space is represented as ILP variables and constraints, and the cost function is used as the

ILP objective. Intuitively, for each p ∈ P , we introduce some 0-1 state variable that represents

whether the potential elemental explanation p is (explicitly or implicitly) hypothesized. Then,

every possible H ∈ HO,B can be expressed as a combination of value assignments to these state

variables.

We elaborate on two types of ILP variables and ILP constraints in the optimization problem:

(i) for representing the search space of candidate explanations, and (ii) for implementing the cost

function.

Formulation for CBA search space: To represent whether the literal or equality p ∈ P

is hypothesized (including implicitly hypothesized), we introduce an ILP variable h ∈ {0, 1} as

follows:

for each p ∈ P : hp =

1 iff H ∪B |= p;

0 otherwise.

For example, H2 in Figure 2 holds hr(x) = 1, where r(x) is hypothesized in H2. We also use h to

represent equalities. In H3, the variable hx=A is set to 1 because x = A is assumed. Note that h

variables do not represent the truth values of p (i.e. hp = 0 does not mean H ∪ B |= ¬p). Once

a value assignment to h is determined, we construct H on the basis of the assignment as follows:

Definition 3.1 Given a particular value assignment to h variables, we generate an explanation

H as follows:

• p ∈ H ⇔ hp = 1 for each p ∈ P ;

• p ̸∈ H ⇔ hp = 0 for each p ∈ P .

That is, all logical consequences of H ∪B are considered to be an explanation (i.e., the generated

explanation includes implicitly, as well as explicitly, hypothesized literals).

Note that not all value assignments to ILP variables h are allowed. By the definition of

candidate explanation in Sec. 2.2, for example, it is not allowed to output the assignment that

there exists p ∈ O s.t. H ∪B ̸|= p. To ensure that the search space includes only valid candidate
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explanations (i.e., H satisfies H ∪B |= O and H ∪B ̸|=⊥), we impose several constraints on the

value assignments of h. We denote T to represent a set of logical atomic terms in P .

Constraint 1: From the definition of explanation, observations must be the logical conse-

quences of H ∪B (i.e., H ∪B |= O).

for each p ∈ O : hp = 1 (2)

Since we assume that P includes only positive literals, it is not necessary to ensure the

consistency of H ∪B. In Figure 2, the constraint hq(y) = 1 is generated.

Constraint 2: From the equality axiom in first-order logic, equality relations must be reflexive

(i.e., for all x ∈ T , hx=x = 1), symmetric (i.e., for all x, y ∈ T , hx=y = 1 ⇒ hy=x = 1),

and transitive (i.e., for all x, y, z ∈ T , hx=y = 1 ∧ hy=z = 1 ⇒ hx=z = 1). To satisfy these

three properties, we introduce the following constraints:

for each x ∈ T : hx=x = 1 (3)

for each x, y ∈ T : hx=y = hy=x (4)

for each x, y, z ∈ T : hx=y + hy=z − hx=z ≤ 1 (5)

In Figure 2, the constraint hx=y+hA=x−hy=A ≤ 1 is generated as an instance of inequality

(5).

Constraint 3: From the definition of h variables, hp must be 1 if there exists set Q of literals

such that Q implies p and each literal in Q is hypothesized (i.e., for all Q ⊆ P , (Q ∪B |=
p ∧H ∪ B |= Q) ⇒ H ∪ B |= p). To represent that each literal in the set Q of elemental

explanations is hypothesized, we introduce a new ILP variable aQ ∈ {0, 1} s.t. aQ = 1

iff all literals in Q are logical consequences of H ∪ B; aQ = 0 otherwise. Using aQ, the

constraint ∀Q ⊆ P [(H ∪B |= Q ∧Q ∪B |= p) ⇒ hp = 1] can be expressed as follows:

for each p ∈ P :
∑

Q∈E(p)

aQ ≤ |E(p)| · hp, (6)

where E(p) is a family of sets of potential elemental explanations that explain p. For

example, in Figure 2, the constraint a{s(y),t(u)} ≤ hq(y) is generated since q(y) is explained

by s(y) ∧ t(u).

