
A Study on Encoding

Natural Language into Distributed Representations

自然言語の分散表現へのエンコードに関する研究

Sho Takase

Graduate School of Information Sciences

Tohoku University

A thesis submitted for the degree of

Doctor of Information Science

January 2017



Acknowledgements

本研究を進めるにあたって，多くの方にご協力をいただきました．こ

こに，心より感謝の意を表します．

主指導教官である乾健太郎教授には，学部 3年次での研究室配属から，
6年間の研究活動において，多大なご助言をいただきました．深く感
謝いたします．

ご多忙の中，審査委員として本論文を査読してくださいました田中和

之教授，ならびに岡谷貴之教授に深く感謝いたします．

岡崎直観准教授には初めての論文執筆から，最初の国際会議への投

稿，日本学術振興会特別研究員の申請書の執筆や，博士課程 3年次で
のACLへの投稿まで，細部まで面倒をみていただきました．議論の
組み立て方や説明の方法を丁寧に指導していただき，心より感謝して

います．

NTTコミュニケーション科学基礎研究所の鈴木潤さんにはニューラル
ネットワークを用いた要約文生成の研究で，インターンシップを受け

入れていただきました．短い期間ではありましたが，濃密な経験をさ

せていただき，トップ会議に採択されるまでに仕上げることができま

した．感謝しています．次年度より，研究者としてお世話になります

ので，よろしくお願いいたします．

乾・岡崎研究室で初めて博士を取った方として，井之上直也助教には

研究のみならず，書類や申請書の作成など，手続き面でも大変お世話

になりました．本審査当日締め切りの書類を急遽前日に作成すること

になった際も，遠方，かつ，急な連絡だったにも関わらず，ご助言を

いただき，無事に書き終えることができました．ありがとうございま

した．



最後に，乾・岡崎研究室の皆様からは様々なご助言をいただき，相談

にのっていただくとともに，研究生活を暖かく支えていただきました．

心より感謝を申し上げます．本当にありがとうございました．

まだしばらくは自然言語処理の研究者としてやっていこうと思います

ので，今後ともよろしくお願いいたします．



Abstract

Modeling the meaning of a text is a crucial technique for NLP applications
such as relation extraction, textual entailment recognition, paraphrase de-
tection, and so on. Thus, the goal of this thesis is to compute the meanings
of words and phrases in order to comprehend the meaning of a text.

To compute the meanings of words, the most basic way is constructing a
co-occurrence matrix between words. After the construction, we can re-
gard each row of the matrix as semantic vectors of words and compute the
similarity of meanings of words by computing the similarity of semantic
vectors based on the distributional hypothesis [Harris, 1954].

In addition to the above distributional representation, recent researches
proposed various ways to learn distributed representations, which are dense
real-valued vectors encoding syntactic and semantic information, and demon-
strated distributed representations are useful to capture the meanings of
words.

To expand those meaning representations of words into arbitrary-length
phrases, the most naive approach is to regard a phrase as a single unit
(word) and to acquire distributional/distributed representations of words
as usual. However, this approach might suffer from the datasparseness
problem.

To adress the datasparseness problem, we should compute the meaning of
a phrase from constituent words. In this thesis, we propose two neural
network based methods: modified Recursive Neural Network and Gated
Additive Composition. Modified Recursive Neural Network can handle a
transition of a polarity by each word such as increase and decrease. Gated
Additive Composition can take account of an importance of a word. For
example, content words such as verbs are more important than function



words such as prepositions in computing the meaning of a phrase. The lat-
ter model is more general than the former model because the latter model
can also handle an important dimension for representing polarities.

We have few datasets to evaluate computing the meaning of phrases. Thus,
in this thesis, we construct a new evaluation dataset that contains phrase
pairs (specifically, relational pattern pairs) with similarity rating annota-
tions. Using the constructed dataset, we show that the proposed method
(specifically, Gated Additive Composition) is superior to othe neural net-
work based methods.

In addition to the above evaluation, we evaluate several methods on var-
ious datasets to explore the efficient way to compose distributed repre-
sentations of arbitrary-length phrases from distributed representations of
constituent words. Moreover, we indicate that the efficiency of distributed
representations of phrases by applying the distributed representations to
an application task.

