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Abstract

Abduction is inference from a given set of observations to the best

explanation about why those observed event happened. This mode

of inference has long been considered a promising framework for Dis-

course processing, a subtask of natural language processing, which

is the task of making implicit information in natural language texts

explicit.

Formulating discourse understanding as abductive reasoning is ex-

pected to bring several distinct advantages: (1) it provides not only

output of task but also human interpretable proof trees and hence

shows us what was hypothesized and what knowledge was used to ex-

plain the observation, (2) it provides a uniform framework for integrat-

ing subtasks of multiple levels of abstraction and (3) the declarative

nature of abduction allows us to abstract away from the procedural

process of inferences.

In spite of these promising properties, however, in fact, the abduction-

based approaches to subtasks of discourse processing, such as text/s-

tory understanding and plan/intention recognition, have never pro-

duced significant positive evidence that supports their effectiveness in

real-life problems.

In this thesis, we address some of the problems which have hindered

the success of these abduction-based approaches. Specifically, we ad-

dress following issues: (i) abductive reasoning procedures were not

efficient enough to use huge knowledge base, and (ii) the evaluation

function, which is used to evaluate the goodness of explanation, is

hand-tuned for each task.



As a solution to the first issue, we propose an efficient inference

method of first-order abduction, which eliminates redundant expla-

nations from the search space efficiently. Through the large-scale

evaluation, we demonstrate that proposed method is far more effi-

cient than the other existing abductive reasoners.

As a solution to the second issue, we propose a method to discrimi-

natively learn parameters of the evaluation function. This method is

applicable to an evaluation function if only the evaluation function is

differentiable with respect to the parameters to tune. In our evalua-

tion, we show that our learning procedure can reduce the value of loss

function in each iteration, and learned parameters are also robust to

unseen dataset.
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Chapter 1

Introduction

Natural language texts contain various implicit information, which the writer

omitted. For instance, given a sentence “John went to the bank. He got a loan”,

we humans can easily find various implicit information — “he” refers to “John”,

the purpose of John’s going to the bank is to get a loan, and so on. Discourse

processing, a subtask of natural language processing (NLP), is the task to make

the implicit information like these in natural language texts explicit.

Abduction is inference from a given set of observations to the best explana-

tion about why those observed events happened. This mode of inference has

long been aplied to a range of AI tasks including text/story understanding and

plan/intention recognition.

An epoch-making study in this line of research can be seen in a paper in

Artificial Intelligence by Hobbs et al; they demonstrate that a wide range of

subtasks in the understanding of natural language can be uniformly formulated

as abductive reasoning (Interpretation as Abduction). For instance, given above

sentence, “John went to the bank. He got a loan” as input, it is assumed that

the model of Hobbs et al. semantically parses it to obtain a logical form, which

consists of a flat conjunctive set of observed literals, as shown at the bottom of

Figure 1.1.

This way of formulating intelligent inference has several distinct advantages:

1. It provides not only output of task but also human interpretable proof trees

like Figure 1.1. Those explicitly show us what was hypothesized and what

1



issue(u2,y2,y1)  ⇒  get(y1,y2)	

john(x1)	 go(x1,x2)	 bank(x2)	 he(y1)	 get(y1,y2)	

issue(u2,y2,y1)	 .inancial_inst(x2)	

money(y2)	

loan(y2)	

Observation	

issue(x2,u1,x1)  ⇒  go(x1,x2)	

.inancial_inst(x2)  ⇒  bank(x2)	

money(y2)  ⇒  issue(x2,y2,y1)  ∧  .inancial_inst(x2)	
loan(y2)  ⇒  money(y2)	

Input:	 John went to the bank. He got a loan.	

money is to be issued from 
financial institutions

bank refers to a 
financial institution

x1=y1	

he refers to John

What John got is money

loan is money

x1 going to x2 is necessary
for x2 to issue u1 to x1

A financial institution can 
be expressed as a bank

When u2 issues y2 to y1,
y1 may get y2

bank issues
loan to John	

Figure 1.1: An example of discourse understanding with abductive reasoning.

knowledge was used to explain the observation.

2. It provides a uniform framework for integrating subtasks of multiple levels

of abstraction; in the above example, finding the best explanation jointly

resolves the coreference relation, the discourse relation, and the word-sense

ambiguity.

3. The declarative nature of abduction allows us to abstract away from the

procedural process of inferences. When multiple levels of interdependent

subtasks are involved, it is often crucially difficult to predetermine the op-

timal order in which to solve the problems. This difficulty can be avoided

by using joint inference.

In spite of these promising properties, however, the abduction-based approaches

to text/story understanding and plan/intention recognition have never produced

significant positive evidence that supports their effectiveness in real-life problems.

2



In this thesis, we aim to solve the problems which have hindered the success

of these abduction-based approaches.

1.1 Research Issues

In this thesis, we try to construct discourse processing frameworks using abduc-

tion with large knowledge base. Specifically, we address following two issues:

Scalability Abduction on first-order logic (FOL) or similarly expressive lan-

guages is NP-hard and computationally expensive. Its search space grows

exponentially with the size of the knowledge base.

Trainability Less attention has been paid to how to automatically learn score

functions, which rank candidate explanations in order of their plausibility

(henceforth, we call it the evaluation function). To apply abductive in-

ference with large knowledge base to real-world problem, this non-trivial

issue needs to be addressed because the criterion of plausibility is highly

task-dependent.

1.2 Contributions

This thesis makes following contributions.

Scalable abduction framework for discourse processing We propose an ef-

ficient inference method of abductive reasoning on first-order logic. This

method is based on ILP formulated Abduction.

Discriminative learning method of abduction We propose a method to dis-

criminatively tune the parameters of the evaluation function in first-order

abduction. This method is not task-specific nor model-specific and is there-

fore widely applicable. If only an evaluation function is differentiable with

respect to its parameters to tune, it is tunable by this method.

The all-in-one software package for abduction We have implemented the

proposed methods in one software package, which is called Phillip. The

3



software is an opensource software and publicly available at the Github1.

This accomplishes much more efficient abduction than existing implemen-

tations and the supervised learning on various existing evaluation function.

Phillip’s implementation is flexible and then enables one to easily develop

a new abductive inference model.

1.3 Thesis Overview

The rest of this thesis is structured as follows.

• Chapter 2: Inference-based Approach for Discourse Processing In

this chapter, we introduce the theoretical background — first order logic,

abductive inference and so on.

• Chapter 3: Boosting Efficiency of Abduction The problem of finding

the best abductive explanation is an NP-hard problem. In this chapter, we

propose an efficient inference method for first-ordered abduction.

• Chapter 4: Boosting Efficiency of Abduction for Discourse Pro-

cessing In this chapter, we propose an efficient inference method for ab-

ductive inference-based frameworks for discourse processing.

• Chapter 5: Discriminative Learning of Abduction In this chapter,

we propose an discriminative learning method for an evaluation function in

first-ordered abduction.

• Chapter 6: Scalable and Trainable Open Source Abductive Rea-

soner We have implemented the proposed methods as an open sourse soft-

ware, Phillip. In this chapter, we outline it and provide a basic way to use

it.

• Chapter 7: Conclusions We summarize our discussion, and present our

future direction.

1http://github.com/kazeto/phillip/
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Chapter 2

Inference-based Approach for

Discourse Processing

In this chapter, we introduce first-order abduction and some related works.

2.1 First-Order Logic

First-Order Logic (FOL) is a variety of predicate logic, which allows quantification

of only variables and used as a language of meaning representation.

In FOL, the basic unit of meaning is called an atom or atomic formula. An

atom is a form of p(x1, x2, ..., xN), where p is called predicate and x1, x2, ..., xn

are called terms. A predicates is a symbol that represents property of objects,

relation between objects and so on. A term represents some object in the world.

For example, the atom apple(x) means that an object x has property of apple,

tha atom love(John,Mary) means that there exists the relation of love between

John and Mary. The number of terms in each atom is inherent in its predicate.

The number of argument which a predicate takes is called arity and a predicate

which takes N terms as arguments is called N-ary predicate. In this thesis, we

denote a N-ary predicate p as p/n. For example, the predicate love of above

example takes two argument and then is called 2-ary predicate and denoted as

love/2. An atom whose all terms are constants is called a grounded atom.

Each atom can be negated. When an atom is negated, the truth value of an

5



atom is false. In FOL, the negation of an atom a is represented as ¬a. Negation
operator can be recursively applied. The negation of a negated atom is equal to

non-negated atom, ¬(¬a) = a. A non-negated atom or a negated atom is called

literal. An literal whose all terms are constants is called a grounded literal.

In order to represent a multiple fact consisting of prural literals, a logical

connection can be used. The following are some typical logical connections; A

conjunction L1 ∧ L2 is true iff both L1 and L2 are true. A disjunction L1 ∨ L2

is true iff at least one of L1 and L2 is true. An exclusive disjunction L1 ⊕ L2 is

true iff one of L1 and L2 is true and another is false. An implication L1 ⇒ L2 is

true iff L1 is false or L2 is true. Given an implication L1 ⇒ L2, L1 is called body

and L2 is called head. An equivalence is true iff L1 and L2 have the same true

value. A literal or literals connected by a logical connections are called formula.

A logical connection can also connect formulas (e.g. L1 ∧ L2 ⇒ L3 ∧ L4).

Each variable in formulas can be quantified. In FOL, there are two types of

quantification, universal quantification and existential quantification. Universal

quantification is written as ∀x1, x2, ..., xn. An universally quantified formula ∀xFx

is true iff the formula Fx is true for any object x in the world. Existential

quantification is written as ∃x1, x2, ..., xn. An existential quantified formula ∃xFx

is true iff the formula Fx is true for at least one object x in the world.

A formula is satisfiable iff it is possible to find the truth assignments of atoms

in the formula which makes the formula true. When truth assignments makes

a formula true, we say that the truth assignments satisfy the formula. When a

formula F1 is true in every truth assignments which satisfy another formula F2,

F2 is said to be entailed by F1 and this relation is denoted as F2 |= F1.

An equality between terms x and y, x = y means that a variable x and a

variable y refer same object. In this thesis, we deal with equalities between terms

as literals. That is, they can be negated and connected by logical connections.

For example, a formula p(x) ∧ p(y) ∧ x = y has the same meaning as p(x). We

denote the negation of x = y as x ̸= y.

In this thesis, we consider that a set of literals and a conjunction of literals

is interconvertible. For instance, a conjunction p(x) ∧ p(y) can be written as a

literal set {p(x), p(y)}, and p(x) ∈ P implicates P |= p(x).

6



2.2 Abduction

Abduction is inference to the best explanation. In this thesis, we adopt first-

order logic as the meaning representation of logical abduction. Formally, logical

abduction is defined as follows:

Given: Background knowledge B and observation O, where B is a set of first-

order logical formulas, and O is a a first-order formula.

Find: A hypothesis (explanation) H such that H ∪ B |= O,H ∪ B ⊭⊥, where
H is a first-order formula. ⊥ is a logical constant denoting contradiction.

We say that q is hypothesized if H ∪ B |= q and that q is explained by p if

(∃p) p ⇒ q ∈ B and H ∪ B |= q. What we call equality assumption is an

equality between terms in a hypothesis, such as x = y.

Typically, there are several hypotheses H that explain O. We call these the

candidate hypotheses, each literal in a candidate hypothesis is an elemental hy-

pothesis, and the set of literals in all possible candidate hypotheses is called the

potential elemental hypotheses. In this thesis, we denote potential elemental hy-

potheses as P . Since a candidate hypothesis is a subset of the potential elemental

hypotheses, the potential elemental hypotheses provides the search space of the

solution.

The goal of abduction is to find the best hypothesis Ĥ among the candi-

date hypotheses by using a specific evaluation measure. We call Ĥ the solution

hypothesis. Formally, the solution hypothesis is defined as follows:

Ĥ = argmax
H∈H

E(H) (2.1)

where H is a set of possible candidate hypotheses, and E is a function H → R
that evaluates the plausibility of each candidate hypothesis. Here, we assume

that E(H) returns −∞ if H ∪B |=⊥, and we call this the evaluation function. In

the literature, several kinds of evaluation functions have been proposed [Charniak

and Goldman, 1991; Hobbs et al., 1993; Raghavan and Mooney, 2010; Singla and

Domingos, 2011, etc.].
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2.2.1 Our Formulation

In this section, we define our formulation of abduction. This formulation is based

on the formulation in Inoue and Inui [2011].

At first, let us confine the above definitions of abduction as follows;

• We use function-free first order logic as the meaning representation. A

variable or a constant is permissible as a term of literal but a function is

not permissible.

• Background knowledge B is a set of implications between conjunctions,

where the body of each implication is universally quantified and the head of

each implication is existentially quantified. Consequently, each implication

can be formally represented as ∀xn
1 [∃(ym

1 \ xn
1 ) [p1(x1) ∧ ... ∧ pn(xn) ⇒

q1(y1) ∧ ... ∧ qm(ym)]], where xi and yj are term arrays.

• Observation O is a conjunction of first-order literals. We assume that all

variables occurring in observation are existentially quantified.

• A hypothesis H is a conjunction of first-order literals. Like observation, we

assume that all variables occurring in a hypothesis are existentially quanti-

fied.

In this thesis, we generally omit quantifiers in observations, background knowl-

edge and hypotheses.

As noted, each candidate hypotheses can be regarded as a subset of the poten-

tial elemental hypotheses. Then the enumeration of possible candidate hypothe-

ses can be formulated as the generation of the potential elemental hypotheses.

In this thesis, the potential elemental hypotheses are generated by applying the

limited number of the following two operations, starting with P = O;

Backward chaining: Assuming an axiom p1(x)∧p2(x)∧ ...∧pn(x)⇒ q(x) ∈ B

and the potential elemental hypotheses P which contains a literal q(a), this

operation adds new literals {pi(a)}ni=1 to the potential elemental hypotheses.

For example, applying backward chaining with the axiom p(x) ⇒ q(x) to

P = q(A), new literal p(A) is added to P as a elemental hypothesis.
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Unification: Assuming the potential elemental hypotheses which contains two

literals that have the same predicate p(x), p(y), this operation adds equal-

ities between each term of x and each term of y. For example, given

P = p(x1, x2) ∧ p(y1, y2), the unification between p(x1, x2) and p(y1, y2)

adds an equalities x1 = y1 and x2 = y2 to P .

See Figure 2.1 for an example of potential elemental hypotheses. Here, the

observation is O = animal(x) ∧ bark(e1, y) and the knowledge base consists of

following logical formulae:

poodle(x) ⇒ dog(x)

dog(x) ⇒ animal(x)

dog(x) ⇒ bark(e, x)

cat(x) ⇒ animal(x)

As noted above, the potential elemental hypotheses are generated by applying op-

erations of backward chaining and unification, starting with P = O. In this exam-

ple, the potential elemental hypotheses is initialized as P = {animal(x), bark(e1, y)}
and end up as P = {animal(x), bark(e1, y), cat(x), dog(x), poodle(x), dog(y), x =

y}.
Now, how should we decide the number of operations to apply? In this thesis,

following Inoue and Inui [2011, 2012], we adopt the depth of a literal to limit the

number of operations to apply. The depth of a literal means the number of back-

ward chaining operations which are necessary to add the literal to the potential

elemental hypotheses. For instance, the depth of a literal included in observation

is 0. The depth of the literal poodle(x) in Figure 2.1 is 2. Supposing dmax is

the maximum depth, we restrict backward-chaining operations to be applied to

literals whose depth exceeds dmax. This limitation is important particularly when

knowledge base contains looping formulae (e.g. a⇒ b and b⇒ a).

Being generated by this procedure, the potential elemental hypotheses consist

of the limited number of literals and each literal is observable or hypothesized

by the limited number of backward chainings. Consequently, the dicidability of

H ∪ B |= O,H ∪ B ⊭⊥ for each candidate hypothesis is obviously guaranteed.
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Observation	

dog(y)  ⇒  bark(e1,y)	

animal(x)  ∧  bark(e1,y)  	

dog(x)	

dog(x)  ⇒  animal(x)	

cat(x)  ⇒  animal(x)	

cat(x)	

dog(y)	

poodle(x)  ⇒  dog(x)	

poodle(x)	

x=y	

Poodle is a kind of dog

A dog barks.
Dog is a kind of animal.