Constraint 4: From the definition of an ILP variable a, for all Q ⊆ P , aQ can be set to 1

if and only if Q is a logical consequence of H ∪ B (for all q ∈ Q, hq = 1). This can be

12
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expressed as follows:

for each p ∈ P,Q ∈ E(p) : |Q|aQ ≤
∑
q∈Q

hq (7)

for each p ∈ P,Q ∈ E(p) :
∑
q∈Q

hq ≤ |Q| − 1 + aQ (8)

In Figure 2, two constraints are generated: (i) 2a{s(y),t(u)} ≤ hq(y) + ht(u), which ensures

that a{s(y)t(u)} = 1 ⇒ hq(y) = 1 ∧ ht(u) = 1; and (ii) hq(y) + ht(u) ≤ 1 + a{s(y),t(u)}, which

ensures that hq(y) = 1 ∧ ht(u) = 1 ⇒ a{s(y)t(u)} = 1.

In this formulation, we generate O(n3) ILP constraints for Constraint 2, where n is the number

of logical atomic terms appearing in P . As the reader will see in Sec. 4, this makes inference

intractable in large-scale processing. We show how this drawback can be overcome by exploiting

CPI in Sec. 3.3.

Formulation for implementing the cost function: As mentioned in Sec. 2.2, we adopt the

cost function proposed by Hobbs et al. (1993). For convenience, we repeat the cost function:

cost(H) =
∑

h∈A(H)

cost(h), (9)

where A(H) is a set of assumed literals in H. This means that the cost of H is calculated from

the subset of hypothesized literals. To represent the set of literals counted in the cost function,

we first introduce ILP variables c ∈ {0, 1} as follows:

for each p ∈ P : cp =

1 if p pays its cost;

0 otherwise.

In Figure 2, cs(x) is set to 0 in H2 since s(x) does not pay the cost (i.e. s(x) is explained by

r(x)).

Using c variables, the objective function of the ILP problem is given by

minimize cost(H) =
∑
p∈P

cp · cost(p) (10)

Note that it is easy to incorporate other criteria into the cost function. For instance, one can

consider the plausibility of coreference relations between two mentions in a text. Assuming

that mentions are represented by variables (e.g., cat(x) means that mention x, whose linguistic

expression is cat, appears in a text), one can add
∑

x,y∈T cost(x, y,O) · hx=y, where the cost is

calculated by the information mentioned in O. For example, one could design the cost function
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that returns a higher cost if two contradictory properties are mentioned in O (e.g., cat(x) and

dog(y) occur in O).

Again, from the definition of c variables, not all value assignments to c are allowed. Accordingly,

we introduce several constraints on c as follows.

Constraint 5: From the definition of the cost function in Sec. 2.3, cp is set to 1 if and only

if (i) p is not explained (i.e., assumed); and (ii) p is not unified with any other literal

that has a smaller cost by factoring H. To represent the second case, we introduce a new

ILP variable up1,p2 ∈ {0, 1} for the pair (p1, p2) of unifiable literals s.t. up1,p2 = 1 iff p1

is unified with p2 by factoring H; up1,p2
= 0 otherwise. Using u, the condition can be

expressed as follows:

for each p ∈ P : hp +
∑

Q∈E(p)

(1− aQ) +
∑

p′∈U−(p)

(1− up,p′) ≤

|E(p)|+ |U−(p)|+ cp (11)

where U−(p) is a set of literals that (i) are unifiable with p, and (ii) have a cost smaller

than cost(p). For example, in Figure 2, we introduce hs(x)+(1−a{r(x)})+(1−us(x),s(y)) ≤
2 + cs(x) as an instance of inequality (11).

Finally, we impose a constraint on up1,p2 so that the value of up1,p2 is allowed to be 1 only if (i)

there exist equalities that make p1 and p2 equivalent in H, and (ii) p1 and p2 are hypothesized.3

Constraint 6: By the definition of an ILP variable u, up1(x),p2(y) can be set to 1 if and only if

(i) two literals p1(x) ≡ p1(x1, x2, ..., xn) and p2(y) ≡ p2(y1, y2, ..., yn) are unified (i.e. the

substitution {xi/yi}ni=1 occurs, namely hxi=yi
= 1 for all i ∈ {1, 2, ..., n}), and (ii) both

p1(x) and p2(x) are hypothesized.