We also propose the method that encodes syntactic and semantic infor-
mation such as part-of-speech (POS) tags. Through experiments, we show
that the proposed method outperforms the method that uses only distributed
representations of words. In other words, this thesis also indicates an ef-
fect of distributed representations of syntactic and semantic information
whom traditional NLP parses.
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Chapter 1

Introduction

Modeling the meaning of a text is one of the main challenges in Natural Language Pro-
cessing (NLP). Take two sentences “Tobacco causes lung cancer” and “Smoking in-

creases the risk of cancer” as an example. We can understand that these sentences have
almost the same meaning because the meanings of subjects (Tobacco and Smoking),
predicates (causes and increases the risk of ), and objects (lung cancer and cancer) are
similar respectively. The goal of this thesis is to compute the meanings of words and
phrases in order to comprehend the meaning of a text as in this example.

In the beginning, we focus on modeling the meanings of words. The most basic
way to acquire the meanings of words is constructing a co-occurrence matrix between
words. Concretely, we count the co-occurrence frequency between a word and words
appearing in its context window (context words). Consider the sentence “The novelist

writes the book.”. For the word book, we increment one to the co-occurrence frequency
of the pairs book–writes and book–the if the size of context window is two. After the
construction, we can regard each row of the matrix as semantic vectors of words and
compute the similarity of meanings of words by computing the similarity of semantic
vectors based on the distributional hypothesis [Harris, 1954]. For example, from the
co-occurrence matrix in Figure 1.1, we can recognize that the meanings of book and
novel are similar to each other because semantic vectors of these words are similar. The
semantic vectors obtained from the co-occurrence matrix are also called distributional
representations.

Moreover, recent researches proposed various ways to learn distributed represen-
tations, which are dense real-valued vectors encoding syntactic and semantic informa-
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Figure 1.1: The co-occurrence matrix of words.

tion, and demonstrated distributed representations are useful to capture the meanings
of words [Baroni et al., 2014; Mikolov et al., 2013b; Pennington et al., 2014]. This
thesis also employs the distributed representation as the meaning representation.

As a next step, we focus on the way to model the meanings of arbitrary-length
phrases. The most naive approach is to regard a phrase as a single unit (word) and
to acquire distributional/distributed representations of words as usual. In fact, several
studies implemented this approach by mining phrasal expressions with strong colloca-
tions from a corpus as a preprocessing step [Mikolov et al., 2013b; Nakashole et al.,
2012]. However, this approach might suffer from the datasparseness problem. Con-
cretely, this naive approach has two big problems.

1. The quality of a semantic vector of a phrase may vary because the occurrence
frequency of a phrase varies drastically.

2. We cannot compute semantic vectors of out-of-vocabulary phrases.

For example, Figure 1.2 shows the frequency and rank of phrases representing se-
mantic relations between entities (relational patterns) in ukWaC corpus [Baroni et al.,
2009]. The graph confirms that the distribution of occurrences of relational patterns
follows Zipf’s law. We expect that the pattern “X cause an increase in Y” cannot obtain

2
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sufficiently many co-occurrence statistics because the pattern appears less than 100

times (the first problem). Moreover, as mentioned in the second problem, we have no
way to compute the semantic vectors of unseen patterns.

To address these problems, the straightforward way is to compute the meaning of
a phrase from constituent words. Thus, the main issue of this thesis is exploring the
efficient way to compose distributed representations of arbitrary-length phrases from
distributed representations of constituent words.

In addition to compute the distributed representations of phrases, to improve the
performance of NLP applications, we can consider to use additional syntactic and se-
mantic information such as part-of-speech (POS) tags. In other words, we expect some
enhancement by encoding such syntactic and semantic information into the distributed
representation. This thesis also address this issue.

1.1 Research Issues

In this thesis, we address following three research issues:

• What is the most suitable way to encode an arbitrary-length phrase? Sev-

3



eral researches proposed neural network based methods (encoders) to compute
distributed representations of phrases from constituent words [Cho et al., 2014;
Socher et al., 2011b; Yu and Dredze, 2015] but they paid little attention to com-
pare those encoders. Moreover, we have few datasets to investigate the perfor-
mance of encoders on arbitrary-length phrases.

• Are distributed representations of phrases efficient in NLP applications?
We believe that distributed representations of phrases are efficient in downstream
tasks because computing the meanings of phrases is probably useful to NLP
applications. However, the enhancement of the distributed representations is
unclear.

• Do additional distributed representations enhance the performance of NLP
applications? In addition to the effect of distributed representations of phrases,
we are interested in the usefulness of distributed representations of syntactic and
semantic information.

