Revisiting the Design Issues of Local Models for Japanese Predicate-Argument Structure Analysis

{y-matsu, inui}@ecei.tohoku.ac.jp

Yuichiroh Matsubayashi and Kentaro Inui Tohoku University, Japan,
RIKEN, Japan

Overview

- We show the importance of designing a sophisticated local model before exploring global solution algorithms in Japanese predicateargument structure (PAS) analysis by demonstrating its impact on the overall performance through an extensive empirical evaluation.
- A local model alone is able to significantly outperform the state-of-the-art global models by incorporating a broad range of local features proposed in the literature and training a neural network for combining them.
- Our best local model achieved 13% error reduction in F1 compared with the state of the art.
- Global models are expected to improve the performance by incorporating such a strong local model.

Motivation

Task Setting

- The research trend in Japanese PAS analysis is shifting from pointwise prediction models with local features to global models designed to search for globally optimal solutions.
- However, the existing global models tend to employ only relatively simple local features; therefore, the overall performance gains are rather limited.

Model

Input: tokenized sentence and predicate positions

ACC	DAT	NONE	$p(c x_a)$ Output threshold θ_a	predicate p	type of conjugated form, nominal form of nominal verb, voice suffixes (-reru, -seru, -dekiru, -tearu)	
softr ReLL	max J+BN			For argument candidate a	surface, lemma, POS, NE tag, whether <i>a</i> is head of <i>bunsetsu</i> , particles in <i>bunsetsu</i> , right neighbor token's lemma and POS	
ReLL	J+BN			Between predicate and	case markers of other dependents of p , whether a precedes p , whether a and p are in the same <i>bunsetsu</i> .	

		All			F_1 in different dependency distance						
Model	Binary feats.	$ F_1(\sigma) $	Prec.	Rec.	Dep	Zero	2		4	\geq 5	
В	all	82.02 (±0.13)	83.45	80.64	89.11	49.59	57.97	47.2	37	21	
В	-cases	81.64 (±0.19)	83.88	79.52	88.77	48.04	56.60	45.0	36	21	
WB	all	82.40 (±0.20)	85.30	79.70	89.26	49.93	58.14	47.4	36	23	
WBP-Roth	all	82.43 (±0.15)	84.87	80.13	89.46	50.89	58.63	49.4	39	24	
WBP-Shwartz	all	83.26 (±0.13)	85.51	81.13	89.88	51.86	60.29	49.0	39	22	
WBP-Shwartz	-word	83.23 (±0.11)	85.77	80.84	89.82	51.76	60.33	49.3	38	21	
WBP-Shwartz	$-$ {word, path}	83.28 (±0.16)	85.77	80.93	89.89	51.79	60.17	49.4	38	23	
WBP-Shwartz (ens)	$-$ {word, path}	83.85	85.87	81.93	90.24	53.66	61.94	51.8	40	24	
WBP-Roth	$-$ {word, path}	82.26 (±0.12)	84.77	79.90	89.28	50.15	57.72	49.1	38	24	
BP-Roth	$-\{$ word, path $\}$	82.03 (±0.19)	84.02	80.14	89.07	49.04	57.56	46.9	34	18	
WB	$-\{$ word, path $\}$	82.05 (±0.19)	85.42	78.95	89.18	47.21	55.42	43.9	34	21	
В	$-\{word, path\}$	78.54 (±0.12)	79.48	77.63	85.59	40.97	49.96	36.8	22	9.1	

Impact of Feature Representations

- The case markers of the other dependents feature • significantly improves the prediction in both Dep and Zero cases, especially on Zero argument detection.
- WBP-Roth and WB compete in our setting lacksquare
 - The word inputs at both ends of the path embedding overlap with the word embedding and the additional effect of the path embedding is rather limited.
- WBP-Shwartz obtains better result compared with

W: word embedding, B: binary features, P: path embedding P-Roth: method of [Roth & Lapata, 2016], P-Shwartz: method of [Shwartz et al., 2016]

Model	ALL	ALL	Do NOM	ep ACC	DAT	ALL	Zer NOM	o ACC	DAT	
On NTC 1.5										
WBP-Shwartz (ens) – {word, path} B (Ouchi et al., 2015)-local (Ouchi et al., 2015)-global (Ouchi et al., 2017)-multi-seq	83.8582.0278.1579.2381.42	90.24 89.11 85.06 86.07 88.17	91.59 90.45 86.50 88.13 88.75	95.29 94.61 92.84 92.74 93.68	62.61 60.91 30.97 38.39 64.38	53.66 49.59 41.65 44.09 47.12	56.47 52.73 45.56 48.11 50.65	44.7 38.3 21.4 24.4 32.4	16 11 0.8 4.8 7.5	
Subject anaphora resolution on modified NTC, cited from (Iida et al., 2016)										
(Ouchi et al., 2015)-global (Iida et al., 2015) (Iida et al., 2016)							57.3 41.1 52.5			

Note that [Ouchi et al., 2017] does not use preprocessed syntactic dependency

- WBP-Roth
- The performance of WBP-Shwartz remains without lexical and path binary features.

Comparison to Related Work

- B model that uses only binary features already outperforms the state-of-the-art global models [Ouchi+, 2015, 2017]
 - [Ouchi et al. 2015] contains almost the same binary features as ours. \bullet
- The WBP-Shwartz (ens) shows a further 1.8 points improvement in overall F1, which achieves 13% error reduction compared with the state-of-the-art global model.
 - 81.42% of [Ouchi et al., 2017]-multi-seq