(n+ 2) · up1(x),p2(y) ≤
n∑

i=1

hxi=yi + hp1(x) + hp2(y) (12)

n∑
i=1

hxi=yi + hp1(x) + hp2(y) ≤ (n+ 2)− 1 + up1(x),p2(y) (13)

In Figure 2, the constraint (1+ 2) · ur(x),r(A) ≤ hx=A +hr(x) +hr(A) is generated. Finally,

3We can consider the unification of two literals p(x1, x2, . . . , xn), p(y1, y2, . . . , yn) as “p(x1, x2, . . . , xn) is
explained by p(y1, y2, . . . , yn) ∧ x1 = y1 ∧ x2 = y2 ∧ . . . ∧ xn = yn” where cost(p(x1, x2, . . . , xn)) >

cost(p(y1, y2, . . . , yn)). In this formulation, we do not need to introduce ILP variable u and Constraint 6, which
can simplify our formulation. However, we intentionally leave the formulation with u variables in order to keep
the comprehensibility of our paper.
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in order to avoid the case where we hypothesize a single literal that (i) does not explain

anything, but (ii) is unified with the other literal, we impose the following constraint:

for each p ∈ P : hp ≤
∑

Q∈C(p)

aQ, (14)

where C(p) is a family of sets of literals with which p co-occurs to explain the other literal.

In Figure 2, since s(y) co-occurs with t(u) to explain q(y) (i.e. C(s(y)) = {{s(y), t(u)}}),
we introduce hs(y) ≤ as(y),t(u). If we do not have this constraint, we can hypothesize s(y)

without hypothesizing t(u) to reduce the cost of s(x). Since such a hypothesis cannot be

generated through backward inference, we need to prohibit it.

As mentioned in Sec. 1, the most similar work to ours is Santos’s ILP-based formulation of

propositional logic-based CBA (1994), but our approach is different in two ways.

First, we are capable of evaluating the specificity of explanations, which is an important feature

for abduction-based NLP, as discussed in Sec. 2.2. The Santos approach amounts to performing

most-specific abduction, and he finds a truth assignment to all propositions. Let us describe

how the appropriate level of specificity is controlled in our approach. Suppose O = {p(a), q(a)}
and B = {r(x) → p(x)}. We then have two candidate explanations. The first explanation is

H1 = {p(a), q(a)}, which simply assumes observations, and the cost is cost(p(a))+cost(q(a)) (i.e.

cp(a) = 1, cq(a) = 1). Backward chaining on p(a) yields the second explanation H2 = {q(a), r(a)},
which is more specific than H1. The cost of H2 is cost(q(a)) + cost(r(a)) (cp(a) = 0, cq(a) = 1,

cr(a) = 1). Note that we do not count p(a) because p(a) is not assumed anymore. Therefore,

for this problem, if cost(r(a)) < cost(p(a)), then a more specific explanation H1 is selected as

the best explanation; otherwise, the less specific explanation H2 is selected. This is controlled by

the ILP variables c and Constraints 5 and 6, which are not introduced in the Santos approach.

To summarize, our approach can decide which specificity of explanation is appropriate for the

current observation and knowledge base, on the basis of how well the explanation is supported

by observations.

Second, our approach directly models first-order CBA, while Santos approach formulates

propositional-logic abduction. We could employ his approach for first-order CBA since it is well

known that FOL formulae can be represented by propositional logic formulae through the appli-

cation of grounding procedure (i.e., generate logical formulae, replacing variables with all possible

constants). However, abductive inference over propositional level will make inference intractable

when existentially quantified variables are included in observations or background knowledge.

For example, suppose that B = {q(x, y) → p(x, y), r(x, y, z) → q(x, y)}, O = {p(x, y)} and all
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possible constants are C = {C1, C2, ..., Cn}. To ground this observation, we need to generate

a disjunctive clause for p(x, y), replacing x and y with all possible combinations from C, i.e.

p(C1, C1) ∨ p(C1, C2) ∨ ... ∨ p(Cn, Cn). The extension of the expressivity of observation is not

difficult, but the problem arises in the search-space generation process: we get O(n2) potential

elemental explanations (i.e. q(Ci, Cj) for all i, j ∈ {1, 2, ..., n}) to explain each disjunct with the

axiom q(x, y) → p(x, y). In addition, backchaining on each q(Ci, Cj) with r(x, y, z) → q(x, y)

yields O(n) potential elemental explanations (i.e. r(Ci, Cj , Ck) for all k ∈ {1, 2, ..., n}). In

contrast, the search-space generation in our approach yields {p(x, y), q(x, y), r(x, y, u)}. As the

readers can see, our approach seems to be more robust to the size of domain. In discourse process-

ing, this robustness is important because literals usually have more than two or three arguments

to represent an event with its participants.