Cat is a kind of animal

Input:	 An animal is barking.	

Figure 2.1: An example of elemental hypotheses set.

Moreover, it is guaranteed that the algorithm will halt without running forever.

2.3 Existing Frameworks of Abduction

In this section, we introduce some of existing frameworks of first-order abduction.

2.3.1 Weighted Abduction

Weighted Abduction is a abductive inference model proposed by Hobbs et al.

[1993] and is the defacto standard model in the domain of abduction-based dis-

course processing.

In Weighted Abduction, background knowledge is a set of first-order logical

Horn clause whose literals in its body are assigned positive real-valued weights,

and each literal in an observaion or in a hypothesis has a positive real-valued cost.
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We use a notation lw to indicate “a literal l has the weight w” (e.g. p(x)0.6 ∧
q(x)0.6 ⇒ r(x)) and l$c to denote “a literal l has the cost c” (e.g. p(x)$10∧q(x)$10).

In principle, the evaluation function of Weighted Abduction gives penalty for

assuming specific and unreliable information but rewards for inferring the same

information from different observations. Since a cost of each literal represents

how the literal is specific and unreliable, a candidate hypothesis which consists

of literals assigned low cost is considered to be plausible. More formally, the

evaluation function is defined as the sum of all the costs of elemental hypotheses

in it:

Eval(H) = −
∑
hinPH

c(h) (2.2)

where PH is a set of elemental hypotheses that are not explained nor unified, c(h)

is the cost which an elemental hypothesis h has.

Specificity and unreliablity of a literal h is evaluated based on two factors: (1)

How the literal explained by h is specific and unreliable and (2) how the formulae

used to hypothesize h are unreliable. More formally, given a weight vector θ, the

cost of literal h is defined as the multiplication of the cost of the literal explained

by h (we denote oh) and the weight of logical formulae which are used to explain

oh from h.

c(h) =

 ∏
i∈chain(h)

θi

 c(oh) (2.3)

where obs(h) is an observed literal that is back-chained on to hypothesize h,

chain(h) is a set of indices to a literal in axioms that are used for hypothesizing

h from oh. Henceforth, we refer to a weight vector θ as the parameter of the

evaluation function of Weighted Abduction.

The special feature of this model is to be able to evaluate two types of plausibil-

ity of hypotheses simultaneously: correctness and informativeness 1. Correctness

represents how reliable the contents of information are. Informativeness is how

specific the information is. This evaluation function is parametrized in a way

that one can construct a evaluation function that favors more specific and thus

more informative explanations, or less specific but more reliable explanations in

1These corresponds to what Thagard [1978] has called simplicity and consilience
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terms of a specific task by altering the parameters.

2.3.2 Weighted Linear Abduction

Since the evaluation function in Weighted Abduction is non-linear, it is hard to

compute the gradient of the weights directly. This property prevents one from

adopting the gradient algorithm to learn the weight of Weighted Abduction.

Inoue et al. [2012] proposed the linear version of Weighted Abduction(we call

Weighted Linear Abduction). In this model, instead of Equation 2.3, a cost

of a literal h is defined as the sum of the cost of oh and the weights:

c(h) =

 ∏
i∈chain(h)

θi

 c(oh) (2.4)

Unlike the evaluation function of Weighted Abduction, one of Weighted Linear

Abduction is linear at their parameters. Therefore, it is relatively easy to tune the

parameter of this model. Actually Inoue et al. [2012] shows that the parameters

of Weighted Linear Abduction can be learned by instantiating Passive Aggressive

algorithm [Crammer et al., 2006].

2.3.3 Markov Logic Network-based Abduction

Blythe et al. [2011] proposed a method that emulates abduction on Markov Logic

Networks (MLNs) [Richardson and Domingos, 2006] (we call MLN-based Abduc-

tion). The evaluation function can be written as follows:

E(h) =
∑
k∈Bh

w(k) (2.5)

where Bh is a set of logical formula used to explain the observation from the

hypothesis h and w(k) is the weight assigned to a logical formula k. Each weight

represents plausibility of backward chaining with the corresponding logical for-

mula.

The advantage of this model is that it can be implemented on existing MLNs

frameworks and then it can make use of efficient algorithms for the MLNs frame-
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works. However, it is not very efficient because the grounding (i.e., the process

that converts the knowledge base or observations in the first-order logic into

propositional logic) causes the knowledge base to increase explosively.

2.4 Conclusion

In the formar part of this chapter, we introduced first-order logic and outlined

the mechachism of abduction. Abduction framework takes observation and back-

ground knowledge as input and returns the best explanation to the observation

(we call the solution hypothesis) as output. The goodness of each candidate is

evaluated by an evaluation function.

In the rest of this chapter, we introduced several existing abduction frame-

works. In following chapters, we basically adopt the evaluation function in

Weighted Abduction.
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Chapter 3

Boosting Efficiency of Abduction

Abductive inference is an NP-hard problem, and so its computational cost in-

creases exponentially with increases in the knowledge base.

To archive discourse processing on abduction with large knowledge base, it

is necessary to solve this big problem. Specifically, in this chapter, we aim to

construct a framework of abduction that satisfies the following requirements:

Optimality Given enough time, it can infer the optimal solution in the current

search space.

Scalability The length of time which is needed to infer the optimal solution is

as short as possible.

Anytime inference Given not enough time to get the optimal solution, it search

as good solution as possible — which contains as few contradictions as

possible and has as good score on the evaluation function as possible.

3.1 Previous Work

3.1.1 Previous work on for efficient abduction

As noted above, the computational cost of abduction is a big problem. The

studies that have addressed this issue can be classified roughly into two groups.
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The first includes those methods that emulate abduction by using a frame-

work for deduction [Blythe et al., 2011; Raghavan and Mooney, 2010; Singla and

Domingos, 2011, etc.]. For example, Singla and Domingos proposed a method

that emulates abduction on Markov logic networks (MLNs) [Richardson and

Domingos, 2006]. However, although these methods can make use of efficient

algorithms for the target framework, they are not very efficient [Blythe et al.,

2011]. The reason of this is that the grounding, i.e., the process that converts the

knowledge base or observations in the first-order logic into propositional logic,

causes the knowledge base to increase explosively.

The second includes those methods that formulate abduction as the problem

of finding the best subset of the potential elemental hypotheses, and then uses

another optimization algorithm to search the subset of potential elemental hy-

potheses that corresponds to the solution hypothesis. For example, Inoue and

Inui proposed a method to formulate abductive reasoning as a problem of integer

linear programming (ILP) without grounding [Inoue and Inui, 2011, 2012]. With

this method, a drastic improvement was achieved by the efficiency of the lifted

inference and by using an efficient optimization algorithm in an external ILP

solver. Inoue and Inui [2012] reported that this approach is much faster than the

MLN-based framework discussed above [Blythe et al., 2011], which had been the

state of the art before being replaced by this method.

3.1.2 ILP Formulation of Abduction

In this section, we outline the method by Inoue and Inui, which formulate ab-

duction as an Integer Linear Programming (ILP) problem [Inoue and Inui, 2011,

2012]. Their method can be divided into the three steps as follows:

Generation step: The potential elemental hypotheses are generated from given

observation and knowledge base. As noted in section 2.2.1, the potential

elemental hypotheses generation is done by applying operations of backward

chaining and unification.

Conversion step: The potential elemental hypotheses generated are converted

into an ILP problem. Here, whether the elemental hypothesis is included
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in the solution hypothesis is expressed as 0-1 value of the corresponding

variable in the ILP problem. Constraints in an ILP problem expresses var-

ious relations between elemental hypotheses — such as transitive property

of equality, mutually exclusiveness between literals and so on. The evalua-

tion function of abduction is expressed as the objective function in the ILP

problem.

Optimization step: The solution hypothesis is obtained by optimizing the ILP

problem. The optimization of the ILP problem is done by external ILP

solver, such as LpSolve1 and Gurobi Optimizer2.

As noted above, transitivity constraints for equality assumptions are repre-

sented as ILP constraints in the ILP problem. The problem here is that the

number of transitivity constraints is Ø(n3), where n is the number of equality as-

sumptions in the potential elemental hypotheses. For this problem, Inoue and Inui

[2012] proposed a method to boosting efficiency of ILP optimization by gradually

optimizing and adding transitivity constraints if violated in an iterative manner.

This is the current state-of-the-art abductive reasoner in terms of computational

efficiency. Our method in this chapter is proposed as a extension of their method.

3.2 Basic Strategy

In this section, we discuss the basic strategy of our method.

We begin by discussing the optimality of the solution obtained by the abduc-

tion. In abductive reasoning, because the search space of the solution can increase

without limit and the proof of global consistency for the negation requires a high

computational cost, obtaining the global optimal solution by abductive reason-

ing is expensive. Therefore, in practice, it is the local, not the global, optimal

solution that is sought; that is, we seek the best hypothesis within some limited

search space and regard it as the best explanation. In the work of Inoue and

Inui [2012], a parameter dmax was defined to be a natural number, and the po-

tential elemental hypotheses consist of those elemental hypotheses that can be

1http://lpsolve.sourceforge.net/5.5/
2http://www.gurobi.com/
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p6(a,b)	 p7(c)	

p3(a)	 p2(c)	

a4	 a5	

Observations 

p6(a,b)	 p7(c)	

p3(a)	

p2(c)	p1(a)	

a4	

a2	

a5	

Observations 

p6(a,b)	 p7(c)	

p3(a)	 p2(c)	

p1(a)	

p1(c)	

a1	

a4	

a2	

a5	

Observations 

a=c	

Hypothesis Hypothesis Hypothesis 

p5(u)	

a6	

(a) (b) (c) 

Figure 3.1: An example of the basic strategy.

ID Axiom ID Axiom

a1 p1(x)⇒ p2(x) a5 p2(x)⇒ p7(x)
a2 p1(x)⇒ p3(x) a6 p5(y)⇒ p7(x)
a3 p4(x, y)⇒ p5(y) a7 p8(y)⇒ p6(x, y)
a4 p3(x)⇒ p6(x, y) a8 p9(x)⇒ p8(x)

Table 3.1: A knowledge base for an example.

hypothesized through less than dmax backward chainings. A larger dmax indicates

a higher probability that the solution is a global optimum and a correspondingly

higher computational cost. The optimality of the solution and its computational

cost both depend on the size of the search space of the solution. In this paper, we

aim to reduce the size of the search space (i.e., the number of potential elemental

hypotheses) while maintaining the optimality of the solution.

3.3 Pruning Non-Reachable Literals

In abduction, the evaluation functions are generally defined so that the bet-

ter a hypothesis is considered to be, the greater the probability of the assump-
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tions included in the hypothesis and the more observations it explains. For ex-

ample, given the knowledge base shown in Table 3.1 and an observation O =

{p6(a, b), p7(c)}, let us consider the three hypotheses shown in Figure 3.1. Here,

the hypothesis (b) is less optimal than hypothesis (a), because (b) includes more

hypothesized literals than (a) but explains the same number of observations. On

the other hand, since hypothesis (c) explains as many observations as (a) with

fewer literals, (c) is considered to be better than (a). More formally, the evalua-

tion functions E generally have the following properties:

1. Given a candidate hypothesis H and an operation of backward chaining c,

E(H) ≥ E(H ∩ c) is satisfied.

2. A candidate hypothesis H and an operation of unification u that satisfy

E(H) ≤ E(H ∩ u) can exist.

Supposing that the evaluation function that we employ has these properties,

then we can reduce the number of potential elemental hypotheses by canceling

the backward chainings that do not result in unification.

In order to estimate whether the backward chaining will result in unification,

it is necessary to know which literals can be hypothesized from each observation

and the plausibility of each literal. Here, we define the function h∗(p, q), which

provides the semantic relatedness between a literal p and a literal q. We call

the return value of h∗(p, q) the heuristically estimated distance (HED) between

p and q.

The necessary conditions of h∗(p, q) and HED are as follows. First, they must

express the semantic relatedness between p and q. In other words, the more

easily the relevance between two literals can be inferred, the higher the HED

between them. Second, h∗(p, q) must be admissible for use in an A* search, so

that it can be employed as a heuristic for the cost, as in Section 3.4. Third, the

computational cost for obtaining a return value from h∗(p, q) should be as small as

possible. For the third condition, we pre-estimate all of the HEDs and store them

in a database. Thus, the function h∗(p, q) only has to load values from memory.

Since the size of the database of HEDs increases as the definition of h∗(p, q)

becomes more complex, we have to consider the balance between efficiency and

the expressiveness of the HEDs.
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Therefore, we define this function as the heuristic distance between the pred-

icates of the literals with the abstraction of the conjunctions of the antecedents

of each of the axioms. Formally, h∗(p, q) is defined as follows:

h∗(p, q) = min
H∈{H|H∪B∗|={ρ(p),ρ(q)}}

∑
a∈AH

δ(a) (3.1)

B∗ =
∪

p1∧...∧pn⇒q∈B

[
n∪

i=1

ρ(pi)⇒ ρ(q)

]
(3.2)

where AH is the set of axioms that are used in H, ρ(L) is the function that re-

turns the literal corresponding to the predicate of the first-order literal L (e.g.,

ρ(john(x)) = john). and δ(A) is the distance function, which returns the heuris-

tic distance between the antecedents of the axiom A and the conclusions of A.

For example, given the knowledge base in Table 3.1 and the distance function

δ(A) = 1, the value of h∗(p7(x), p1(x)) is δ(a5) + δ(a1) = 2.

In this paper, we define the distance function as δ(A) = 1, for simplicity. In

practice, it is necessary to select a proper distance function because the precision

of the HEDs depends on the definition of the distance function. For example, in

cost-based abduction [Inoue and Inui, 2012], the distance function better conforms

to the evaluation function when using the cost assigned to each axiom for δ(A).

Since the HEDs depend only on the knowledge base, we can estimate these

in advance. The computational cost of the estimation is O(N2
pred), where Npred is

the number of different predicates in the knowledge base.

3.4 Potential Elemental Hypotheses Creation with

A* Search

In this section, we propose an algorithm that efficiently creates the potential

elemental hypotheses. We apply an A* search to generate the potential elemental

hypotheses and then trim without loss any that are included in the solution

hypothesis. Although we employ the same evaluation function as used by weighted

abduction, our method can be applied to other frameworks.

Now, our goal is to efficiently hypothesize the literals that can be combined.
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Algorithm 1 A* search-based potential elemental hypothesis creation

Require: B,O = {o1, o2, ..., on}, lmax, dmax

1: X ← Ø // The open set
2: P ← Ø // The potential elemental hypotheses
3: for i = 1 to n do
4: for j = 1 to i− 1 do
5: U ← getEqualityAssumption(oi, oj)
6: P ← P ∪ U
7: if h∗(oi, oj) > 0 then
8: X ← X ∪ x, x.c = oi ∧ x.s = oi ∧ x.g = oj
9: X ← X ∪ x, x.c = oj ∧ x.s = oj ∧ x.g = oi
10: end if
11: end for
12: end for
13: while X ̸= Ø do
14: x̂← argminx∈X{d(x.s, x.c) + h∗(x.c, x.g)}
15: for all a = {p1 ∧ p2 ∧ ... ∧ pn ⇒ q} in B do
16: R← doBackwardChaining(x̂.c, a)
17: P ← P ∪R
18: for all r in R do
19: for all x in {x|x ∈ X ∧ x.c = x̂.c} do
20: if d(x.s, x.c) + h∗(x.c, x.g) + δ(a) ≤ lmax ∧ depth(x.c) < dmax then
21: X ← X ∪ {y|y.s = x.s ∧ y.c = r ∧ y.g = x.g ∧ d(y.s, y.c) =

d(x.s, x.c) + δ(a)}
22: end if
23: end for
24: for all p in P \ r do
25: U ← getEqualityAssumption(r, p)
26: P ← P ∪ U
27: if U ̸= Ø then
28: X ← X \ {x|x.c = r ∧ isExplanation(p, x.g)}
29: X ← X \ {x|x.c = p ∧ isExplanation(r, x.g)}
30: end if
31: end for
32: end for
33: end for
34: X ← X \ {x|x.c = x̂.c}
35: end while
36: return P
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Algorithm 2 doBackwardChaining(l, a)

Ensure: a = {p1 ∧ p2 ∧ ... ∧ pn ⇒ q}
1: P ← Ø
2: if ∃θ, lθ = qθ then
3: for v ∈ notSubstitutedVars({p1, p2, ..., pn}, θ) do
4: θ ← θ ∪ {v/ui}; i← i+ 1
5: end for
6: P ← P ∪ {p1, p2, ..., pn}θ
7: end if
8: return P

Algorithm 3 getEqualityAssumption(p1, p2)

1: P ← Ø
2: if ∃θ, p1θ = p2θ then
3: for all x/y in θ do
4: P ← P ∪ {x = y}
5: end for
6: end if
7: return P

Since we cannot know exactly which axiom we should use in order to hypothesize

those literals, we search for them by using the HEDs, as follows.