1.2 Contributions

This thesis makes following contributions:

• Dataset Construction: To evaluate the performance of encoders, we construct a
new dataset that contains a pair of phrases (specifically, relational patterns) with
five similarity ratings judged by human annotators. The new dataset shows a
high inter-annotator agreement, following the annotation guideline of Mitchell
and Lapata [2010]. The dataset is publicly available on the Web site1.

• Novel Encoders: To compose distributed representations of arbitrary-length
phrases, we propose two novel neural encoders. One is modified Recursive Neu-
ral Network to model the verbs that change or inherit the meaning. In other
words, the way can identify that each verb is meaningful or meaningless. The
other is more general way: the neural encoder can handle the importance of each

1http://github.com/takase/relPatSim
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word in a phrase. For the latter method, the code is publicly available at the
Github1.

• Exploring the most suitable way to compute distributed representations of
phrases: As mentioned in the previous section, previous studies paid little atten-
tion to comparison of phrase composition methods. To reveal pros and cons of
each encoder, we compare existing neural encoders and the proposed method on
various datasets.

• Investigating the efficiency of distributed representations of phrases in NLP
applications: To explore the usefulness of distributed representations computed
by a neural encoder, we apply the distributed representations as the feature vector
on the relation classification task.

• Exploring the enhancement of additional distributed representations: We
propose the method that is a combination of a sentence encoder and the encoder
for syntactic/semantic information, and evaluate the performance on the headline
generation task.

1.3 Thesis Overview

The rest of this thesis is structured as follows.

• Chapter 2: Distributed Representations of Words. In this chapter, we intro-
duce the way to learn distributed representations of words from an unlabeled
corpus. In addition, this chapter explains the relation between distributed repre-
sentations and distributional representations.

• Chapter 3: Composing Distributed Representations of Phrases with Modi-
fied Recursive Neural Network. In the beginning of this chapter, we describe
Recursive Neural Networks for phrase composition [Socher et al., 2011b]. Then,
we modify Recursive Neural Networks to handle the verbs that change or in-
herit the meaning. We evaluate the performance of the proposed method on
the inference relation dataset [Zeichner et al., 2012]. The evaluation brings two

1https://github.com/takase/GAC4relpat
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necessities: data construction and more general way to compose distributed rep-
resentations.

• Chapter 4: Data Construction for Modeling Semantic Similarity. To eval-
uate the performance of each encoder, we construct the dataset that contains a
phrase pair with semantic similarity judgements by crowdsourcing workers.

• Chapter 5: Composing Distributed Representations of Phrases with Gated
Additive Composition. We propose a more general encoder than modified Re-
cursive Neural Network: Gated Additive Composition. This chapter shows the
comparison among neural encoders including the proposed method. This chap-
ter also indicate that the distributed representations of phrases enhance the per-
formance on the relation classification task, and the dataset constructed in the
previous chapter is useful.

• Chapter 6: Encoding Semantic and Syntactic Features. This chapter presents
the method that is a combination of a sentence encoder and the encoder for syn-
tactic/semantic information. We evaluate the enhancement by the distributed
representations of syntactic/semantic information on the headline generation task.

• Chapter 7: Conclusions. We summarize our discussion, and present our future
direction.

6



Chapter 2

Distributed Representations of Words

We explain the way to learn distributed representations of words before discussion
about distributed representations of phrases. Concretely, in this chapter, we introduce
representative methods to obtain distributed representations of words from unlabeled
corpus: skip-gram with negative sampling, continuous bag of words, and GloVe. In
addition, this chapter mentions the relation between distributed representations and
distributional representations.

2.1 Methods to Obtain Distributed Representations

2.1.1 Skip-gram with Negative Sampling

Mikolov et al. [2013a] introduced the Skip-gram model that trains distributed repre-
sentations of words to predict surrounding words. Let D denote a corpus consisting
of a sequence of words w1, w2, ..., wT , and V the set of words occurring in the corpus.
The Skip-gram model minimizes the following objective function,

J = −
∑
w∈D

∑
c∈Cw

log p(c|w). (2.1)

Here, Cw is the set of context words for word w. Cw = {w−h, ..., w−1, w+1, ..., w+h}
(h is a parameter that adjusts the width of contexts), where w−p and w+p represent the
word appearing p words before and after, respectively, the centered word w. The con-
ditional probability p(c|w) for predicting context word c from word w, is formalized