3.3 CPI for CBA

One major drawback of ILP formulation is that it needs to generate O(n3) transitivity con-

straints, where n is the number of logical atomic terms, because we perform inference over

FOL-based representation. That makes inference intractable (see Sec. 4 for empirical evidence)

because it generates an ILP optimization problem that has quite a large number of constraints.

How do we overcome this drawback? The idea is that “all the transitivity constraints may

not be violated all at once; so we gradually optimize and add transitivity constraints if violated

in an iterative manner.” More formally, we propose applying CPI to the CBA problems that

was originally developed for solving large linear programming (LP) problems in operations re-

search (Dantzig, Fulkerson, and Johnson 1954). CPI has been successfully applied to a wide

range of constrained optimization problems where constraints are very large (Riedel and Clarke

2006; Riedel 2008; Joachims, Finley, and Yu 2009; Berant, Aviv, and Goldberger 2008), from

probabilistic deductive inference problems (Riedel 2008) to machine learning problems (Joachims

et al. 2009). To the best of our knowledge, however, our work is the first successful application of

CPI to abductive inference tasks. In principle, CPI solves optimization problem in an iterative

manner as follows: it solves an optimization problem without constraints, and then adds violated

constraints to the optimization problem. When the iteration terminates, it guarantees solutions

to be optimal. The proposed algorithm, called CPI4CBA, is also an exact inference framework.

How do we apply the technique of CPI to cost-based abduction problems? Intuitively, we

iterate the following two steps: (i) solving an abduction problem without enforcing transitivity on

logical atomic terms, and (ii) generating transitivity constraints dynamically when transitiveness

of unification is violated (e.g., H ∪ B |= x = y ∧ y = z, and H ∪ B ̸|= x = z). The iteration
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Algorithm 3 cpiForLiftedFirstOrderCBA(Background Knowledge B, Observation O)

1: (Ψ, I)← createBaseILP(B,O)

2: repeat

3: sol← solveILP(Ψ, I); V ← ϕ

4: for x, y ∈ {t1, t2 | t1 ∈ T, t2 ∈ T, sol(ht1=t2) = 1) do

5: for z ∈ termsUnifiableWith(x, y) do

6: // H ∪B |= x = y ∧ y = z, and H ∪B ̸|= x = z

7: if sol(hy=z) = 1 and sol(hx=z) = 0 then V ← V ∪ {hx=y + hy=z − hx=z ≤ 1}

8: // H ∪B |= x = y ∧ x = z, and H ∪B ̸|= y = z

9: if sol(hy=z) = 0 and sol(hx=z) = 1 then V ← V ∪ {hx=y + hx=z − hy=z ≤ 1}

10: end for

11: end for

12: I ← I ∪ V

13: until V = ϕ

terminates if there is no violated unification transitivity. The pseudocode is given in Algorithm

3. In line 1, we first create an ILP optimization problem described in Sec. 3.2, but without

transitivity constraints (i.e., Constraint 2), where Ψ denotes a set of ILP variables, and I denotes

a set of ILP constraints. In lines 2–13, we repeat checking consistency of unification transitiveness,

adding constraints for violated transitiveness, and re-optimizing. In line 3, we find the solution

sol for the current ILP optimization problem. Then, for each pair (x, y) of logical atomic terms

unified in the solution sol (line 4), we find the logical term z which is unifiable with x and y

(line 5). If the transitive relation x, y with respect to z is violated (i.e., hx=z = 0 ∧ hy=z = 1

or hx=z = 1 ∧ hy=z = 0), then we generate constraints for preventing this violation, and keep it

in set V of constraints (lines 6–9). Finally, we again perform an ILP optimization with newly

generated constraints (lines 12 and 3). The iteration ends when there is no violated transitiveness

(line 13).

The key advantage of CPI4CBA is that it can reduce the time of search-space generation,

and it is also expected to reduce the time of ILP optimization. CPI4CBA does not generate

all transitivity constraints before optimization, which saves search-space generation time. In

addition, optimization problems that we solve would become smaller than the original problem

in most cases, because not all transitivity constraints need to be considered. In the worst case, we

need to solve the optimization problem that is same as the original one; however, in most cases,

we found this unnecessary. We will show its empirical evidence through large-scale evaluation in
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Sec. 4.