First, set positive values for lmax and dmax, which are hyperparameters that

control the size of the search space and initialize the open set to be an empty set.

We denote the distance of the path from a literal p to a literal q as d(p, q) and

the estimated distance between p and q as d∗(p, q). We use the distance function

h∗(p, q) as the heuristic function that provides d∗(p, q). In each step, the following

operations are performed:

• Select the target literal q̂, which is expected to result in the least expensive

unification with the literals in the open set.

• Pop q̂ off the open set. Enumerate the axioms whose descendant equals q̂,

and perform backward chaining with each of the axioms with the condition

that at least one pair of a literal pi in the antecedents of the axiom and

a literal o in the observations satisfies the following conditions: (i) pi is

considered to be reachable by o (i.e., h∗(pi, o) ≤ lmax); (ii) there is no
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possibility of unification between one of the descendants of pi and one of

the antecedents of o.

• If a literal in X and one in the potential elemental hypotheses are unifiable,

insert the elemental hypotheses of equality between the terms resulting from

the unification.

The search is over when the open set is empty.

For example, given the knowledge base shown in Table 3.1 and an observation

O = {p2(a), p6(b, c), p7(d)}, the first step of the search is performed as shown in

Figure 3.2; the edges drawn with a solid line represent backward chaining, and

those drawn with a dotted line are unifications. The numbers in the balloons

connected to the nodes in the open set indicate the estimated distance. In the

initial step, since the shortest path is expected to be the one between p7(d) and

p2(a), the literals p2(d) and p5(u1) are inserted into the open set as the results of

backward chainings.

The procedure is shown in Algorithm 3.4, X is the open set for the search.

Each element x ∈ X is a candidate for the search and has three possible des-

ignations: x.s is the start node, x.c is the current node, and x.g is the goal

node. The function isExplanationOf(x, y) is the binary function that indicates

which the literal x explains the literal y (i.e., if x is an antecedent of y), and the

function depth(p) returns the number of backward chainings that are needed to

hypothesize the literal p from the observations.

Next, we summarize the advantages of this algorithm. First, since this algo-

rithm does not add literals that cannot be included in the solution hypothesis to

the potential elemental hypotheses, it can reduce the size of the search space. We

believe that this may lead to a more efficient optimization.

Second, this algorithm prevents redundant unifications. For example, given

the knowledge base shown in Table 3.1 and the observation O = {p7(a), p7(b)}, let
us consider how to generate the potential elemental hypotheses P . In Inoue and

Inui [2011], the potential elemental hypotheses generated are P = {p2(a), p2(b), p1(a), p2(b)}.
However, according to Section 3.2, the evaluation of the candidate hypothesis

H = {a = b} must be better than the evaluation of H = {p2(a), p2(b), a = b} or
H = {p1(a), p1(b), p2(a), p2(b). We have no need to consider backward chainings
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from observations in this case. Our algorithm can deal with such a heuristic.

Third, this algorithm adds elemental hypotheses to the potential ones in the

order of their probability of being included in the solution. Therefore, if the

generation of potential elemental hypotheses is interrupted, such as by timing

out, a better suboptimal solution is provided. This property is expected to be

much more useful in practice.

3.5 Parallelization

In the domain of the efficiency of other frameworks for inference, some researchers

have adopted the approach of parallelizing the inference by splitting the input into

independent subproblems [Gonzalez et al., 2009; Jojic et al., 2010; Niu et al., 2012;

Urbani et al., 2009]. In this section, we propose a similar method to parallelize

abductive inference by using HEDs, which were proposed in the previous section.

First, we consider the condition that two subproblems oi and oj are indepen-

dent. This condition is defined by the particular evaluation function that is used.

For instance, in weighted abduction, the conditions can be defined as follows:

1. There is no elemental hypothesis that explains both the literals p ∈ oi and

q ∈ oj (i.e. min{h∗(p, q), p ∈ oi ∧ q ∈ oj} =∞).

2. Equalities between any two terms cannot be hypothesized from oi and oj

together. In other words, oi and oj can share no more than one logical

variable.

Given observations O, the inference is parallelized via the following process:

1. Split the observations O into independent subproblems o1, o2, ..., on.

2. Compute in parallel the solution hypothesis for each subproblem.

3. Merge the solution hypotheses of the subproblems, and then output the

solution hypothesis of O.
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As mentioned, the computational cost of abduction grows exponentially with

the number of observations. Therefore, dividing the observations into subprob-

lems not only reaps the benefits of parallel computing, but it is also expected to

reduce the total computational cost.

3.6 Evaluation

In this section, we reported the results of two experiments to evaluate the effi-

ciency of our methods.

3.6.1 Common Setting

Dataset We used the same dataset as the one used by Inoue and Inui [2012];

it consists of sets of observations and a knowledge base. The observation sets

were created by converting the development dataset of RTE-21, the task of Tex-

tual Entailment Recognition, with the Boxer semantic parser2; it consists of 777

observation sets. The average number of literals in each observation set was 29.6.

The knowledge base consists of 289,655 axioms that were extracted from

WordNet [Fellbaum, 1998a], and 7,558 that were extracted from FrameNet [Rup-

penhofer et al., 2010]. The number of different predicates in this knowledge base

is 269,725.

Evaluation Function We employed Weighted Abduction [Hobbs et al., 1993]

as the evaluation function. We manually assigned the weights to each axiom.

Machine and ILP solver For our experiments, we used a 12-Core Opteron

6174 (2.2 GHz) 128 GB RAM machine. We used a Gurobi optimizer3, which is

an efficient ILP solver. It is a commercial product but is freely available with an

academic license.

1http://pascallin.ecs.soton.ac.uk/Challenges/RTE2/
2http://svn.ask.it.usyd.edu.au/trac/candc
3http://www.gurobi.com/
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Baseline (dmax = 3) A*-single (lmax = 6)

# of literals 1059 233
# of chains 1013 189
# of unifications 395 114
Time (P-Gen) 0.2 0.8
Time (ILP-Conv) 0.2 0.04
Time (ILP-Solve) 15.6 3.8
Time (ALL) 15.9 3.8
# of timeout 48 16

Table 3.2: The result of the comparison between our methods and the baseline.

3.6.2 Evaluation of efficiency

3.6.2.1 Setting

On this experiment, we compared the solving times when using our models and

when using that of Inoue and Inui [2012], which is currently the state of the art.

We will denote their model as Baseline and ours as A*-single and A*-parallel.

A*-based will be used to refer to both of A*-single and A*-parallel. We also

compared the computational costs for pre-estimating the HEDs with various lmax.

In the experiment, the parameter dmax was 3, and the parameter lmax of

A*-based was 6. We employed weighted abduction [Hobbs et al., 1993] as the

evaluation function. We defined the distance function δ(a) = 1 for simplicity,

and so that the search space on A*-based was equal to that of Baseline.

For our experiments, we used a 12-Core Opteron 6174 (2.2 GHz) 128 GB

RAM machine. We used a Gurobi optimizer1, which is an efficient ILP solver.

It is a commercial product but is freely available with an academic license. We

excluded from the results those observations in which the optimization took more

than 3600 seconds in at least one setting.

3.6.2.2 Results

The results of the first experiment are shown in Table 3.2. The row # of literals

shows the average number of literals in the potential elemental hypotheses, the

1http://www.gurobi.com/
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Time File Size

lmax = 4 106 0.8 GB
lmax = 6 1514 5.8 GB
lmax = 8 7841 28 GB

Table 3.3: The computational cost of pre-estimating the HEDs.

row# of chains shows the average number of backward chainings in the potential

elemental hypotheses, and the row # of unifications shows the average number

of unifications in the potential elemental hypotheses.

Time (P-Gen) shows the average time (seconds) required to generate the

elemental hypotheses, Time (ILP-Conv) shows the average time (seconds) re-

quired to convert the elemental hypotheses into an ILP problem, Time shows the

average time (seconds) required to optimize the ILP problem, and # of timeout

shows the number of problems that timed out.

From Table 3.2, we can observe that there were fewer potential elemental

hypotheses in our A* search-based system than in the baseline system, and the

time for optimization was shorter.

We compare the results of the optimization times for A*-single and A*-parallel

in Figure 3.3; the x-axis is the inference time (seconds) for the Baseline system,

and the y-axis is the inference time (seconds) for our system (A*-Single or A*-

Parallel).

We can see from Figure 3.3 that, for complex problems, A*-parallel is more

efficient than A*-single. On the other hand, for simple problems, A*-parallel is

less efficient. We assume that this is because there is overhead required to split

the input into subproblems and to initiate the parallel threads.

The costs for pre-estimating the HEDs are compared in Table 3.3. We see

that the computational cost and the size of the database increase sharply as lmax

increases. However, in practice, it is sufficient if lmax is in the range of 4 to 8,

and so we believe that this cost may not be a bottleneck.
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3.6.3 Evaluation of capability for anytime inference

In this section, we show that A* algorithm improve the optimality of the solution

hypothesis under the condition that the inference time is limited. Specifically we

show the following two things: (1) it improves evaluation value of the solution

hypothesis to control the order of the backward chaining operations with using

A* algorithm and (2) it improves evaluation value of the solution hypothesis to

use a distance function conforming to the evaluation function.

3.6.3.1 Setting

In this experiment, we applied Weighted Abduction to the dataset and compared

the result using different distance functions in A*-based Abduction. Here we

limited the number of hypothesized literals in the potential elemental hypotheses

to [10, 20, 30, 40, 50, 60, 70, 80]. The potential elemental hypotheses generation

was interrupted when the limit was exceeded.

We used the following distance functions:

NO-SEARCH We use δ(a) = 0 as the distance function. Here, a system con-

siders only whether a literal pair is reachable and does not control the order

of backward chaining operations.

CONST We use δ(a) = 1 as the distance function. Each heuristic distance

corresponds to the number of backward chaining operations necessary to

connect corresponding literals.

WEIGHT We use δ(a) =
∑

w∈W (a) w as the distance function, where W (a) is a

sequence of weights for Weighted Abduction assigned to the literals in the

body of logical formula a.

3.6.3.2 Results

The result of the experiment is shown in Figure 3.4. The horizontal axis repre-

sents the limit of the number of hypothesized literals in the potential elemental

hypotheses, and the vertical axis the average of evaluation value of the solution
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hypotheses. From this result, we can observe two things: (1) it improves evalua-

tion value of the solution hypothesis to control the order of the backward chaining

operations with A* algorithm and (2) it improves evaluation value of the solution

hypothesis to use a distance function onforming to the evaluation function.

3.7 Conclusion

While abduction has long been considered to be a promising framework for mak-

ing explicit the implicit information in sentences, its computational complexity

has hindered the application of abduction to practical NLP problems. In this

paper, we proposed a method that is an improvement over the method of In-

oue and Inui [2012], which is the current state-of-the-art system. Specifically,

we proposed a method that eliminates the redundant literals from the potential

elemental hypotheses by using an A* search; we then showed that this improves

the efficiency of the system. We also proposed a method that splits the input

into subproblems and then uses parallel abductive inference; we presented results

confirming the efficiency of parallelization.

In our future work, since our methods have a strong dependence on the pre-

cision of the pre-estimates, we will refine the definition of the HEDs. We note

that currently the estimation is imprecise when a predicate does not have a con-

crete meaning and tends to occur with other literals in axioms; for example, this

happens with the literals for functional verbs. This problem occurs because an

axiom p1 ∧ p2 ⇒ q in the knowledge base is split into the axioms p1 ⇒ q and

p2 ⇒ q during the pre-estimation. Therefore, it is important to determine how to

enrich the functionality of the pre-estimation without causing the computational

cost to explode.
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p7(d)	p6(b,c)	
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p2(a)	

1	
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p7(d)	p6(b,c)	

p2(d)	 p5(u1)	
p
5(y) => p

7(x)!

Closed set	

p
2(x) => p

7(x)!

p2(a)	

2	
d*(p2,p2) = 0!
d*(p2,p6) = 3	

d*(p5,p2) = 2!
d*(p5,p6) = 5	

Open set	

d*(p2,p6) = 3!
d*(p2,p7) = 1	
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d*(p6,p7) = 4	

a=d!

Figure 3.2: An example of the creation of potential elemental hypotheses based
on an A* search.
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Chapter 4

Boosting Efficiency of Abduction

for Discourse Processing

We proposed a method to make efficient general first-order abduction in Chapter

3. In this chapter, we propose a method to make efficient abductive inference-

based frameworks for discourse processing based on the method in Chapter 3.

4.1 Computational Inefficiency Caused by Lit-

erals of Dependency

In this section, we introduce the problem which abductive inference-based frame-

works for discourse processing on existing implementations [Inoue and Inui, 2011;

Inoue et al., 2012] have.

4.1.1 Preliminary

At first we introduce the meaning representation and the evaluation function

which we suppose.

As stated in Chapter 2.2, evaluation functions of abduction are the function

to evaluate the goodness of each candidate hypothesis. This goodness is con-

sidered to be decided from two factors at least; (1) the goodness of what the

hypothesis expresses and (2) the well-formedness — whether the meaning rep-
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resentation expressed by the hypothesis is syntactically correct. Our method is

to make abduction efficient only if certain presupossitions for these factors are

satisfied. In this section, we outline the presuppositions we have for the meaning

representation and the evaluation functions.

(1) The Meaning Representation What logical representation to express

the information extracted from natural language expressions is an important is-

sue. Specially, the logical representation of thematic roles have been discussed

controversially [Copestake et al., 2005; Davidson, 1980; Hobbs, 1985; McCord,

1990; Parsons, 1990, etc.]. The representative methods among them are David-

sonian [Davidson, 1980] and Neo-Davidsonian [Parsons, 1990].

In Davidsoninan, thematic roles are represented as a term of the literal of the

event. For example, let us consider the sentence “Brutus stabbed Caesar with a

knife.” This sentence may be expressed as stab(e,Brutus, Caesar)∧with(e, knife)
in Davidsoninan, where the first term of stab(e, Brutus, Caesar) corresponds to

the event variable (i.e., the variable e refers the event of “stab” itself), the second

term corresponds to the agent of the event (i.e., the variable Brutus is the agent

of the event of “stab”) and the third term corresponds to the object of the event

(i.e., the variable Caesar is the object of the event of “stab”).

On the other hand, in Neo-Davidsonian, all of themantic roles are represented

as a individual literal. For example, the sentence above may be expressed as

stab(e)∧nsubj(e, Brutus)∧dobj(e, Caesar)∧with(e, knife) in Neo-Davidsoninan,

where nsubj(e, x) is a literal to mean that the nominal subject of the event e and

dobj(e, x) is a literal to mean that the direct object of the event e. In this thesis,

which we call functional literal is a literal to express syntactic dependency

between words such as nsubj(e, x), and which we call functional predicate is

the predicate of a functional literal. On the other hand, content predicatemean

predicates which is not a funcational predicate and content literal mean a literal

with content predicate, such as stab(e). We say a content literal lc is the parent

of a functional literal lf iff lc contains the governor of the dependency represented

by lf as its argument. For example, in above logical formula in Neo-Davidsonian,

stab(e) is the parent of nsubj(e, x).