7



by a log-bilinear model,

p(c|w) = exp (vw · ṽc)∑
c′∈V exp (vw · ṽc′)

. (2.2)

Here, vw ∈ Rd is the vector for word w, and ṽc ∈ Rd is the vector for context c.
Training the log-bilinear model yields two kinds of vectors v and ṽ, but we use only v

as semantic vectors of words (word vectors). Because computing the denominator in
Equation 2.2, the sum of the dot products for all the words in the corpus, is intractable,
Mikolov et al. [2013b] proposed the negative sampling method based on noise con-
trastive estimation [Gutmann and Hyvärinen, 2012]. The negative sampling method
trains logistic regression models to be able to discriminate an observed context word c

from k noise samples (pseudo-negative words z).

log p(c|w)≈ log σ(vw ·ṽc) + k Ez∼Pn

[
log σ(−vw ·ṽz)

]
(2.3)

Here, Pn is the probability distribution for sampling noise words. Usually, we used the
probability distribution of unigrams raised to the 3/4 power [Mikolov et al., 2013b].

2.1.2 Continuous Bag of Words

Mikolov et al. [2013a] also introduced the Continuous bag of words model (CBOW).
On the contrary to the Skip-gram model, the CBOW trains distributed representations
of words to predict the center word from surrounding words. In the same manner as
the explanation of the Skip-gram model, we use D as a corpus containing a sequence
of words w1, w2, ..., wT , and V as the set of words occurring in the corpus. The CBOW
minimizes the following objective function:

J = −
∑
w∈D

log p(w|Cw). (2.4)

Here, Cw is the set of context words, and the conditional probability p(w|Cw) is the
same as Equation 2.2 on condition that we define the vector of Cw as follows:

vCw =
1

|Cw|
∑
c∈Cw

vc. (2.5)

8



Here, |Cw| is the number of words in Cw. In brief, the CBOW makes the vector of the
center word to similar to the mean of the context word vectors.

2.1.3 GloVe

Pennington et al. [2014] claimed that the Skip-gram model and CBOW poorly take
advantage of the statistical information from corpus such as co-occurrence matrix be-
cause they focus on only local co-occurrence in training. To enhance the quality of
distributed representations, they proposed the GloVe that trains distributed represen-
tations of words to model co-occurrence matrix. Concretely, Glove minimizes the
following equation:

J =
V∑
i,j

f(Xij)(vi · ṽj + bi + b̃j − logXij)
2. (2.6)

Here, V is the set of words (vocabulary), i and j are the ith word and jth word in
vocabulary respectively, vi is the distributed representation of i, ṽi is the distributed
representation when i is the context word, and Xij is co-occurrence frequency between
i and j. Briefly, Equation 2.6 is a least squared loss between of co-occurrence frequen-
cies and dot products of distributed representations. In addition, f(Xij) returns a value
from 0 to 1 depending of Xij . This function makes low co-occurrence frequency to be
light weight in objective function.

2.2 Relation between Distributional Representations and
Distributed Representations

Previous studies proposed several methods to learn distributed representations from
corpus. In addition, we can obtain distributional representations by constructing a co-
occurrence matrix. These cause a simple question; which method is the best to obtain
high quality meaning representations?

Baroni et al. [2014] demonstrated that distributed representations learned by the
CBOW are superior than vector representations acquired by factorization of a co-
occurrence matrix. On the other hand, Pennington et al. [2014] indicated that GloVe,

9



that models a co-occurrence matrix, achieved the significant improvement over the
Skip-gram model and CBOW.

However, Levy and Goldberg [2014a] proved that the Skip-gram model is inter-
preted as factorizing co-occurrence matrix implicitly. In addition, Suzuki and Nagata
[2015] showed that the Skip-gram with negative sampling and GloVe can be repre-
sented by a unified form. These researches suggest that the Skip-gram model, GloVe,
and distributional representations obtained from a co-occurrence matrix are essentially
identical. In fact, Levy et al. [2015] demonstrated that the Skip-gram model, GloVe,
CBOW, and vector representations acquired by factorizing a co-occurrence matrix
achieved similar performance on the various tasks.

In this thesis, we utilize the Skip-gram model with negative sampling to train dis-
tributed representations because the method does not require a co-occurrence matrix
and it is easy to implement the method.