4 Runtime Evaluation

How much does CPI improve the runtime of an ILP-based reasoner? Does CPI scale to larger

real-life problems? To answer these questions, we evaluated the CPI4CBA algorithm in two

settings: (i) STORY, the task of plan recognition; and (ii) RTE, the popular, knowledge-

intensive, real-life natural language processing task of RTE. While most of the existing abductive

inference systems are evaluated on rather small, and/or artificial datasets (Kate and Mooney 2009;

Raghavan and Mooney 2010; Singla and Mooney 2011, etc.), our evaluation takes real-life, much

larger datasets (see Sec. 4.1). In our experiments, we compare our system with systems (Kate

and Mooney 2009; Singla and Mooney 2011; Blythe, Hobbs, Domingos, Kate, and Mooney 2011)

based on Markov logic networks (MLNs) (Richardson and Domingos 2006). For our experiments,

we have used a 12-Core Opteron 6174 (2.2GHz) 128 GB RAM machine, and assigned 8 CPU cores

for each run. For an ILP solver, we used a Gurobi optimizer.4 It is commercial, but an academic

license is freely available. In our experiments, we use Constraint 6 without enumerating potential

logical consequences (i.e. Algorithm 1 is used). The empirical evaluation with the enumeration

of potential logical consequences is our future work.

4.1 Settings

STORY: For this setting, we have used Ng and Mooney’s story understanding dataset (1992),5

which is widely used for the evaluation of abductive plan recognition systems (Kate and Mooney

2009; Raghavan and Mooney 2010; Singla and Mooney 2011). In this task, we need to abduc-

tively infer the top-level plans of characters from actions. We follow Singla and Mooney’s setting

to define top-level plan predicates. These include 10 types of literals, such as shopping.6 The

dataset consists of 50 plan recognition problems represented by a set of ground atoms (e.g.,

{getting off(Getoff16), agent get off(Getoff16,Fred16),name(Fred16,Fred)}) and 107 background defi-

nite clauses (e.g., go step(r, g) ∧ going(g) → robbing(r)). The dataset contains on average 12.6

literals in the logical forms of actions. We additionally generated 73 ILP constraints to pre-

vent one variable/constant from having distinct top-level plan predicates in a hypothesis (e.g.

H = {robbing(R),shopping(R)}). For example, we generated hrobbing(x) + hshopping(y) + hx=y ≤ 2

4http://www.gurobi.com/
5ftp://ftp.cs.utexas.edu/pub/mooney/accel
6The complete list of top-level plan predicates is as follows: shopping, robbing, traveling, rest dining, drinking,

paying, jogging, and partying.
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to represent that robbing and shopping cannot be hypothesized for the same variable/constant.

Note that H = {robbing(R), shopping(S)} is still possible.

To assign a cost to each literal (i.e., cost(h) in equation (10)), we followed Hobbs et al.’s

weighted abduction theory (Hobbs et al. 1993). In the theory, as mentioned in Sec. 2.2, each

literal in the left-hand side of the axioms has a set of weights, which is expressed as pw1
1 ∧ pw2

2 ∧
... ∧ pwn

n → q. During backward chaining, each weight is multiplied with the cost of literal

that is backchained on. For example, given p(x)0.6 ∧ q(x)0.6 → r(x) and r(a)$10, the theory

derives {p(a)$6, q(a)$6}. Because the background knowledge of Ng and Mooney’s dataset does

not have weights, we assigned weights to the axioms so that the sum of the weights is 1.2 (e.g.,

p0.4 ∧ q0.4 ∧ r0.4 → s). This assignment means that backward inference always increases the cost

of explanation, and unification is the only way to reduce the cost. That is, it is almost equivalent

to performing pure logic-based abduction, where the number of literals in an explanation is used

as the plausibility of explanation.

RTE: For observations (input), we employed the second challenge of the RTE dataset.7 In

this, we need to determine correctly whether one text (called text, or T) entails another (called

hypothesis, or H). The dataset consists of a development set and a test set, each of which includes

800 natural language text hypothesis pairs. We used all 800 texts from the test set. We converted

texts into logical forms presented in Hobbs (1985) using the Boxer semantic parser (Bos 2008).