Compared with Davidosnian, Neo-Davidsoninan is considered to have several

33



advantage as follows:

• It can express partial reasoning for an event. For example, knowledge that a

police can be the nominal subject of arrest can be expressed as police(x)⇒
arrest(e) ∧ nsubj(e, x).

• There is no need to determine whether each role is essential or optional. On

the other hand, in Davidsonian, since the expression of essential roles differ

from of optional roles (i.e., the essential roles are expressed as terms of the

literal of the event and optional roles are expressed as individual literals),

one must determine which roles are essential.

Since verbs in natural language vary in essential roles, Neo-Davidsonian is con-

sidered to be more suitable to deal with real-world sentences than Davidsonian.

Consequently, in this thesis, we suppose the meaning representation to be based

on Neo-Davidsonian.

As noted above, functional literals represent dependencies between words in

natural language. Therefore, the functional literals which have no parent are

considered to be syntactically invalid. In this chapter, we presuppose that all

observations satisfy the following condition:

Condition 1. None of observation contain a functional literal which has no parent.

We consider observations which does not satisfy this condition to be syntactically

invalid and believe that such observation is not given as input.

(2) Evaluation functions Firstly, we suppose that an evaluation function is

able to evaluate the validness of equality assumptions in a candidate hypothe-

sis. As stated Section 2.2.1, equality assumptions are generated by operations of

backward chaining and unification in the process to generate the potential elemen-

tal hypotheses. Here, this process can generate the candidate hypothesis which

claims the equality between unequal entities, such as smart(e1)∧foolish(e2)∧e1 =
e2. we call such equality assumptions invalid and denote invalid equality as-

sumption between e1 and e2 as e1 =
∗ e2. In this chapter, we presuppose that an

evaluation function satisfies following condition:
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Condition 2. An evaluation function does not choice a candidate hypothesis which con-

tains invalid equality assumptions as the solution hypothesis.

where we adopt the Closed World Assumptions for equalities between variables

in order to determine the validity of equality assumptions. Therefore, an equality

assumption a = b is invalid (a =∗ b) iff the terms a, b cannot have the same type

in potential elemental hypotheses P — iff P contains no pair of content literals

which can be unified and introduce a = b.

Secondly, we suppose that an evaluation function is able to evaluate whether

logical formulae in a candidate hypothesis are syntactically valid. Since functional

literals with no parents are syntactically invalid as noted above, we presuppose

that an evaluation function satisfies following condition:

Condition 3. An evaluation function does not choice a candidate hypothesis which con-

tains functional literal with no parents as the solution hypothesis.

In the following section, what we call the Validity Condition is the set of

condition 1, 2 and 3.

4.1.2 Computational inefficiency caused by functional lit-

erals

One problem in first-order abdutive inference-based discourse processing is that

the operations of backward chaining and unification for functional literals can

introduce invalid equality assumptions and then cause the computational ineffi-

ciency.

We show two example in Figure 4.1 and Figure 4.2. In Figure 4.1, apply-

ing unification to two observable functional literals nsubj(e3, j) and nsubj(e4, t),

equality assumptions e3 = e4 (which means that John and Tom are coreferent)

and j = t (which means that smart and foolish are coreferent) are added to the

potential elemental hypotheses. In Figure 4.2, the equality assumption e1 = e2 is

assumed in order to apply the backward chaining to smart(e1) and nsubj(e2, t).

Although these hypotheses are logically valid, as noted in Section 4.1.1, they

cannot be the best explanation. Wrong operations like these are generated by the

combination of literals with same predicate (e.g. the number of literals with smart
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smart(e1)	 ∧	 nsubj(e1,j)	 foolish(e2)	 nsubj(e2,t)	∧	 ∧	

study(e3)  ∧  nsubj(e3,j)  ⇒
smart(e1)  ∧  nsubj(e1,j)	

e3=e4  ∧  j=t	

Observation �

study(e3)  ∧  nsubj(e3,j)	

Who studies 
will be smart	 

Input:	 John is smart. Tom is foolish.	

John and Tom are 
coreferent

John studies	 

mistake(e4)  ∧  nsubj(e4,t)  ⇒
foolish(e2)  ∧  nsubj(e2,t)	

Who mistakes 
something is foolish	 

mistake(e4)  ∧  nsubj(e4,t)	

john(j)	 tom(t)	∧	∧	

study and mistake are 
coreferent

Tom mistakes 
something	 

Figure 4.1: An example of problematic unification.

× the number of literals with nsubj ) and exponentially increases the number of

candidate hypotheses. It is considered to be critical for the computational cost

of abduction.

This problem is essentially caused because the semantic validity of equality

assumptions are not taken into account on the generation of the potential ele-

mental hypotheses (noted in Section 2.2.1). For instance, in Figure 4.1, it is not

considered whether the equality assumption e3 = e4 is valid (i.e., whether the

hypothesis that study and mistake are coreferent is feasible), and then e3 = e4

will be added to the potential elemental hypotheses even though it is invalid.

One may consider this problem to be peculiar in Neo-Davidsoninan — in

the meaning representation which expresses each thematic role as an individual

literal. However, this problem can occur not only in Neo-Davidsoninan but also

other meaning representations. For example, in the meaning representation of

Hobbs et al. [1993], the semantic relation between nouns (e.g. part-of relation)

and syntactic relation (e.g. the dependency between nouns which consists of a

noun phrase) are expressed as part of (x, y) and nn(x, y). These literals cause

similar problem to above problem but is necessary to represent information from

natural language in first-order logic. Consequenty, the problem discussed in this

section is considered to be important in the domain of IA.
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smart(e1)	 ∧	 nsubj(e1,j)	 foolish(e2)	 nsubj(e2,t)	∧	 ∧	

study(e3)  ∧  nsubj(e3,t)  ⇒
smart(e1)  ∧  nsubj(e1,t)	

e1=e2	

Observation �

study(e3)  ∧  nsubj(e3,t)	

Input:	 John is smart. Tom is foolish.	

Tom studies	 

smart and foolish is 
coreferent

john(j)	 tom(t)	∧	∧	

Who studies 
will be smart	 

Figure 4.2: An example of problematic backward-chaining.

In this chapter, we propose a method to solve this problem, which prohibits

the operations to cause invalid equality assumptions on the potential elemen-

tal hypotheses generation and then excludes invalid equality assumptions from

the potential elemental hypotheses. For instance, before applying unification to

nsubj(e3, j) and nsubj(e4, t) in Figure 4.1, we check the validity of e3 = e4 with

using the criteria noted in Section 4.1.1. If we knew that study and mistake

cannot be coreferent, the equality assumption e3 = e4 is invalid and cannot be

contained in the solution hypothesis and therefore this unification operation will

be canceled.

In Section 4.2, we extend the procedure for generation of the potential elemen-

tal hypotheses in Section 2.2.1 to improve the computational efficiency. In Section

4.3, we propose a method based on the above idea to improve the computational

efficiency of A*-based Abduction noted in Chapter 3.

In the following section, we assume that all functional literals have the follow-

ing format for convenience:

• All functional predicates takes 2 arguments.

• The first argument of a functional literal lf corresponds the governor of the
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dependency which lf expresses.

• The second argument of a functinal literal lf corresponds the dependent of

the dependency which lf expresses.

Dependency in natural language is generally expressed as a binary relation and a

multi-relation can be generalize to a combination of binary relations. Therefore

these assumptions are considered to maintain generality of the meaning represen-

tation.

4.2 Boosting Efficiency by Requirement about

Equality Assumptions

In this section, we propose the method to exclude invalid equality assumptions

from the potential elemental hypotheses by imposing a condition on the opera-

tions of backward chaining and unification in Section 2.2.1.

4.2.1 Requirement for unification for functional literals

As noted in Section 2.2.1, the operations of unification in existing framworks [In-

oue and Inui, 2011, 2012] are applied to all literal pairs sharing a same predicate.

However, if the meaning representation contains functional literals, this procedure

may generates invalid equality assumptions as elemental hypotheses. Supposing

that the Validity Condition is satisfied, a candidate hypothesis which contains

invalid equality assumptions cannot be the solution hypothesis and therefore it

cause computational inefficiency to include such a candidate hypothesis in the

search space.

In order to address this problem, we propose to allow an operation of unifi-

cation for a pair of functional literals only if the potential elemental hypothesese

have already contain a valid equality assumption between variables corresponding

to their governor (i.e., the first term of each literal). For example, application

of the unification to nsubj(e3, j) and nsubj(e4, t) is allowed only if the equality

assumption e3 = e4 is contained in the potential elemental hypotheses. This re-

quirement prevents functional literals whose parents cannot be coreferent from
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being unified and then prevents invalid equality assumptions from being gener-

ated as elemental hypotheses.

More formally, given the potential elemental hypotheses P and a functional

predicate d, the unification between functional literals d(x1, y1) and d(x2, y2) is

allowed only if x1 and x2 are identical or the equality assumption x1 = x2 is con-

tained in P . In Section 4.2.3, we discuss the implementation of this requirement.

4.2.2 Extension of the requirement to backward chaining

In this section, we consider to impose a requirement like one proposed in the pre-

vious section to the operations of backward chaining. For instance, in Figure 4.2,

we propose that application of the backward chaining with the logical formula

study(e3) ∧ nsubj(e3, t) ⇒ smart(e1) ∧ nsubj(e1, t) to smart(e1) ∧ nsubj(e2, t)

is allowed only if the potential elemental hypotheses contain the valid equality

assumption e1 = e2. This requirement can exclude backward chaining to intro-

duce invalid equality assumptions from the search space of the potential elemental

hypotheses generation.

What should be noted here is that, if one imposes the above requirement on

all of backward chaining operations, it can prune candidate hypotheses contain-

ing no invalid equality assumptions even though they should not be pruned. We

show an example in Figure 4.3. If one imposes the above requirement on the

backward chaining operation in Figure 4.3, the equality assumption x1 = x3 is

necessary to perform the backward chaining. Reversely, the backward chaining

is necessary to introduce x1 = x3 and therefore this backward chaining cannot

be performed. However the candidate hypothesis shown in Figure 4.3 does not

contain any invalid equality assumption and should not be pruned. To address

this problem, we exclude backward chaining to cause a problematic case — a

candidate hypothesis containing none of invalid equality assumption is pruned —

from the target of the requirement. More specifically, what can cause a problem-

atic case is the backward chaining with the logical formula in which a content

literal in its body is the parent of a functional literal in its head. For example,

the logical formula used in Figure 4.3 has a content literal student(x1) in its body

and a functional literal in(x1, x2) in its head. Since the parent of in(x1, x2) is
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student(x1), this backward chaining can cause a problematic case and then will

be excluded from the target of the requirement.

child(x1)	 in(x3,x2)	

student(x1)	

student(x3)	

x1=x3	

student(x1)  ⇒  child(x1)  ∧  in(x1,x2)  ∧  school(x2)	

x1=x3 is necessary to 
hypothesize student(x1)	 

student(x1) is necessary to 
hypothesize x1=x3	 

school(x2)	

Students are
children and in a school	 

Figure 4.3: An example of backward-chaining which should not be pruned but
can be pruned.

Let us descrive the above idea more formally. Given the potential elemental

hypotheses P , in order to apply the backward chaining with an implicational

rule
∧n

i=1 pi(xi) ⇒
∧m

j=1 qj(yj) to a conjunction
∧m

j=1 qj(zj) in P , at least one of

following conditions must be satisfied for each functional literal in the conjunction

(we denote the index of target literal as f):

1. Supposing that the c-th literal in the head of the implicational rule (i.e.,

qc(yc)) is a content literal and any of its terms (we denote yi
c) is identical

to the first term of qf (yf ), the variable pair zic and z1f are identical or P

contains the equality assumption zic = z1f .

2. The first term of qf (yf ) is included in
∧n

i=1 xi.

If a backward chain operation cannot satisfy this condition, it introduces invalid

equality assumptions and then can be excluded from the search space. In Section

4.2.3, we discuss the implementation of this requirement.
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4.2.3 The extension of the potential elemental hypotheses

generation

In Section 4.2.1 and Section 4.2.2, we proposed the methods to excludes the

operations to introduce invalid equality assumptions from the search space. In

this section, we discuss what algorithm to implement this requirement as.

Satisfiability of the requirement on each operation and the state of the po-

tential elemental hypotheses depend on each other (i.e., satisfiability of the re-

quirement is decided from the state of the potential elemental hypotheses, and

the constituents of the potential elemental hypotheses depend on satisfiability

of the requirement on each operation). Even if an operation cannot satisfy the

requirement at certain point of time, other operations may enable it to satisfy the

requirement after that. Therefore, satisfiability checking must be done so that

all of operations not performed to the last are guaranteed to be unable to satisfy

the requirement.

Based on the above idea, we extend the procedure of the potential elemental

hypotheses generation in Section 2.2.1 as follows:

1. Initialize the potential elemental hypotheses P to O.

2. Enumerates the operations of backward chaining and unification which is

applicable to P and perform them comprehensively with controling their

order based on A*-based Abduction. However the operations not to satisfy

the requirements of Section 4.2.1 and Section 4.2.2 are memorized in a buffer

S instead of being performed.

3. Finish the potential elemental hypotheses generation iff the buffer S is

empty.

4. Check satisfiability of the requirement on each operation in S and perform

it iff it satisfies the requirement.

5. Finish the potential elemental hypotheses generation iff none of operations

is performed in the previous step.

6. Go back to the second step.
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Adopting this implementation, it is guaranteed that an operation not performed

to the last cannot satisfy the requirement. As discussed in Section 4.2.1 and Sec-

tion 4.2.2, an operation not to satisfy the requirement introduces invalid equality

assumptions and then cannot be included in the original solution hypothesis.

Consequently, it is guaranteed that these requirements preserve the solution hy-

potheses.

4.3 Improvement of A*-based Abduction

A*-based Abduction proposed in Chapter 3 has the problem that its computa-

tional efficiency get worse on applied to the meaning representation containing

functional literals. In this section, in order to address this problem, we propose

the method to change the way of estimation of the predicate distance and to

improve the computational efficiency of A*-based Abduction.

4.3.1 Preliminary

In this section, we define some terms for the following discussion.

Given unifiable literals {l1, l2} and supposing that l1 explains an observable

literal o1 and that l2 explains an observable literal o2, what we call the operation

path between o1 and o2 is the sequence of operations consisting of the unification

for {l1, l2} and the backward chaining operations needed to hypothesize l1 or l2

from o1 or o2. Here we call each of o1 and o2 the anchor of the operation path.

For example, the operation path between go(x1, x2) and get(y1, y2) in Figure 1.1

consists of following three operations; (1) the backward chaining from go(x1, x2)

to issue(x2, u1, x1), (2) the backward chaining from get(y1, y2) to issue(u2, y2, y1)

and (3) the unification between issue(x2, u1, x1) and issue(u2, y2, y1). It should

be noted here that the number of unification operations included an operation

path must be just one 1. What we call the evidence of an operation path is the

set of observable literals which take part in the operation path (i.e., observable

literals which the hypothesis by the operation path explains). An evidence of an

operation path includes its anchors.

1This fact is necessary in the proof of safety of pruning the reachability graph
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As noted Chapter 3, an evaluation function in A*-based Abduction must

following conditions: (1) Since A*-based Abduction is based on ILP-formulated

Abduction [Inoue and Inui, 2011, 2012], an evaluation function must be able to

be represented as an ILP problem. (2) An evaluation function does not choice

a redundant hypothesis as the solution hypothesis. In other words, it must be

guaranteed that a literal not to contribute any unification is contained in the

solution hypothesis).

