FrontPage / Learning Deep Learning

Deep Learning 勉強会/概要

教材を輪読することで、深層学習の基礎や自然言語処理への応用を学びます。

2017

Date
3月30日~ 木曜日 10:00~12:00, 5月11日~ 火曜日 16:20~17:50
Members
松林,松田,横井,栗原,高橋,鶴田,清野,塙

内容

  • 読む本:Deep Learning, Book in preparation for MIT Press- Yoshua Bengio and Ian J. Goodfellow and Aaron Courville URL
  • esaページ

日程・担当

1 Introduction

  • 個々人が頑張って読む

2 Linear Algebra

3 Probability and Information Theory

4 Numerical Computation

5 Machine Learning Basics

6 Feedforward Deep Networks

7 Regularization

8 Optimization for Training Deep Model

9 Convolutional Networks

10 Sequence Modeling: Recurrent and Recursive Nets

11 Practical Methodology

12 Applications

13 Structured Probabilistic Models for Deep Learning

14 Monte Carlo Methods

15 Linear Factor Models and Auto-Encoders

16 Representation Learning

17 The Manifold Perspective on Representation Learning

18 Confronting the Partition Function

19 Approximate Inference

20 Deep Generative Models

過去の記録


Last-modified: 2017-07-18 (Tue) 00:27:37 (10d)
© Inui-Okazaki Laboratory 2010-2017 All rights reserved.
Recent Changes
2017-07-28 2017-07-27 2017-07-25 2017-07-24 2017-07-22 2017-07-21 2017-07-20 2017-07-19 2017-07-18 2017-07-14 2017-07-13 2017-07-12 2017-07-11 2017-07-10 2017-07-07 2017-07-06 2017-07-05 2017-07-04 2017-07-03 2017-07-01 2017-06-30 2017-06-29 2017-06-28 2017-06-27 2017-06-26 2017-06-24 2017-06-23 2017-06-22 2017-06-21 2017-06-20 2017-06-19 2017-06-18 2017-06-17 2017-06-16 2017-06-15 2017-06-14 2017-06-13 2017-06-12 2017-06-11 2017-06-10 2017-06-09 2017-06-08 2017-06-07 2017-06-06 2017-06-05 2017-06-04 2017-06-03 2017-06-02 2017-06-01 2017-05-31 2017-05-30 2017-05-29 2017-05-28 2017-05-27 2017-05-26 2017-05-25 2017-05-24 2017-05-23 2017-05-22 2017-05-19 2017-05-18 2017-05-17 2017-05-16