The number of literals in observations is 29.6 literals on average. For background knowledge, we

extracted 289,655 axioms8 from WordNet 3.0 (Fellbaum 1998), and 7,558 axioms from FrameNet

1.5 (Ruppenhofer et al. 2010), following Ovchinnikova et al. (2011). In principle, the WordNet

knowledge base contains various lexical relations between words, such as IS-A, ontological rela-

tions (e.g., dog(x) → animal(x)). FrameNet knowledge bases contain lexeme-to-frame mappings,

frame-frame relations, etc. For example, the mapping from surface realization “x1 give x2 x3”

to a frame “Giving” is given by Giving(e1, x1, x2, x3)∧ donor(e1, x1) ∧recipient(e1, x2)∧ theme(e1, x3)

→ give(e1, x1, x2, x3). We again followed Hobbs’s weighted abduction theory for calculating the

cost of explanation. We assigned the weights to axioms by following Ovchinnikova et al. (2011)

in this setting.

4.2 Results and discussion

The reasoner was given a 2-min time limit for each inference step (i.e., search-space generation

and best-explanation search). In Table 1, we show the results of each setting for two inference

7http://pascallin.ecs.soton.ac.uk/Challenges/RTE2/
8The extracted relations include word-to-synset mapping, hypernym-hyponym, cause-effect, entailment, deriva-

tional, instance-of relations.
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Setting Method Depth Generation [sec.] ILP inf [sec.] # of ILP cnstr

(timeout = 120) (timeout = 120)

STORY

IAICBA

1 0.02 (100.0 %) 0.60 (100.0 %) 3,708

2 0.12 (100.0 %) 5.34 (100.0 %) 23,543

3 0.33 (100.0 %) 8.11 (100.0 %) 50,667

∞ 0.35 (100.0 %) 9.00 (100.0 %) 61,122

CPI4CBA

1 0.01 (100.0 %) 0.34 (100.0 %) 784 (∆ 451)

2 0.07 (100.0 %) 4.15 (100.0 %) 7,393 (∆ 922)

3 0.16 (100.0 %) 3.36 (100.0 %) 16,959 (∆ 495)

∞ 0.22 (100.0 %) 5.95 (100.0 %) 24,759 (∆ 522)

RTE

IAICBA

1 0.01 (100.0 %) 0.25 (99.7 %) 1,104

2 0.08 (100.0 %) 2.15 (98.1 %) 5,185

3 0.56 (99.9 %) 5.66 (93.0 %) 16,992

∞ 4.78 (90.7 %) 15.40 (60.7 %) 36,773

CPI4CBA

1 0.01 (100.0 %) 0.05 (100.0 %) 269 (∆ 62)

2 0.04 (100.0 %) 0.35 (99.6 %) 1,228 (∆ 151)

3 0.09 (100.0 %) 1.66 (99.0 %) 2,705 (∆ 216)

∞ 0.84 (98.4 %) 11.73 (76.9 %) 10,060 (∆ 137)

Table 1 The results of averaged inference time in STORY and RTE.

methods: (i) IAICBA: the inference method without CPI, and (ii) CPI4CBA: inference method

with CPI.

In order to investigate the relationship between the size of search space and the runtime, we

show the results for each depth, which we used for limiting the length of backward chaining.

In the “Generation” column, we show the runtime, which is taken for search-space generation

in seconds, averaged over all problems whose search-space generation is finished within 2 min.

In the parenthesis, we show the percentage of those problems whose search-space generation

is finished within 2 min. In the column “ILP inf,” we show the runtime of ILP optimization

averaged on only problems such that both search-space generation and ILP optimization are

finished within 2 min as well as the percentage of those problems (e.g., 80% means “for 80% of

all the problems, search-space generation, as well as ILP inference, was finished within 2 min.”).

In the “# of ILP cnstr” column, we show the averaged number of generated ILP constraints.

Concerning CPI4CBA, the number denotes the averaged number of constraints considered in the
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end, including the constraints added by CPI. The number marked by ∆ indicates the averaged

number of constraints that are added during CPI (i.e., how many times are the constraints added

by line 7 or 9 in Algorithm 3).

Overall, the runtimes in both search-space generation and ILP inference are dramatically im-

proved from IAICBA to CPI4CBA in both settings, as shown in Table 1. In addition, CPI4CBA

can find optimal solutions in ILP inference for more than 90% of the problems, even for depth ∞.

This indicates that CPI4CBA scales to larger problems. The results of IAICBA in RTE settings

indicate the significant bottleneck of IAICBA in large-scale reasoning: the time of search-space

generation. Search-space generation could be performed within 2 min for only 90.7% of the

problems. CPI4CBA successfully overcomes this bottleneck. CPI4CBA is clearly advantageous

in search-space generation because it is not necessary to generate transitivity constraints, an

operation that grows cubically before optimization.