Now, let us consider to extend the second condition to Neo-Davidsonian. For

example, the hypothesis shown in Figure 4.4 (a) is semantically equal to one

shown in Figure 4.4 (b) and then it is considered to be redundant and cannot be

the best explanation. Consequently, an operation path whose evidence consists of

functional literals sharing same parent and their parent, like one show in Figure

4.4 (a), can be pruned from the search space.

Observation	

buy(e1)  ∧  nsubj(e1,J)∧  dobj(e1,A)
john(J)  ∧  apple(A)	

sell(e2)  ∧  dobj(e2,A)
⇒  buy(e1)  ∧  dobj(e1,A)	

Input:	 John bought an apple.	

sell(e3)  ∧  to(e3,J)  ⇒
buy(e1)  ∧  nsubj(e1,J)	

sell(e2)  ∧  dobj(e2,B)	sell(e3)  ∧  to(e3,J)	

e2=e3	

Observation	

buy(e1,J,A,u)  ∧
john(J)  ∧  apple(A)	

sell(e3,u,A,J)  ⇒
buy(e1,J,A,u)	

sell(e3,u,A,J)

(a)	 (b)	

Figure 4.4: An example of redundant hypotheses in Neo-Davidsonian and David-
sonian.

In the following section, we suppose that an evaluation function can be ex-
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pressed as an ILP problem equally and satisfy the following conditions:

Condition 4. An evaluation function does not choice a candidate hypothesis containing

a literal not to contribute any unification as the solution hypothesis.

Condition 5. An evaluation function does not choice a candidate hypothesis containing an

operation path whose evidence consists of functional literals sharing same

parent and their parent as the solution hypothesis.

We call these Conditions Simplicity Condition.

4.3.2 Performance deterioration of A*-based Abduction

As noted in Chapter 3, a system of A*-based Abduction estimates the heuristic

distance between predicates (Heuristic Estimated Distance, HED) and prunes the

search space of elemental hypotheses with using HED. The problem here is that

it makes the computational efficiency of A*-based Abduction significantly worse

to use the meaning representation including the functional literals.

This inefficiency occurs because a functional literal behaves like a hub in HED.

For example, let us consider the HED for the knowledge base used in Figure 4.1:

mistake(e1) ∧ nsubj(e1, x)⇒ foolish(e2) ∧ nsubj(e2, x)

study(e1) ∧ nsubj(e1, x)⇒ smart(e2) ∧ nsubj(e2, x)

The HEDs for this knowledge base can be expressed as the directed graph shown

in Figure 4.5, where each heuristic distance between predicates corresponds to dis-

tance between the nodes of the predicates. Here nsubj/2 behaves like a hub and

then all content predicate pairs are estimated to be reachable each other. How-

ever, in fact, some of them always introduce invalid equality assumptions and

cannot be reachable in the solution hypothesis. For instance, although foolish/1

and smart/1 are estimated to be reachable but, as we see in Section 4.1.2, the

operation path between foolish/1 and smart/1 introduce invalid equality as-

sumptions and then cannot be included in the solution hypothesis.

Consequently, the HEDs cannot consider whether the inference between the

predicates introduce invalid equality assumptions. This cause the computational

inefficiency of A*-based Abduction.
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foolish/1	

nsubj/2	

study/1	smart/1	

(a)	 (b)	

mistake/1	 foolish/1	

nsubj/2	

study/1	smart/1	

mistake/1	

john/1	 tom/1	john/1	 tom/1	

Figure 4.5: The HEDs of knowledge base in Figure 4.1 as a graph.

4.3.3 Pruning the heuristic estimated distance

In this section, to address the problem noted in Section 4.3.2, we propose to

prune the connections from the HED. In other words, supposing that all of the

possible inference between a pair of literals introduce invalid equality assumption

(such as a pair of foolish(e2) and smart(e1) in Figure 4.1), we modify the HEDs

so that the distance between the literals is infinity. As result, the inference to

introduce invalid equality assumptions is excluded from the search space and then

it is expected to improve the computational efficiency of A*-based Abduction.

We introduce the specific procedure. We add two extentions to A*-based

Abduction as follows:

• Do not consider the distance to a functional literal iff its parent is included

in the same side of implication rule. For example, supposing a logical

formula study(e1)∧nsubj(e1, x)⇒ smart(e2)∧nsubj(e2, x), a system takes

into account only the connection between study and smart, where literals

of nsubj are ignored because their parent (i.e., study(e1) and smart(e2))

accompany them.

• Given a functional literal lf , its parent lc and another literal lx, use the
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heuristic distance between lc and lx for the heuristic distance between lf

and lx on the potential elemental hypothesis generation (i.e., h∗(lf , lx) =

h∗(lc, lx)). For example, since the parent of nsubj(e1, j) is smart(e1) in

Figure 4.1, a system use the heuristic distance between smart(e1) and

foolish(e2) for the heuristic distance between nsubj(e1, j) and foolish(e2).

If a functional literal has several parent, a system use the one of the mini-

mum distance among them.

These extensions excludes the inference to introduce invalid equality assumptions

from the search space. For example, the HEDs shown in Figure 4.5 (a) are

modified by the extensions and result in the HEDs shown in Figure 4.5 (b). As

result, the heuristic distance between smart and foolish is estimated as infinity

and therefore the inference between smart(e1) and foolish(e2) in Figure 4.1,

which introduce invalid equality assumptions, is pruned.

If only the Validity Condition and Simplicity Condition are satisfied, it is

guaranteed that this method preserve the solution hypothesis — the solution

hypothesis before applying this method is not pruned by this method. See the

Appendix for the detail of the proof.

4.4 Experiments

4.4.1 Common Setting

Dataset For our experiments, we converted each of problems in the develop-

ment dataset of Winograd Schema Challenge [Levesque, 2011] by Rahman and Ng

[2012] into first-order logical formula and used them for the observations. Specifi-

cally, we parsed the problems with The Stanford CoreNLP1 and converted words

and dependencies in the sentences into literals. The observation set consisted of

1,305 observations and the average number of literals in each observation is 28.

An example of observation is shown as O in Table 4.4.1, which is converted from

a sentence “Tony helped Jeff because the wanted to help.” We have verified that

each of observation satisfies the Validity Condition. We denote this observation

set Owsc.
1http://nlp.stanford.edu/software/corenlp.shtml
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The Winograd Schema Challenge (WSC) is a test of machine intelligence

proposed by Levesque [2011]. This is a set of Winograd Schemas, which is a pair

of sentence that differ in only once or two words and that contain an ambiguity

of correference relation to requires the use of world knowledge and reasoning for

its resolution. The following shows an example:

1. Tony helped Jeff because he wanted to help.

2. Tony helped Jeff because he needed help.

Here, “he” in the former sentence refers “Tony” and “he” in the latter sentence

refers “Jeff”. These correference relations are easily disambiguated by the human

reader, but are not solvable by typical NLP techniques such as selectional pref-

erence. In our experiments, we regarded an Windograd Schema as two problems

of coreference resolution and converted it into two observation.

Knowledge base For our experiments, we extracted knowledge of causality

from ClueWeb121 and used for knowledge base. Specifically, we firstly parsed the

sentences in ClueWeb12 with the Stanford CoreNLP and extracted 50 millions of

pair of events which have a shared argument. For instance, we parsed a sentence

“Tom helped Mary yesterday, so Mary thanked to Tom.” and extracted ⟨Tom help

Mary yesterday, Mary thank to Tom⟩, which share the argument “Mary”. Next,

we generalized the extracted event pairs using statistical criteria and converted

them into first-order logical formulae. For specifically, we generalized each event

pair at all possible abstraction levels (e.g. the example of event pair above is

generalized into ⟨Tom help Mary yesterday, Mary thank to Tom⟩ を ⟨Tom help

X, X thank to Tom⟩, ⟨help X, X thank⟩, and so on), counted their frequency and

discarded generalized event pairs with low frequencies. Finally we converted the

rest of them into first-order logical formulae and obtained 278,802 implicational

logical formulae. We denote this set Bep. Bep shown in Table 4.4.1 is an example

of the logical formula extracted from ClueWeb12.

Additionaly, we converted synonyms and hypernyms in WordNet [Fellbaum,

1998b] into logical formulae and obtained 235,706 implicational logical formulae.

1http://lemurproject.org/clueweb12/
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Table 4.1: Examples of observation and knowledge base used in the experiment.
O = tony nn(E1) ∧ help vb(E2) ∧ jeff nn(E3) ∧ because in(E4) ∧ he pr(e5)∧

want vb(E6) ∧ to to(E7) ∧ help vb(E8) ∧ nsubj(E2, E1)∧
dobj(E2, E3) ∧mark(E6, E4) ∧ nsubj(E6, e5) ∧ advcl(E2, E6)∧
aux(E8, E7) ∧ xcomp(E6, E8) ∧ nsubj(E8, e5)

Bep = meet vb(e1) ∧ nsubj(e1, x)

⇒ have vb(e2) ∧ nsubj(e2, x) ∧ dobj(e2, y) ∧ interest nn(y),

graduate vb(e1) ∧ nsubj(e1, x)

⇒ give vb(e2) ∧ iobj(e2, x) ∧ dobj(e2, y) ∧ job nn(y)

get vb(e1) ∧ nsubj(e1, x) ∧ dobj(e1, y) ∧ discount nn(y)

⇒ buy vb(e2) ∧ nsubj(e2, x), ...

Bwn = play nn(x)⇒ action nn(x)

attack vb(e)⇒ affect vb(e)

We denote this set Bwn. Bwn shown in Table 4.4.1 is an example of the logical

formula obtained from WordNet.

Evaluation function We used the evaluation function which is based onWeighted

Abduction [Hobbs et al., 1993] and satisfies the Validity Condition and the Sim-

plicity Condition. Specifically, we added an constraint that the solution hypothe-

sis must satisfy the Validity Condition and the Simplicity Condition to the legacy

Weighted Abduction.

4.4.2 Comparison of computational efficiency

On this experiment, we compared the solving time when using our proposed

methods and when A*-based Abduction proposed in Chapter 3. We used the

following settings to compare:

BASELINE This setting uses A*-based Abduction for the method of the po-

tential elemental hypotheses generation.

ALL This setting uses A*-based Abduction and the methods proposed in Section

4.2 and Section 4.3.
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ABLATION-1 This setting uses A*-based Abduction and the method proposed

in Section 4.3. The method in Section 4.2 is ablated.

ABLATION-2 This setting uses A*-based Abduction and the method proposed

in Section 4.2. The method in Section 4.3 is ablated.

In this experiment, We used so small setting that BASELINE can find the

optimal solution in the search space. Specifically, we used all observations in Owsc

and used 187,732 logical formulae, which are part of Bep. We set dmax = 1 to

limit the search spece of the elemental hypotheses set, where backward chaining

operations can be applied only to observable literals. The timeout limit was set

to 5 minutes.

The results of this experiment are shown in Figure 4.6, Figure 4.7 and Figure

4.8. Each plot point in the figures represents the solving time for the correspond-

ing observation. The horizontal axis represents the solving time on the setting

of ALL and the vertical axis represents the solving time on another setting to

be compared with ALL. In these figures, 210 observations were discarded due

to timeout in all settings. A green line represents y = x and then a plot point

over the line means that the proposed methods improved the solving time for the

corresponding observation.

The result of comparison between ALL and BASELINE is shown in Figure

4.6. From Figure 4.6, we can observe that the proposed methods was much more

efficient for all the observations than A*-based Abduction.

The result of the ablation test of the method in Section 4.2 is shown in Figure

4.7. From Figure 4.7, we can observe that the method in Section 4.2 imploved

solving time for all the observations excluding several observations. The possi-

ble reasons why solving time for the several observations got worse are that it

taken some time to check the requirement satisfaction and that invalid equality

assumptions to be pruned are few or nothing.

The result of the ablation test of the method in Section 4.3 is shown in Figure

4.8. From Figure 4.8, we can observe this result is similar to the result in Figure

4.6. This is because the elemental hypotheses pruned by the method in Section

4.3 include ones pruned by the method in Section 4.2.
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Figure 4.6: The comparison between ALL and BASELINE.

For all the problem, we observed that the value of evaluation function for

the solution hypothesis does not change no matter what the method used for the

potential elemental hypotheses generation is. From this, it was shown empirically

that our method preserve optimality of the solution hypothesis.

4.4.3 Experiment on larger search space

In the experiment reported in the previous section, it was found that a system

based on the proposed methods is much more efficient than A*-based Abduction.

However, this experiment (SMALL) was strongly scaled down and is considered

to be alienated from the task in real world. In this section, for reference, we

50



������

�����

����

��

���

����

�����

������ ����� ���� �� ��� ���� �����

��
��
��
�
�
�
��
��
�
��
�
��
�
�
�
�
��
�
��
��
�
�
�
��

����������������������������

Figure 4.7: The comparison between ALL and ABLATION-1.

performed an experiment on the setting which conforms more to the task in real

world. From this experiment, we show that explanations inferred by our system

were semantically appropriate.

The dataset includes the problems which our knowledge base can never solve

— a problem including negation or contradictory conjunctions, a problem which

needs knowledge about specific proper noun to solve, a problem to deal with

numerical expressions and so on. Therefore, we randomly extracted 100 problems

from Owsc and classified them based on the kind of knowledge needed to solve

them. We used 32 out of 100 problems for observations, which is considered to

be solved by only knowledge of causality relation. We used all the implicational
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Figure 4.8: The comparison between ALL and ABLATION-2.

rules in Bep and Bwn for background knowledge. This set consists of 514,508 rules.

We set dmax = 2 from our empirical knowledge that an explanation using three

or more causality relation tends to be semantically inappropriate. The timeout

limit for the potential elemental hypothesis generation was set to 10 seconds. We

used BASELINE and ALL noted in the previous section for the methods for the

potential elemental hypotheses generation.

The result is shown in Table 4.4.3. From this result, we can observe that the

baseline system (A*-based Abduction) could hardly find the solution due to the

computational cost but a system based on the proposed methods could overcome

that.

52



Table 4.2: The result of coreference resolution in WSC with an abduction-based
system.

BASELINE ALL
Correct 1 15
Wrong 0 6

No Decision 31 11
Precision - 0.71
Recall 0.03 0.46

From the resulting precision on the setting of ALL, we can observe that each

explanation is semantically appropriate in its own way. On the other hand, the

recall was very low and we need to improve the coverage of background knowledge

in future. Although the resulting accuracy was not so good, abductive reasoning

with real scale knowledge base became feasible, due to the proposed methods.

This is considered to be important contribution for further research on inference-

based discourse processing.

4.5 Conclusion

While abduction has long been considered to be a promising framework for dis-

course processing, its computational complexity has hindered the application of

abduction to practical NLP problem.

In this chapter, we focused on the problem of computational cost caused by

literals representing thematic roles and proposed a method that eliminates the

redundant operations related with such literals from the search space. We then

empirically showed that a system based on this method is far more efficient than

A*-based Abduction.

In our future work, we will consider to prune the search space with using

property of each dependency. Each relationship has various properties — vertical

relationship is transitive, one event cannot have several arguments with a same

thematic role, contiguity is symmetrical and so on. We expect these properties

to be useful for pruning the search space of the potential elemental hypotheses

generation. For example, given an observation go(e1) ∧ go(e2) ∧ nsubj(e1, x1) ∧
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nsubj(e2, x2), we know that the hypothesis e1 = e2 ∧ x1 ̸= x2 is not feasible

because one go event cannot have two argument with nominal subject role. We

expect to improve the efficiency of abduction by pruning such hypotheses from

the search space.

In addition, we will consider to parallelize the potential elemental hypotheses

generation and the optimization of the ILP problem. In existing implementa-

tion, these procedures are processed sequentially. Hence, before the optimization

step, it is not clear how good the solution hypothesis in the current potential

elemental hypotheses is. For this problem, we consider to generate the potential

elemental hypotheses while seeking the solution hypothesis in the current poten-

tial elemental hypotheses and then stop the generation according to the result of

the optimization.

Futhermore, we will focus on application abduction to real world problems.