10



Chapter 3

Composing Distributed
Representations of Phrases with
Modified Recursive Neural Network

In this chapter, we pick a relational pattern that is a linguistic pattern connecting en-
tities as a target phrase. Identifying the meaning of a relational pattern is essential in
relation extraction that is the task of extracting semantic relations between entities from
corpora. Based on the distributional hypothesis [Harris, 1954], most previous studies
construct a co-occurrence matrix between relational patterns (e.g., “X cause Y”) and
entity pairs (e.g., “X: smoking, Y: cancer”), and then they recognize relational patterns
sharing the same meaning regarding the co-occurrence distribution as a semantic vec-
tor [Min et al., 2012; Mohamed et al., 2011; Nakashole et al., 2012]. For example, we
can find that the patterns “X cause Y” and “X increase the risk of Y” have the similar
meaning because the patterns share many entity pairs (e.g., “X: smoking, Y: cancer”).
Using semantic vectors, we can map a relational pattern such as “X cause Y” into a pre-
defined semantic relation such as CAUSALITY only if we can compute the similarity
between the semantic vector of the relational pattern and the prototype vector for the
relation. In addition, we can discover relation types by clustering relational patterns
based on semantic vectors.

However, this approach suffers from the data sparseness problem due to regarding a
pattern as a ‘word’. A natural approach to these problems is to compute the meaning of
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a relational pattern based on semantic compositionality, e.g., computing the vector for
“X increase the risk of Y” from the constituent words (e.g, ‘increase’ and ‘risk’). This
treatment can be expected to improve the quality of semantic vectors, incorporating
information of the constituent words into the semantic vectors of relational patterns.
For example, we can infer that the relational pattern “X increase the risk of Y” has a
meaning similar to that of “X increase the danger of Y” only if we know that the word
‘risk’ is similar to ‘danger’.

Recently, there has been much progress in the methods for learning distributed rep-
resentations of words [Bengio et al., 2003; Collobert and Weston, 2008; Mikolov et al.,
2013b]. Among these methods, the Skip-gram model [Mikolov et al., 2013b] received
a fair amount of attention from the NLP community, because the model exhibits the
additive compositionality exemplified by the famous example, vking−vman+vwoman ≈
vqueen. Although we found a number of positive reports regarding additive composi-
tion, a linear combination of vectors is inadequate in some cases. For example, “X

prevent the growth of Y” is dissimilar to “X grow Y” because ‘prevent’ negates the
meaning of ‘grow’, but additive composition cannot handle the transformation. On the
other hand, since “X have access to Y” has almost the same meaning as “X access Y”,
we should not add the meaning of ‘have’ to that of ‘access’. For handling the verbs
changing or inheriting the meaning, it is appropriate to apply a matrix because a matrix
can transform (or inherit) a vector. In fact, Socher et al. [2012] proposed the recursive
neural network (Recursive NN) method that can handle a word changing the meaning
by using matrices, but the method requires a certain amount of labeled data.

In this chapter, we propose a novel method for modeling the meanings of relational
patterns based on compositionality. More specifically, in addition to additive compo-
sition, we model the verbs that change or inherit the meaning by using Recursive NN.
We extend the Skip-gram model so that it can learn parameters for Recursive NNs and
distributed representations of words from unlabeled data. In addition, we introduce
l1-regularization for training parameters of Recursive NN to obtain a simpler model
for semantic composition.

We conduct four kinds of experiments on the existing datasets, pattern similarity,
relation extraction, and word similarity. The experimental results show that the pro-
posed method can successfully model semantic compositions of relational patterns,
outperforming strong baselines such as additive composition. The experiments also
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Figure 3.1: Overview of the proposed method. The original Skip-gram model is illus-
trated on the upper level.

demonstrate the contribution of this work to the task of relation extraction. We confirm
that the proposed method improves not only the quality of distributed representations
for relational patterns but also that for words.

3.1 Proposed method

The proposed method bases on the Skip-gram model described in Section 2.1.1 and
Recursive NN. Therefore, we first review the Recursive NN in Section 3.1.1 followed
by the proposed method.