In addition, CPI4CBA also reduces the time of ILP inference significantly. In ILP inference,

CPI did not guarantee the reduction of inference time in theory; however, as shown in Table 1, we

found that the number of ILP constraints actually used is much less than the original problem.

Therefore, CPI4CBA successfully reduces the complexity of the ILP optimization problems in

practice. This is also supported by the fact that CPI4CBA keeps 76.9% in “ILP inf” for Depth =

∞ because it solves very large ILP optimization problems that fail to be generated in IAICBA.

In order to see how CPI contributes to the improvement in ILP inference time, we show how

the runtime of IAICBA is affected by the CPI4CBA method for each problem in Figure 3. Each

data point corresponds to one problem in STORY and RTE settings. We show the data points

for problems for which we found optimal solutions in ILP inference for Depth = ∞. Overall, the

runtime of CPI4CBA is smaller than that of IAICBA in most problems. In particular, CPI4CBA

successfully reduces the time of ILP inference for larger problems by exploiting the iterative

optimization technique. In the larger domain of RTE setting, we found that performance was

improved in 81.7% of the problems.

Finally, we compare CPI4CBA with the existing MLN-based systems (Kate and Mooney 2009;

Singla and Mooney 2011; Blythe et al. 2011). In summary, our system is comparable or slightly

less efficient in the STORY setting; however, our system is more efficient in the RTE setting.

For the STORY setting, Singla and Mooney (2011) reported the averaged inference time of

two existing MLN-based systems using CPI (Riedel 2008) on the test set : (i) Kate and Mooney

(2009)’s approach: 2.93 s, and (ii) Singla and Mooney (2011)’s approach: 0.93 s.9 To make the

9This is the result of MLN-HC in (Singla and Mooney 2011). MLN-HCAM cannot be directly compared
with our results, since the search space is different from our experiments because they unify some assumptions in
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Fig. 3 Runtime comparison between IAICBA and CPI4CBA (logarithmic scale). The left figure shows

the results of STORY dataset, and the right figure shows the results of RTE datasets.

comparison fair, we evaluated our approach with a single CPU core on the test set. It took 2.36 s

on average to process all the problems (optimal solutions were found for all of them). MLN-based

approaches seem to be reasonably efficient for small datasets.

However, it does not scale to larger problems; for the RTE setting, Blythe et al. (2011) re-

ported that only 28 from 100 selected RTE-2 problems could be run to completion with only the

FrameNet knowledge bases. The processing time was 7.5 min on average (personal communica-

tion10). However, our method solves 76.9% of all the problems, with suboptimal solutions still

available for the remaining 21.5%, and it takes only 0.84 s for search-space generation, and 11.73

s for ILP inference. As mentioned in Sec. 5, our framework is more scalable because it does not

need to generate the axioms explicitly to emulate an explaining away effect (i.e., inferring one

cause makes another cause less probable) and needs no grounding (Sec. 3.2).

advance to reduce the search space.
10They used 56,000 FrameNet axioms in the experiments, while we used 289,655 WordNet axioms and 7,558

FrameNet axioms. To make the comparison fairer, we run our experiment on the same but smaller dataset, as in
Blythe et al. (2011). The dataset contains 65 background axioms and 14 abductive interpretation problems from

Hobbs et al. (1993). As reported in Blythe et al. (2011), it took 5.6 s for their system to process 12 problems (2
problems cannot be solved), while it took 1.0 s for our system to process all the problems with a single CPU core
(Depth = 8).
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5 Related work

The computational aspect of abduction has been studied extensively in the contexts of logic

programming and statistical relational learning. In the context of logic programming, abduction

has been introduced as the extension of logic programming (Stickel 1991; Kakas, Kowalski, and

Toni 1992), where the extended framework is often called abductive logic programming (ALP).

Since abduction and induction share the basic framework (see Sec. 2.2 for detail), abduction has

also been studied in the area of inductive logic programming, the logic programming framework

for induction (Inoue 2004; Tamaddoni-Nezhad, Chaleil, Kakas, and Muggleton 2006). In the

context of ALP, Stickel (1991) showed how to formulate minimum-cost explanation finding in

Prolog, a popular implementation of logic programming. Stickel allowed the system to assume

literals during SLD resolution when definite clause rules or facts unifiable with the targeted literal

are not found. In this system, the cost of explanation is calculated by the sum of the costs of

elemental explanations, and the costs of axioms used for constructing the proof. However, Stickel

did not show how to implement it efficiently.