Our system made abduction with real scale knowledge base feasible. This enables

to evaluate accuracy of abduction-based system for real world task and to com-

pare that system with other existing frameworks empirically. We will consider

to develop large and accurate knowledge base for abduction and to develop an

evaluation function suitable for discourse processing.
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Chapter 5

Discriminative Learning of

Abduction

While the lack of world knowledge resources hampered applying abduction to

real-life problems in the 1980s and 1990s, a number of techniques for acquiring

world knowledge resources have been developed in the last decade [Chambers

and Jurafsky, 2009; Fellbaum, 1998a; Hovy et al., 2011; Ruppenhofer et al., 2010;

Schoenmackers et al., 2010, etc.]. In addition, the development of an efficient

inference technique of abduction warrant the application of abduction with large

knowledge bases to real-life problems [Inoue and Inui, 2011]. Consequently, sev-

eral researchers have started applying abduction to real-life problems exploiting

large knowledge bases. For instance, inspired by Hobbs et al. [1993], Ovchinnikova

et al. [2011] propose an abduction-based natural language processing framework

using forty thousands axioms extracted from the popular ontological resources,

WordNet [Fellbaum, 1998a] and FrameNet [Ruppenhofer et al., 2010]. They eval-

uate their approach on the real-life natural language processing task of textual

entailment recognition [Dagan et al., 2010].

Although discourse processing with abductive reasoning has been studied from

the 1980s, less attention has been paid to how to automatically learn evalu-

ation functions. To apply abductive inference to a wide range of tasks, this

non-trivial issue needs to be addressed because the criterion of plausibility is

highly task-dependent. A notable exception is a series of studies [Blythe et al.,
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2011; Kate and Mooney, 2009; Singla and Domingos, 2011], which emulate abduc-

tion in the probabilistic deductive inference framework, Markov Logic Networks

(MLNs) [Richardson and Domingos, 2006]. MLN-based approaches can exploit

several choices of weight learning methods originally developed for MLNs [Huynh

and Mooney, 2009; Lowd and Domingos, 2007, etc.]. However, MLN-based ab-

duction has severe problems when they are applied to discource processing which

we will discuss in Section 5.3.

In this chapter, we propose a novel supervised approach for learning the eval-

uation function of first-order logic-based abduction. This is a framework to learn

the evaluation function from subsets of explanations (henceforth, we call it partial

abductive explanations). More specifically, we assume that we apply abduction

to a specific task, where a subset of the best explanation is associated with out-

put labels, and the rest are regarded as hidden variables. We then formulate

the learning problem as the task of discriminative structured learning with hid-

den variables. As the evaluation function, we use the parametrized non-linear

evaluation function proposed by Hobbs et al. [1993].

5.1 Discriminative Learning for Weighted Ab-

duction

In this section, we propose a method to learn the parameters of evaluation func-

tion in Weighted Abduction by recasting the parameter estimation problem as

an online discriminative leaning problem with hidden variables.

The idea is four-fold:

1. We train the evaluation function with only partially specified gold abductive

explanations which we represent as a partial set of the required literals (gold

partial explanations).

2. We automatically infer complete correct abductive explanations from gold

partial explanations by abductive inference.

3. We optimize the parameters of the evaluation function by minimizing the

loss function where the loss is given by the difference of the costs of the
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minimal-cost hypothesis and the complete correct abductive explanations.

4. We employ feed-forward neural networks to calculate the gradient of each

parameter.

In the rest of this section, we first formalize explanation in Weighted Abduc-

tion with directed acyclic graphs (Section 5.1.1), and we then describe the outline

of our learning method (Section 5.1.2) and elaborate on our learning framework in

the simple case where complete abductive explanations are given (Section 5.1.3).

We then describe a method for learning the parameters from partial abductive

explanations (Section 5.1.4). Finally, we describe how to update the parameters

through error back-propagation in FFNNs (Section 5.1.5).

5.1.1 Preliminaries

p(a)$10	 q(b)$10	

t(b)$12	
s(a)$12	

u(a)$18	

u(b)$24	

Observations	

Hypothesis	unification	

backward-‐chaining	

u(x)1.5	  ⇒	  s(x)	

s(x)1.2	  ⇒	  p(x)	 t(x)1.2	  ⇒	  q(x)	

u(x)2.0	  ⇒	  t(x)	

a=b	

Figure 5.1: An example proof tree in DAG

In this chapter, we express the hypotheses of Weighted Abduction as directed

acyclic graphs (DAG). Namely, we regard each literal in the hypothesis as a node

of DAG and each of relation between literals as an edge of DAG. We call these

graphs proof graph and use a notation GO,B,H to denote the proof graph made

from the observation O, the background knowledge B and the hypothesis H.

57



We define following two types of edge in proof graphs:

• Backward-chaining: Given the tail node’s literal p(x)$c1 and the head

node’s literal q(x)$c2 , this relation indicates that q(x)∪B |= p(x). Namely,

q(x) is hypothesized with p(x). Then, the cost of head node’s literal is

caluclated by multiplication of the cost of tail node’s literal and the weight

of background knowledge (e.g. c2 = c1w, where q(x)w ⇒ p(x)).

• Unification: Given the tail node’s literal p(x) and the head node’s literal

p(y), this relation indicate that p(x) and p(y) are unified and x = y.

Between the tail node and the head node of each edge in a proof graph, the

relation that the head node’s literal explain the tail node’s literal exists. Thus,

the set of literals of leaf nodes in proof graphs corresponds to PH and the set of

literals of root nodes in proof graphs corresponds to O.

We show an example proof graph in Figure 5.1. This is the proof graph made

from the following background knowledge, observation and hypothesis:

B = { ∀x (s(x)1.2 ⇒ p(x)),∀x(s(x)1.2 ⇒ q(x)),

∀x (u(x)1.5 ⇒ s(x)),∀x(u(x)2.0 ⇒ t(x))}, (5.1)

O = ∃x (p(a)$10 ∧ q(b)$10) (5.2)

H = ∃x (u(a)$18 ∧ u(b)$24 ∧ s(a)$12 ∧ t(b)$12 ∧ a = b) (5.3)

The cost of a hypothesis is calculated with Equation 2.2. Therefore, the cost of

this hypothesis is calculated as c(H) =
∑

h∈PH
c(h) = $18.

5.1.2 Outline of our method

In this section, we describe the outline of our learning method. The overall

framework is illustrated in Figure 5.2.

First, we assume each training example to be a pair (Oi, τi), where Oi is an

observation and τi is a gold partial explanation. A gold partial explanation is a

set of literals that must be included in the correct abductive explanation Ti for

the input observation Oi, i.e. Ti ∪B |= Oi and τi ⊆ Ti.
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Figure 5.2: Outline of proposed parameter learning method

Next, we consider the online version of parameter learning 1. For each cy-

cle, given (Oi, τi), we perform Weighted Abduction for the observations Oi and

background knowledge B with parameters w, and get the solution hypothesis

ĤOi,w ([I] in Figure 5.2). If ĤOi,w does not include τi (i.e. ĤOi,w is an incorrect

prediction), we update the parameters so that ĤOi,w includes τi. In order to

do so, we first infer a complete abductive explanation T́i,w from the gold partial

explanation τi ([II]). We then update parameters w by imposing a penalty to

the wrong solution hypothesis ĤOi,w and offering a reward to the inferred correct

complete abductive explanation T́i,w. To compute these updates, we translate

ĤOi,w and T́i,w to feed-forward neural networks and perform backpropagation on

them ([III]).

In this chapter, we assume that there is enough knowledge to infer the correct

explanation in each problem (we call this the knowledge completeness assump-

tion). If this assumption were not satisfied, which means that the correct expla-

nation is not included in the candidate hypotheses, then we could not infer the

1The batch version can also be considered by accumulating the gradients for each cycle
before updating the weights.
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correct explanation irrespectively of parameters. In the following discussion, we

do not consider a case of knowledge base shortage.

5.1.3 Learning from complete abductive explanations

Let us first assume that we have a set of training examples labeled with a complete

abductive explanation. Namely, we consider a training dataset

D = {(O1, T1), (O2, T2), ..., (On, Tn)}, where Oi is an observation and Ti is the

gold (correct) complete abductive explanation for Oi, i.e. Ti ∪B |= Oi.

For each labeled example (Oi, Ti), the solution hypothesis Ĥi is obtained by:

Ĥi = argmin
H∈Hi

cw(H) (5.4)

We consider that a solution hypothesis Ĥi is correct if Ĥi = Ti. Now we consider

a loss function that calculates how far the current solution hypothesis is from

the gold explanation, analogously to standard learning algorithms. If the current

solution hypothesis is correct, the loss is zero. If Ĥi ̸= Ti, on the other hand, we

consider the loss as given by the following loss function:

E(Oi,w, Ti) =

1
2

(
cw(Ti)−cw(Ĥi)

cw(Ti)+cw(Ĥi)
+m

)2

+ λw ·w (Ĥi ̸= Ti)

0 (Ĥi = Ti)
, (5.5)

where λw · w is a regularization term and m is a margin. Our goal is to learn

the evaluation function cw that has minimal prediction errors. This goal is ac-

complished by learning parameters w∗ which minimize the total loss as below:

w∗ = argmin
w

∑
(O,T )∈D

E(O,w, T ) (5.6)

We describe how to minimize the loss in Section 5.1.5.

Note that we use the ratio of evaluation functions 1
2

(
cw(Ti)−cw(Ĥi)

cw(Ti)+cw(Ĥi)
+m

)2

as

the loss function, instead of 1
2

(
cw(Ti)− cw(Ĥi)

)2

. In the following, we shortly

justify the use of the ratio of evaluation function. Let us suppose that we em-

ploy 1
2

(
cw(Ti)− cw(Ĥi)

)2

as the loss function. Then, we can minimize the loss
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function by minimizing the weight terms that appear in both cw(Ti) and cw(Hi),

namely the weights assigned to axioms that are used in both Ti and Hi. For in-

stance, given Oi = {p(a)$c}, B = {q(x)w0 ⇒ p(x), s(x)w1 ⇒ q(x), t(x)w2 ⇒ q(x)},
Ti = {s(a)$w0w1c}, Hi = {t(a)$w0w2c}, we can minimize the value of loss function

by minimizing the value of w0. As a result, the learning procedure just decreases

w0 as much as possible to minimize the loss function. This prevents our frame-

work from learning a meaningful evaluation function, because the minimization

of weights does not imply that we can infer the gold hypothesis as the solution

hypothesis. To avoid this problem, we employ the ratio of evaluation functions.

5.1.4 Learning from partial abductive explanations

In the above, we assumed that each training example has a complete abductive

explanation. However, this assumption is not realistic in many cases because it

is usually prohibitively costly for human annotators to give a complete abductive

explanation for each given input. This leads us to consider representing a training

example as a pair of observation Oi and gold partial explanation τi, which is a

partial set of literals that must be included in the explanation of Oi. In the case

of Figure 5.2, we assumed that the correct hypothesis for the given observation

is partially specified by the literal p ∈ τ .

This way of simplification is essential in real-life tasks. In plan recognition, for

example, it is not an easy job for human annotators to give a complete explanation

to an input sequence of observed events, but they can tell whether it is a shopping

story or a robbing story much more easily, which can be indicated by a small set

of gold literals.

Now, our goal is to learn the evaluation function from partial explanations

D = {(O1, τ1), (O2, τ2), ..., (On, τn)}. Regarding whether each gold literal is in-

cluded in the solution hypothesis ĤOi,w and the structure of the proof graph

GOi,B,ĤOi,w
as hidden states, this task can be seen as discriminative structure

learning with hidden states. The issue is how to infer the complete correct expla-

nation T́i,w from a given incomplete set τi of gold literals. Fortunately, this can
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be done straightforwardly by adding the gold literals τi to the observation Oi:

O+
i = Oi ∪ {t$∞ | t ∈ τi}, (5.7)

where each gold literal is assigned an infinitive cost. Then, the solution hypothesis

ĤO+
i ,w is equivalent to the complete correct explanation T́i,w if the following

conditions are satisfied:

• A hypothesis including τi exists in the candidate hypotheses for Oi (the

knowledge completeness assumption).

• ĤO+
i ,w has no backward chaining from t ∈ τi.

Figure 5.2 ([II]) illustrates a simple case, where ĤO+
i ,w is inferred by adding the

gold literal p to the observation. Since this added literal p is assigned an infinitive

cost, it is strongly motivated to derive an explanation including that p, resulting

in obtaining the correct explanation T́i,w.

When these conditions are satisfied, because each t has a huge cost, the system

selects as the solution hypothesis ĤO+
i ,w the hypothesis in which most literals in τi

unify with other literals. Then, assuming the existence of a hypothesis including

τi in the candidate hypotheses for Oi, there is the hypothesis in which each of

the literals in τi unifies to a literal in the candidate hypotheses for O+
i , and it is

selected as solution hypothesis ĤO+
i ,w. Because the cost of t must be 0 when it

is unified with an other literal included in Oi or hypothesized from Oi, the cost

of ĤO+
i ,w is equal to cost of T́i,w. So ĤO+

i ,w must be equal to T́i,w.

It should be note that we can check whether candidate hypotheses satisfy

the above-mentioned conditions by checking the cost of the solution hypothesis,

because any non-unified t$∞ will result in a huge cost.

5.1.5 Updating parameters with FFNNs

To update parameters, we want to compute the gradient of the loss function

for each parameter. However, since the evaluation function and the loss func-

tion are both nonlinear to their parameters, their gradients cannot be computed

straightforwardly.
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To solve this problem, we propose employing feed-forward neural networks

(FFNNs). An FFNN is a directed acyclic graph where the output of each node j

is given by:

zj = h(aj), (5.8)

aj =
∑

i∈{i|ei→j∈E}

zi ×wi→j, (5.9)

where zi denotes the output of node i, ai denotes the degree of activation of node

i, h(a) is an activation function, ei→j denotes a directed edge from node i to node

j, and wi→j denotes the weight of ei→j.

Then, we express the evaluation function of H with a FFNN. This is achieved

by applying the following convertion to GO,B,H :

1. The cost of each literal in GO,B,H is the output of the node in the corre-

sponding FFNN.

2. Each backward-chaining edge in GO,B,H is an edge with weight w in the

FFNN where w denote the weight of the background knowledge of the

corresponding backward-chaining edge.

3. Each unification edge in GO,B,H is an edge with weight 0 in the FFNN.

4. The activation function of each layer in FFNNs is h(a) = a.

5. An output node) is added to the FFNN, making new edges with weight 1

between output node and each node that corresponds to each literal in PH

(i.e. leef nodes in the proof graph).

Then, the value of the output node is equal to the evaluation function cw(H) in

Weighted Abduction.

We show that the evaluation function of Weighted Abduction is converted

into equivalent FFNNs as shown in Figure 5.3. This indicates the FFNN can

express the evaluation function of Weighted Abduction. Therefore, we are able

to apply various techniques in FFNNs to learning parameters of Weighted Ab-

duction. Namely, gradients of the loss function can be caluclated easily by using

the backpropagation technique of FFNNs.
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Algorithm 4 parameter learning
1: Input: B,w,D
2: repeat
3: for all (O, τ) ∈ D do
4: Ĥ ← Inference(O,w)
5: if τ ̸⊆ Ĥ then
6: H− ← Ĥ
7: O+ = O ∪ {t$∞ | t ∈ τ}
8: H+ ← Inference(O+,w)
9: EO,w ← LossFunction(H+, H−)
10: N ←MakeFFNN(H+, H−)
11: for all h ∈ PH+ ∪ PH− do
12: if c(h) > 0 then

13: assign gradient
∂EO,w

∂c(h)

14: end if
15: end for
16: do backpropagation
17: w← UpdateWeights(w,∇EO,w)
18: end if
19: end for
20: until convergence
21: Output: w

Moreover, FFNNs are flexible framework and can express various functions

by changing the activation functions or the network’s structure. Thus, this idea

can be apply to not only Weighted Abduction but other various frameworks of

abduction.

