FrontPage / Learning Deep Learning

Deep Learning 勉強会/概要

教材を輪読することで、深層学習の基礎や自然言語処理への応用を学びます。

2017

Date
3月30日~ 木曜日 10:00~12:00
Members
松林,松田,横井,栗原,高橋,鶴田,清野,塙

内容

  • 読む本:Deep Learning, Book in preparation for MIT Press- Yoshua Bengio and Ian J. Goodfellow and Aaron Courville URL
  • esaページ

日程・担当

1 Introduction

  • 個々人が頑張って読む

2 Linear Algebra

3 Probability and Information Theory

4 Numerical Computation

5 Machine Learning Basics

6 Feedforward Deep Networks

7 Regularization

8 Optimization for Training Deep Model

9 Convolutional Networks

10 Sequence Modeling: Recurrent and Recursive Nets

11 Practical Methodology

12 Applications

13 Structured Probabilistic Models for Deep Learning

14 Monte Carlo Methods

15 Linear Factor Models and Auto-Encoders

16 Representation Learning

17 The Manifold Perspective on Representation Learning

18 Confronting the Partition Function

19 Approximate Inference

20 Deep Generative Models

過去の記録


Last-modified: 2017-04-25 (Tue) 04:28:39 (4h)
© Inui-Okazaki Laboratory 2010-2015 All rights reserved.
Recent Changes
2017-04-25 2017-04-24 2017-04-23 2017-04-22 2017-04-21 2017-04-20 2017-04-19 2017-04-18 2017-04-17 2017-04-16 2017-04-15 2017-04-14 2017-04-13 2017-04-12 2017-04-11 2017-04-10 2017-04-09 2017-04-08 2017-04-07 2017-04-06 2017-04-05 2017-04-04 2017-04-03 2017-04-02 2017-03-31 2017-03-30 2017-03-29 2017-03-28 2017-03-27 2017-03-26 2017-03-23 2017-03-22 2017-03-17 2017-03-16 2017-03-13 2017-03-11 2017-03-10 2017-03-09 2017-03-08 2017-03-07 2017-03-06 2017-03-05 2017-03-04 2017-03-03 2017-03-02 2017-03-01 2017-02-28 2017-02-27 2017-02-26 2017-02-25 2017-02-24 2017-02-23 2017-02-22 2017-02-21 2017-02-20 2017-02-19 2017-02-18 2017-02-17