In the following years, a number of methods attempting to find the minimum-cost explanation

efficiently were proposed (Santos 1994; Ishizuka and Matsuo 1998; Prendinger and Ishizuka 1999;

Abdelbar and Hefny 2005; Chivers et al. 2007; Guinn, Shipman, and Addison 2008); for example,

Santos (1994) formulated cost-based abduction in propositional logic using ILP, and showed its

efficiency. However, most of them focus on improving the efficiency of propositional logic-based

abduction. As discussed in Sec. 3, one could use such a framework through propositionalization

techniques for first-order CBA; however, the propositionalization will produce a huge number of

ground instances of background knowledge axioms and literals in observation. Hence, they would

not scale to larger problems with sizeable knowledge bases.

In the context of statistical relational learning, abduction has also been widely studied. One

of the prominent formalisms is PRISM (Sato and Kameya 2008), which is a general logic-based

probabilistic modeling language. In the past two decades, a number of techniques for efficient

inference or learning have been studied extensively (see Sato and Kameya (2008) for overview).

Concerning inference, in principle PRISM achieves the best explanation finding in a polynomial

time through a tabled search technique for logic programs (Tamaki and Sato 1986). However,

this technique exploits the local information computed so far, and hence is incompatible with the

factoring of explanation, which is a global operation (personal communication). It is a nontrivial

issue to incorporate the factoring process into the search without loss of efficiency.

Another important stream is the series of studies (Kate and Mooney 2009; Blythe et al. 2011;
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Singla and Mooney 2011), where abduction has been emulated through MLNs (Richardson and

Domingos 2006), a probabilistic deductive inference framework. MLNs provide full support of

first-order predicate logic and software packages of inference and learning; however, MLN-based

approaches have severe overheads of inference: (i) they require special procedures to convert ab-

duction problems into deduction problems because of the deductive nature of MLNs, and (ii) they

need grounding for inference. To emulate abduction in the deductive framework, the pioneering

work of MLN-based abduction (Kate and Mooney 2009) exploits the reverse implication of the

original axioms, and uses the additional axioms to emulate the explaining away effect (i.e., in-

ferring one cause makes another cause less probable). For example, suppose B = {p1 → q, p2 → q,

p3 → q}. Then, B is not used in MLN background knowledge base as it is: B is converted into

the following set of logical formulae: {q → p1 ∨ p2 ∨ p3, q → ¬p1 ∨ ¬p2, q → ¬p1 ∨ ¬p3}. As the

readers can imagine, an MLN-based approach suffers from the inefficiency of inference because

of the increase in converted axioms. In addition, to the best of our knowledge, most of the exist-

ing approaches for maximum-a-posterior (MAP) inference for MLN (Singla and Domingos 2006;

Riedel 2008, etc.) need (partial) grounding of axioms, which makes inference prohibitively slow.

In terms of the applications, there are multiple researches that exploit abduction in many fields.

For example, in systems biology, abduction is used for discovering scientific knowledge, such as

causal relationships from genotype to phenotype, or modeling inhibition in metabolic networks

(Doncescu, Inoue, and Sato 2008; Tamaddoni-Nezhad et al. 2006).

6 Conclusion

We have proposed an ILP-based lifted formulation for cost-based abduction on FOL. Although

abductive reasoning on FOL is computationally expensive, we demonstrated that the lifted in-

ference and CPI techniques bring us a significant boost to the efficiency of FOL-based reasoning.

We have evaluated our method on two datasets, including real-life problems (i.e., RTE dataset

with axioms generated from WordNet and FrameNet). Our evaluation revealed that our inference

method CPI4CBA was more efficient than other existing systems on a large KB. The abductive

inference engine presented in this paper is made publicly available.11

In future work, we plan to apply CPI to both search-space generation and ILP inference,

repeating the generation of potential elemental explanations and ILP optimization interactively,

as in Cutting Plane MAP inference in MLNs (Riedel 2008).

11https://github.com/naoya-i/henry-n700
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We also plan to extend the expressivity of our approach, i.e., to support negations in background

knowledge. The capability of handling negations is crucial for a wide range of abductive inference

systems. For example, in abduction-based natural language interpretation, one can easily imagine

that it needs to handle negated expressions, such as “I don’t like ice cream”, or “Tweety is not a

bird.” Our future direction also includes providing the formal proof of completeness and soundness

of our approach.
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