5.1.6 Procedures of parameter learning

The overall learning procedure is given in Algorithm 1. First, the solution

hypothesis is inferred from observation O, and if it does not include gold literals

τ , it is treated as a negative example H− (Line 3-6). Next, the positive example

H+ is inferred from observation O+ (Line 7,8). The loss is then calculated from

the costs of H+ and H− (Line 9) H+ and H− is converted into FFNNs (Line

10). The gradient of the loss function for each non-zero cost literal is assigned

to the corresponding node in the FFNN (Line 11-15). The gradients of the
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loss function for costs of the other literals are calculated by applying standard

backpropagation to the converted FFNNs (Line 16). Updating the parameters is

performed with these gradients (Line 17). The parameters are trained iteratively

until the learning converges.

5.1.7 Featurizing Parameters

So far, we have assigned a parameter for each literal which corresponds to a

particular background knowledge. However, in this setting, we can train param-

eters for the background knowledge only appear in the training data, therefore

the trained system would not be able to deal with unseen data. In this section,

we describe a method which featurizes parameters of weighted abduction and its

learning algorithm.

We introduce a function which defines parameter values:

θi = h(Fi · ϕ) (5.10)

where Fi ∈ Rn is the feature vector for a parameter θi which corresponds to a

particular background knowledge, ϕ ∈ Rn is the weights for features and h(·)
is the activation function. In training, instead of parameters, feature weights ϕ

are trained based on a particular loss function. In Weighted Abduction, since

parameter values must be more than 1.0, we employ the following activation

function:

h(a) =
1.0

n
+ exp(a) (5.11)

where n is the number of literals in the left hand side of the background knowledge

which the literal belongs to. Gradient values of feature weights can be calculated

from gradient values of parameters as follows:

∂EO,w

∂ϕk

=
∑
i

(
∂EO,w

∂wi

Fik

)
(5.12)

where ϕk is kth element of the feature weights, Fik is kth element of the feature

vector for a parameter wi.
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5.2 Evaluation

5.2.1 Evaluation for ablity to learn parameters

We evaluate the proposed learning procedure on the dataset of plan recognition.

In this experiment, we address the following questions: (i) does our leaning pro-

cedure actually decrease prediction errors? (ii) are models trained by our learning

procedure robust to unseen data? To answer these questions, we evaluate pre-

diction performance on a plan recognition dataset in the two settings: a closed

test (i.e., the same dataset is used for both training and testing) and an open

test (i.e., two distinct datasets are used for training and testing). In order to ob-

tain the lowest-cost hypotheses, we used the Integer Linear Programming-based

abductive reasoner proposed by Inoue and Inui [2011].

5.2.1.1 Dataset

We used Ng and Mooney [1992]’s story understanding dataset, which is widely

used for evaluation of abductive plan recognition systems [Kate and Mooney,

2009; Raghavan and Mooney, 2010; Singla and Domingos, 2011]. In this dataset,

we need to abductively infer the top-level plans of characters from actions which

are represented by the logical forms. For example, given “Bill went to the liquor-

store. He pointed a gun at the owner,” plan recognition systems need to infer

Bill ’s plan. The dataset consists of development set and a test set, each of which

includes 25 plan recognition problems. The dataset contains on average 12.6

literals in observed logical forms. The background knowledge base contains of

107 Horn clauses. Figure 5.4 shows an example of this dataset.

In our evaluation, we introduced two types of axioms in addition to the original

107 axioms. First, to make the predicates representing top-level plans (e.g. shop-

ping, robbing) disjoint, we generated 73 disjointness axioms (e.g. robbing(x) ⇒
¬shopping(x)). Note that it is still possible to infer multiple top-level plans

for one problem, because we are able to hypothesize robbing(x) ∧ shopping(y).

Second, we generated axioms of superplan-subplans relations (e.g. going by

plane(x) ⇒ going by vehicle(x)). In total, we used 220 background axioms for

our evaluation.
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For evaluating the prediction performance of our system, we focused on how

well the system infers top-level plans, and their subparts (i.e. subplans, role-

fillers), following Singla and Domingos [2011]. More specifically, we use precision

(ratio of inferred literals that are correct), recall (ratio of correct literals that are

inferred by the system), and F-measure (harmonic mean of precision and recall),

because the gold data often has multiple top-level plan predicates.

5.2.1.2 Experimental setting

We applied weight regularization in order to prevent overfitting to the training

set. The hyperparameter for regularization λ was set to 0.1. For parameter

updating, we employed the annealing approach; wnew = w − η0k
i∇Ew where η0

(initial learning rate) was set to 0.0001, k (annealing parameter) was set to 0.95

and i is the number of iterations. The hyperparameters were selected based on

performances on the development set. All weights were initialized to 0.0.

5.2.1.3 Results and discussion

At first, we report results of the closed test where the development set was used for

both training and testing. Figure 5.5 shows the values of the loss function at each

iteration on the development set. The curve indicates that our learning procedure

successfully reduces values of the loss function at each iteration. The reason for

the fluctuation in values is thought to be the existence of hidden variables.

In the open test, we trained our model on the development set and then

tested on the test set. Figure 5.6 shows plots of values of the three measures (i.e.

Precision, Recall and F-measure) on the test set at each iteration. Although the

values are also fluctuate as with the closed test, performance rises in terms of

all measures compared to the performances at iteration zero (i.e. initial values).

The results suggest that the learning procedure is robust to unseen data.

Singla and Mooney [Singla and Domingos, 2011] report that the MLN-based

approach achieve 72.10 F-measure on the same test set, which is slightly better

than our results. However, our experimental setting and Singla’s are different

on various point such as framework of abduction (i.e. Weighted Abduction vs.

MLN-based abduction), method of parameter learning (i.e. FFNNs vs. MLNs),
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Feature Explanation Example feature value

LITERAL each literal included in the left-hand side go step(s, g), inst shopping(s)
PRED each predicate included in the left-hand side go step, inst shopping
CLAUSE whole clause of axiom inst shopping(s) ∧ go step(s, g)

→ inst going(g)
CLAUSE-OBS combination of CLAUSE and inst shopping(s) ∧ go step(s, g)

each predicate in observations → inst going(g) & inst robbing
PRED-OBS combination of PRED and go step & inst robbing

each predicate in observations

Table 5.1: Features used for the system. We show example feature values for the
axioms inst shopping(s) ∧ go step(s, g) → inst going(g), and the observation
inst robbing(R).

Feature Setting I Setting II Setting III

LITERAL ✓ ✓ ✓
PRED ✓ ✓
CLAUSE ✓ ✓
CLAUSE-OBS ✓
PRED-OBS ✓

Table 5.2: Settings of features used in the experiment.

method of parameter initialization (i.e. constant value vs. manually tuning).

Therefore, it is unable to compare usefulness of these frameworks.

It has taken about half an hour to perform training for each iteration. Most of

the time was spent in obtaining solution hypotheses using ILP-based abductive

inference.

5.2.2 Evaluation for featurizing

We evaluate how effective is featurizing parameters in Weighted Abduction. In

this experiment, we evaluate prediction performance on a plan recognition dataset

in 10-fold cross validation on some feature settings. The abductive reasoner and

the hyperparameters are same as in the evaluation in Section 5.2.1.
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5.2.2.1 Features

We evaluated three settings on featurizing the paramters. Table 5.1 shows the

details about the features used in the experiment and Table 5.2 shows three

settings we used in the experiment. LITERAL and PRED features include infor-

mation of individual literals and predicates included in axioms. CLAUSE features

capture what axioms are used in a hypothesis. CLAUSE-OBS and PRED-OBS fea-

tures combine predicate or clause with observation information. The reason for

introducing CLAUSE-OBS and PRED-OBS is to capture dependence between pa-

rameter weights of Weighted Abduction and observations. Setting I corresponds

original Weighted Abduction. Setting II is more generalized than Setting I. In ad-

dition, Setting III considers dependency between parameter weights of Weighted

Abduction and observations.

5.2.2.2 Results and discussion

Figure 5.7 shows the results of the experiment. The result indicates that our

extention about the parameters successfully improves robustness to unseen data

and correct assignment of the weight of axioms depend on the observations.

5.3 Related Work

As mentioned in Section 1, abduction has been extensively studied in a wide

range of contexts. However, less attention has been paid to how to automatically

learn evaluation functions. In the field of Statistical Relational Learning, some

researchers [Blythe et al., 2011; Kate and Mooney, 2009; Singla and Domingos,

2011, etc.] employ Markov Logic Networks [Richardson and Domingos, 2006] to

emulate abductive inference. MLNs provide well-studied software packages of

inference and learning.

However, MLN-based approaches require special procedures to convert abduc-

tion problems into deduction problems because of the deductive nature of MLNs.

The pioneering work of MLN-based abduction [Kate and Mooney, 2009] converts

background axioms into MLN logical formulae by (i) reversing implication and (ii)

constructing axioms representing mutual exclusiveness of explanation (e.g. the
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set of background knowledge axioms {p1 → q, p2 → q, p3 → q} is converted into

the following MLN formulae: q → p1 ∨ p2 ∨ p3, q → ¬p1 ∨ ¬p2, q → ¬p1 ∨ ¬p3 etc.).

As the readers can imagine, MLN-based approach suffers from the inefficiency of

inference due to the increase of converted axioms. Therefore, learning would not

scale to larger problems due to the severe overhead [Inoue and Inui, 2012]. Singla

and Domingos [2011] report that their MLN-based abduction models cannot be

trained in larger dataset.

Moreover, when MLN-based approaches are applied to abduction-based dis-

course processing, a critical problem arises. MLN-based approaches represent

a hypothesis as a truth assignment to ground atoms in the Herbrand base of

background knowledge, while our framework represents a hypothesis as a set of

first-order literals or equalities of logical variables. This means that a hypothesis

generated by MLN-based approaches loses the first-order information in the input

text. As shown in Section 1, each logical variable in the observation corresponds to

a mention in the discourse; thus losing this information would be a serious draw-

back in discourse processing. For example, suppose that MLN-based approaches

produce the hypothesis president(A),male(A), doctor(B),male(B) (A and B are

constants) to the observation ∃p,m1, d,m2{president(p)∧male(m1)∧doctor(d)∧
male(m2)}. Then, we can interpret this hypothesis as two types of first-order log-

ical forms: president(p)∧male(m1)∧doctor(d)∧male(m2)∧p = m1∧d = m2, or

president(p)∧male(m1)∧ doctor(d)∧male(m2)∧ p = m2 ∧ d = m1. This means

that we cannot decide which discourse mentions are identified as coreferential in

the hypothesis generated by MLN-based approaches. Some previous work [Poon

and Domingos, 2008; Song et al., 2012] represent coreference relations by intro-

ducing special predicates that describe two logical variables are equal, but they

use MLNs to create a classifier (i.e. binary log-linear classification model that

utilizes a number of features) rather than reasoner. Therefore, it is a non-trivial

issue to use these coreference representations with logical inference aimed at com-

plicated commonsense reasoning, which is our goal in abudction-based discourse

processing.
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5.4 Conclusion

We have proposed a supervised approach for learning the evaluation function of

Weighted Abduction. We formulated the learning procedure in the framework

of structured learning with hidden variables. Our approach enables us to learn

the non-linear evaluation function from partial abductive explanations, which is

the typical situation in real-life tasks because constructing complete abductive

explanations is usually a cost-consuming task. To the best of our knowledge,

this is the first work to address the issue of automatic parameter learning of

the evaluation function of Weighted Abduction, which can evaluate both the

correctness and informativeness of explanations. In our evaluation, we found that

our learning procedure can reduce the value of loss function in each iteration, and

learned weights are also robust to unseen dataset.

Our future work includes large-scale evaluation of our learning procedure. We

plan to evaluate our procedure on the popular natural language processing tasks,

coference resolution with a massive set of axioms extracted from several language

resources (e.g. WordNet [Fellbaum, 1998a]). It is also a problem that it takes

long time to training weights. This problem will be critical in training on a large

data set. We will address this problem by improving of abductive reasoner and

optimization methods. As discussed in Hobbs et al. [1993], coreference relation

correponds to the unification of two logical variables. We therefore plan to in-

corporate a term that represents the cost of variable unification in the evaluation

function of Weighted Abduction.

71



p$10	 q$10	 r$10	

s$5	 t$5	

u$12	

x$6	 y$6	 r$6	

x$10	
s0.5	  ∧	  t0.5	  →	  p	  

u1.2	  →	  q	  
x2.0	  →	  t	  

x0.5	  ∧	  y0.5	  ∧	  r0.5	  
→	  u 

knowledge	  base	

s	

p	 q	

t	 

x	

x	 y	 r	

u	

r	

0.5	

0.5	

0.5	
0.5	

0.5	

1.2	

2.0	

0	

0	

$10	 $10	 $10	

$5	 $6	
$6	 $6	

$12	

$5	

Output	  Nodes	

Error	  
Back-‐	  
propagation	

backward	  chaining	

unification	

Hypothesis 

FFNNs 

1	 1	 1	
1	

Figure 5.3: Example of transforming hypotheses into FFNNs

72



(a) Observations (b) Correct abductive explanations
“Bill went to the store. He paid for some milk” instance shopping(s)
instance going(GO1) shopper(s,BILL)
goer(GO1, BILL) go step(s,GO1)
destination go(GO1, STORE) pay step(s, PAY 1)
instance paying(PAY 1) thing shopped for(s,MILK)
payer(PAY 1, BILL)
thing paid(PAY 1,MILK)

(c) Background knowledge
instance shopping(s) ∧ go step(s, g)→ instance shopping(s) ∧ pay step(s, pay)→
instance going(g) instance paying(pay)

instance shopping(s) ∧ go step(s, g)∧ instance shopping(s) ∧ pay step(s, pay)→
shopper(s, p)→ goer(g, p) payer(pay, p)

instance shopping(s) ∧ go step(s, g)∧ instance shopping(s) ∧ pay step(s, pay)∧
store(s, str)→ destination go(g, str) thing shopped for(s, t)→ thing paid(pay, t)

Figure 5.4: Example dataset.

Error	  

Figure 5.5: Loss function values (closed test)
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F1[%]	

Figure 5.6: Open test results.

Precision[%]	

Recall[%]	

F1[%]	

Figure 5.7: Results on each feature setting.
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Chapter 6

Scalable and Trainable Open

Source Abductive Reasoner

We have implemented the proposed methods in one software package, which is

called Phillip. The software is publicly available at the Github1. In this chapter,

we outline Phillip.

6.1 Introduction

On studies of inference-based approaches, the existence of user-friendly inference

engines is important. However, existing implementations of abduction, such as

Mini-TACITUS [Mulkar et al., 2007] and Henry [Inoue and Inui, 2011, 2012], have

problems as follows:

Lack of efficiency: Existing softwares are not enough efficient to perform ab-

ductive inference with large knowledge base.

Lack of flexibility: An existing software is nothing more than an implementa-

tion of a specific model of abduction. For instance, Mini-TACITUS and

Henry are implementations of Weighted Abduction. Ones to develop some

new abductive inference model are forced to make a new software from

1http://github.com/kazeto/phillip/
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scratch, or to be familiar with the implementation of an existing software

in order to alter it.

In view of the above, we implemented a new software for abduction as open-

source software, Phillip. We show special features of Phillip as follows:

Scalable: Phillip is written in C++ and based on the methods which we have

proposed in Chapter 3 and Chapter 4. Therefore abduction with Phillip

may be much more efficient than with other implementations.

Trainable: The learning method proposed in Chapter 5 is implemented in Phillip.

One can easily tune the parameter of the evaluation function.

Flexible: Phillip is able to deal with user-defined evaluation function. One can

easily implement his/her new inference model.

Closs-platform: Phillip is available on DOS, OS X and LINUX.

We expect these features to make the entry barriers of the domain of abduction-

based discourse processing researches low.

6.2 Basic Usage

In this section, we outline the usage of Phillip. For futher detail, refer to Github

wiki1.

In Phillip, logical formulae are expressed in S-expressions. For instance, the

observation and the knowledge base in Figure 2.1 is written as follows:

(O (^ (animal x :10) (bark e y :10)))

(B (=> (dog x :1.5) (animal x)))

(B (=> (cat x :1.5) (animal x)))

(B (=> (dog x :1.2) (bark e x)))

(B (=> (poodle x :2.0) (dog x)))

The procedure of abduction on Phillip consists of following two steps:

1https://github.com/kazeto/phillip/wiki
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Compiling step pre-estimates the heuristic distance between predicates in given

knowledge base. This step is enough to be executed only once for each

knowledge base.

Inference step takes observation (written in S-expressions) as input and out-

puts the solution hypothesis.

On the inference step, one can configure following three components via com-

mand options: (i) how to generate the potential elemental hypotheses, (ii) what

ILP problems to convert the potential elemental hypotheses into, and (iii) what

ILP solver to use for optimization of the ILP problem converted. Hence Phillip

can be adopted for various uses.

6.2.1 User-Defined Evaluation Function

As noted above, each existing abductive reasoner can only specific evaluation

function. Hence one who wants to develop some new abductive inference model

is forced to make a new software from scratch, or to be familiar with the imple-

mentation of an existing software in order to alter it. This circumstance has been

making abduction-based discourse processing researches stagnant.

For this problem, Phillip provides the way for users to implement their new

abduction model easily. Specifically, one can adopt user-defined components in

the inference step noted above. If one wants to develop the model which adopts

a new evaluation function, what he or she have to do is only to implement the

ILP-conversion component corresponding the evaluation function (i.e., he or she

can use built-in components for generation and optimization).

6.3 Conclusion

In this chapter, we outlined the implementation of our methods, Phillip. Phillip is

an opensource software for cross-platform and much more efficient than with other

implementations. Futhermore, Phillip provides the way for users to implement

their new abduction model easily. We expect that Phillip make the entry barriers

of the domain of abduction-based discourse processing researches low.
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Chapter 7

Conclusions

7.1 Summary

While abduction has long been studied in a wide range of contexts and has been

considered a promising framework for natural language processing, its application

to real world tasks has been hindered. In this thesis, we have addressed two

of the issues which hinder application of abduction to NLP practical problems;

scalability and trainability.

The key contribution of this thesis can be summarized as follows:

1. We proposed an efficient inference method of abductive reasoning on first-

order logic. Based on ILP formulated Abduction [Inoue and Inui, 2011;

Inoue et al., 2012], the method eliminates redundant inference from the

search space.

2. We proposed a method to discriminatively tune the parameters of the eval-

uation function in first-order abduction. This method is not task-specific

nor model-specific and hence it is widely applicable.

3. We have implemented the proposed methods in one software package, which

is called Phillip. The software is an opensource software and publicly avail-

able at the Github1. One can easily develop a new abduction framework

on Phillip.

1http://github.com/kazeto/phillip/
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In Chapter 2, we gave outlines of first-order logic and abduction and intro-

duced some previous works. Abduction system takes observation and background

knowledge as input and produces the solution hypothesis as output. There have

been two big obstacles to apply abduction-based discourse processing to practi-

cal problems: (i) how to search the solution hypothesis efficiently and (ii) how to

train the evaluation function in a supervised manner.

In Chapter 3 and Chapter 4, we proposed the methods for boosting the com-

putational efficiency of abduction. Here the basic common idea is two folds:

1. They are based on ILP formulated Abduction [Inoue and Inui, 2011; Inoue

et al., 2012], whose computational efficiency is state-of-the-art.

2. They achieved improvement in efficiency by eliminating redundant inference

from the search space on the potential elemental hypotheses generation step

in ILP-formulated Abduction.

In Chapter 3, based on the idea that a literal not contributing any unification

is redundant, we proposed a method that eliminates literals not contributing

any unification from the search space by using an A* algorithm. In Chapter 4,

focusing on the problem of computational cost caused by literals representing

thematic roles, we proposed a method that eliminates the redundant operations

related with such literals from the search space. Our evaluation revealed that our

system is far more efficient than the other existing abductive reasoners.

In Chapter 5, we proposed a method to discriminatively learn the evaluation

function of first-order logic-based abduction. This method is not task-specific nor

model-specific and is therefore widely applicable. This method can be applied

to an evaluation function if only the evaluation function is differentiable with

respect to its parameters to tune. In our evaluation, we showed that our learning

procedure can reduce the value of loss function in each iteration, and learned

parameters are also robust to unseen dataset.

In Chapter 6, we introduced our software, Phillip, and outlined the usage of

Phillip. Phillip is an opensourse software for cross platform written in C++, and

is the most efficient abductive reasoner. Futhermore, Phillip has good flexibility

in its implementation, hence one can easily implement a new abduction-based
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discourse processing framework — All he or she have to do is implement his or

her evaluation function on Phillip.

7.2 Future Direction

The proposed methods in this thesis could overcome the two obstacles of abduction-

based real-life discourse processing noted above. This enables us to evaluate ac-

curacy of abduction-based system for real world task and to compare that system

with other existing frameworks empirically.

However, the several problems to solve still remain yet. In the next subsec-

tions, we elaborate the issues to address for developing a system of abduction-

based real-life discourse processing.

7.2.1 Extending Knowledge Base

In order to achieve abduction-based real-life discourse processing system, we need

various kinds of world knowledge, such as causality relation, presupossition rela-

tion, lexical category, properties of proper nouns, paraphrase and so on. Since

task performance of an abduction-based system strongly depends on size and

accuracy of background knowledge, it is important issue how to hervest world

knowledge for discourse processing in large quantities and with high accuracy.

As a solution to this issue, there are three options as follows:

The first option is, as we extract background knowledge from WordNet and

FrameNet in our experiments, to extract knowledge from other existing the-

sauruses, such as ConceptNet1, freebase2 and YAGO3. This solution is expected

to be able to hervest knowledge about proper nouns in large quantities.

The second option is to acquire knowledge from large corpus by statistical

methods. This solution is expected to be able to hervest knowledge about general

words, such as causality relation and paraphrase. We will begin with improving

a method of knowledge acquisition from ClueWeb12 stated in Section 4.4.1.

1http://conceptnet5.media.mit.edu/
2http://www.freebase.com
3http://www.mpi-inf.mpg.de/yago-naga/yago/
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The third option is to create knowledge by crowdsourcing. This solution has

the advantage that it can obtain knowledge with high accuracy.

7.2.2 Integrating with Deduction

Our formulation of abduction, which is defined in Section 2.2.1, has the problem

that it cannot deal with explanations which include deductive inference.

We show an example in Figure 7.1. Our formulation cannot generate this ex-

planation because the formulation can use background knowledge only backward

and the literal dog(x) is infered only from poodle(x) or bark(e2, x) with deductive

inference. Our ultimate goal is to develop a system to make implicit information

in natural language texts explicit. So it is considered to be a critical problem that

a system can deal with only implicit information which explain the observation

and can not deal with one which is induced from the observation.

Observation	

bark(e2,x)  ⇒  loud(e1,y)	

poodle(x)  ∧  loud(e1,x)  	

dog(x)	

poodle(x)  ⇒  dog(x)	

bark(e2,x)  ⇒  dog(x)	

Poodle is
a kind of dog Something 

barking is loud

Input:	 There is a loud poodle.	

bark(e2,x)	

Something 
barking is a dog

The poodle is 
barking.

The poodle
is a dog.

Figure 7.1: An example of the explanation that includes deductive inference.

For this problem, we will consider to extend our formulation so that abduction
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integrates with deduction. Specifically, we allow not only backward chaining but

also forward chaining on the potential elemental hypotheses generation.

The issue here is that the combination of backward chaining and forward

chaining can cause an explosion increase of elemental hypotheses. Hence, we will

consider how to integrate abduction with deduction with keeping the computa-

tional cost of inference.

7.2.3 Investigating the Better Logical Meaning Represen-

tation

As stated in Section 4.1.1, what logical representation to express the information

extracted from natural language expressions is an important issue. The biggest

one of the problems about the logical meaning representation is how to express

the interpretation of a sentence which has a contradictory conjunction, such as

“but” and “however”.

For example, let us consider the interpretation of a sentence “John was shot,

but he did not die.”. Supposing knowledge that someone shot tends to die, it is

expected that John died. Since this expectation contradicts the observation, the

contradictory conjunction “but” can interpreted as what express the contradiction

between the expectation and the observation. However, existing framework of

abduction can not express interpretations like this because a candidate hypothesis

is defined to be consistent with the observation.

The most straight-forward solution is to describe discourse relations as literals.

For example, the above interpretation can be represented by writing observation

and knowledge base as following O and B respectively:

O = john(j) ∧ shoot(e1) ∧ dobj(e1, x) ∧ die(e2) ∧ nsubj(e2, j)

∧not(e3, e2) ∧ CONTRADICT (e1, e2) (7.1)

B = {shoot(e1) ∧ dobj(e1, x) ∧ CAUSE(e1, e2)⇒ die(e2) ∧ nsubj(e2, x),

CONTRADICT (e1, e2)⇒ CAUSE(e1, e2) ∧ not(e3, e2)} (7.2)

where not(x, y) represents that not event x negates y, CAUSE(x, y) represents

causality relation between x and y and CONTRADICT (x, y) represents con-
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tradiction between x and y. Given O and B, the above interpretation can be

represented as shown in Figure 7.2.

Observation	

shot(e3)  ∧  dobj(e3,j)  ∧  CAUSE(e3,e2)
⇒  die(e2)  ∧  nsubj(e2,j)	

john(x)  ∧  shoot(e1)  ∧  dobj(e1,j)  ∧  CONTRADICT(e1,e2)  ∧  not(e3,e2)  ∧  die(e2)  ∧  nsubj(e2,j)	

Input:	 John was shot, but he did not die.	

shoot(e3)  ∧  dobj(e3,j)  ∧  CAUSE(e3,e2)	

CAUSE(e1,e2)  ∧  not(e3,e2)  ⇒  CONTRADICT(e1,e2)	

CONTRADICT(e1,e2)	

When e2 is false although
e1 is expected to cause e2,

there is contradiction between e1 and e2

Someone being shot tends to die

Figure 7.2: An example of the explanation to a sentence which has a contradictory
conjunction.

However, this solution may also cause the increase of the number of elemental

hypothese and then cause computational inefficiency. Hence, we will explore how

to deal with contradictory conjunctions with keeping the computational effici-

nency of abduction.

83



7.2.4 Developing a Evaluation Function for Discourse Pro-

cessing

What solution hypothesis to be outputted from a system is depends on the two

factor; its background knowledge and its evaluation function. In order to develop

an accurate discourse processing system, an accurate evaluation function — that

regards a candidate hypothesis agreeing with the human interpretation highly —

is necessary. We consider the existing evaluations to have following problems:

First, the most of existing evaluation functions cannot take plausibility of

equality assumptions into account. For example, since Weighted Abduction im-

poses no cost upon each equality assumption, a pair of literals can be unified if

only they share the same predicate. This can be a problem in case when a input

sentence includes words not being coreferential but whose surfaces are same.

Second, the most of existing evaluation functions presupposes that each im-

plication rule in background knowledge is valid (i.e., the truth of its premises

entails the truth of its conclusion). Hence, they can not take the possibility that

a hypothesis explains the observation into account. However, some of implication

rules to be used in real-life discourse processing do not satisfy this presupposition,

such as shoot(e1, x, y)⇒ die(e2, y) (y might be alive although he or she has been

shot). This contradiction is considered to work badly on the weight learning.

We will explore the evaluation function which can deal with these issues.
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Proof of Theorem

.1 Proof of Safety of Pruning Heuristic Esti-

mated Distances

In this section, we proof that the method of pruning HEDs proposed in Section

4.3 preserve the optimality of the solution hypothesis iff the Validity Condition

and Simplicity Condition are satisfied. We denote HED between a predicate pair

{p, q} before and after applying the method as h1(p, q) and h2(p, q) respectively.

Now, we focus on a set of operation path (we denote R) which is eliminated by

this method. Formally, supposing that an operation path in R connects observable

literals o1 and o2, h1(o1, o2) < ∞ and h2(o1, o2) = ∞ are satisfied. Our goal

here is to prove that a candidate hypothesis generated by an operation path

R ∈ R cannot be the solution hypothesis iff the Validity Condition and Simplicity

Condition are satisfied.

The proving strategy is as follows. First, using the definitions of the Validity

Condition and the Simplicity Condition, we prove that a candidate hypothesis

generated by an operation path in a subset of R cannot be the solution hypothesis.

Next, denoting the others as R′, we prove that an operation path in R′ always

includes an unification operation between functional literals and the unification

operation introduces invalid equality assumptions.

From the Validity Condition and the Simplicity Condition, a operation path

R is not included in the solution hypothesis obviously iff it holds at least one out

of the following cases:

(i) R includes unification between functional literals and at least one out of

those functional literals has no parent.
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(ii) R includes a backward chaining operation which introduces invalid equality

assumptions.

(iii) the anchors of R are functional literals, they share the same parent, and

the evidence of R includes no content literal excluding the parent.

(iv) one of the anchors of R is a functional literal, another is its parent, and the

evidence of R includes no content literal excluding the parent.

Obviously, a operation path which satisfies (i) or (ii) is not included in the solution

hypothesis from the Validity Condition, and so is a operation path which satisfies

(iii) or (iv) from the Simplicity Condition. Therefore, we consider about the

operation paths R′ ⊆ R which do not satisfy the above conditions, hereafter.

Since each operation path in R′ does not include a backward chaining operation

which introduces invalid equality assumptions, it is enough to prove that an

operation path in R′ always includes an unification operation which introduces

invalid equality assumptions.

To begin with, we prove that an operation path in R′ always includes an

unification operation for functional literals.

Proof We use the reductio ad absurdum. Namely we show that, the claim that

an operation path in R′ never includes unification between functional literals

implies a contradiction. From the definition of operation path, this claim is

equal to the claim that an operation path in R′ can include unification between

content literals. More formally, the claim is that, there exists a pair of observable

literals {o1, o2} which satisfies the following: (1) {o1, o2} satisfies h1(o1, o2) <∞
and h2(o1, o2) = ∞, (2) o1 and o2 are explained by content literals c1 and c2

respectively and (3) c1 and c2 are unifiable.

Since c1 and c2 are unifiable, they share the same predicate and hence they

satisfy h1(c1, c2) = h2(c1, c2) = 0 < ∞. Since an operation path in R′ never in-

cludes backward chaining which introduces invalid equality assumptions, a literal

d1, which c1 directly explains, satisfies h2(c1, d1) < ∞. Similarly, a literal dw,

which c2 directly explains, satisfies h2(c2, d2) <∞. Consequently, h2(c1, c2) <∞
is satisfied and then h2(d1, d2) < ∞ is satisfied. The arguments like this can be

applied to literals which d1 or d2 explains, hence h2(o1, o2) <∞ can be induced.
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This is inconsistent with h2(o1, o2) =∞ in the definition of R. Therefore, an
operation path in R′ always includes unification between functional literals.

Next, denoting the anchors of an operation path in R as f1 and f2, we prove

that unification between f1 and f2 always introduces invalid equality assumptions.

Proof Denoting the parents of f1 and f2 as p1 and p2 respectively, we prove that

p1 and p2 satisfy h2(p1, p2) =∞ using the reductio ad absurdum.

Here the claim for the reductio ad absurdum is that p1 and p2 satisfy h2(p1, p2) <

∞. From the definition of HEDs for functional literals (defined in Section 4.3.3),

the claim leads h2(f1, f2) <∞ and therefore leads h2(o1, o2) <∞.

This is inconsistent with h2(o1, o2) = ∞ in the definition of R. Therefore, p1
and p2 cannot be coreferent and then the unification between f1 and f2 always

introduce invalid equality assumptions.

From these proofs, an operation path in R can be classified into following

two types: (1) it holds at least one out of the above four cases and (2) it in-

clude unification between functional literals whose parents cannot be coreferent.

Therefore, it is proved that all of operation path in R cannot be included in the

solution hypothesis and the method of pruning HEDs preserve the optimality of

the solution hypothesis.
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