3.1.1 Recursive Neural Network

Recursive neural network computes the semantic vectors of phrases based on compo-
sitionality [Socher et al., 2011b]. Using a weight matrix M ∈ Rd×2d and an activation
function g (e.g., tanh), Recursive NN computes the semantic vector of the phrase con-
sisting of two words wa and wb,

g

(
M

[
vwa

vwb

])
. (3.1)

The vector computed by Equation 3.1 is expected to represent the meaning of the
phrase based on semantic compositionality. Socher et al. [2011b] apply this function
recursively inside a binarized parse tree, and compose the semantic vectors of phrases
and sentences. Although the study modeled only one compositional function with a
single matrix M , Socher et al. [2012] extended Recursive NN to matrix-vector recur-
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sive neural network (MV-RNN) in order to configure a compositional function for each
word, assigning a word with both a vector and a matrix.

3.1.2 Semantic composition for relational patterns

We extend the Skip-gram model to enable it to take into account the semantic composi-
tion for relational patterns. We provide an overview of the proposed method using the
example in Figure 3.1. Here, we have a sequence of lemmatized words “yeast help re-
duce the serious risk of infection”. As explained in Section 1, it is inefficient to regard
the relational pattern “X help reduce the serious risk of Y” as a single ‘word’ (upper).
Instead, we compute the semantic vector from the constituent words of the relational
pattern, e.g., ‘help’, ‘reduce’, ‘serious’, and ‘risk’. Simultaneously, we would like to
handle cases in which words have a major influence on changing the meaning of the
entire phrase.

Inspired by Socher et al. [2012], we represent the words inheriting or changing the
meaning with matrices in Recursive NN. In this paper, we assume that verbs appear-
ing frequently in relational patterns may inherit or change the meaning computed by
other constituent words. We call these verbs transformational verbs1. In the example
in Figure 3.1, we may think that ‘reduce’ changes the meaning of ‘risk’ and ‘help’
inherits the meaning of “reduce the serious risk of”; and the change and inheritance
are represented by matrices.

To compute the distributed representation of the relational pattern “X help reduce
the serious risk of Y”, the proposed method first computes the distributed representa-
tion of “the serious risk of”. In this study, we assume additive compositionality for
words except for transformational verbs. For this reason, the proposed method obtains
the semantic vector for “the serious risk of” by computing the mean of the distributed
representations of ‘serious’ and ‘risk’. Next, the proposed method multiplies the se-
mantic vector for “the serious risk of” and the matrix for ‘reduce’, and then multiplies
the computed vector and the matrix for ‘help’. To learn the parameters in matrices and
vectors, we incorporate the Recursive NN framework into the Skip-gram model. This
is not only because the Skip-gram model achieved successes in training high-quality

1Transformational verbs are similar to light verbs and catenative verbs, but it is hard to give a formal
definition.
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word vectors from a large corpus, but also because the online training algorithm (word-
by-word) is suitable for incorporating matrix-vector compositions used in Recursive
NN.

Meanwhile, giving a formal definition of transformational verbs is arguable. In this
study, we make three assumptions for identifying transformational verbs.

1. Verbs can behave as transformational verbs.

2. Whether a verb is a transformational verb or not is determined by the statistics
of its occurrences in relational patterns.

3. Other words, e.g, nouns, adjectives, adverbs, and verbs not qualified to be trans-
formational verbs express meanings of their own. We call these words content

words.

Although these assumptions are rather provisional, we would like to explore the possi-
bility of semantic compositoinality for relational patterns.

We assume that the relational pattern P is composed of transformational verbs
p1, ..., pn, followed by content words pn+1, ..., pm. For example, the lemmatized re-
lational pattern “help reduce the serious risk of” is composed of the transformational
verbs ‘help’ and ‘reduce’ as well as ‘the’, ‘serious’, ‘risk’, ‘of’, as shown in Figure 3.1.
Removing non-content words such as determiners and prepositions, we obtain content
words ‘serious’ and ‘risk’. Accordingly, the relational pattern “help reduce the serious
risk of” is represented by P = (p1, p2, p3, p4) = (help, reduce, serious, risk). The total
number of words in P is m = 4, and the boundary between the transformational verbs
and content words is n = 2. Although formal definitions of relational pattern, transfor-
mational verbs, and content words are open questions, we mine them from the corpus
(refer to Section 3.2.1).

As previously mentioned, in this study, we assume additive compositionality for
content words in a relational pattern. That is to say, the meaning of content words
pn+1, ..., pm is computed from the mean of the semantic vectors corresponding to the
content words,

vp(n+1)
+ vp(n+2)

+ ...vpm

m− n
. (3.2)

In contrast, we assume that each transformational verb pi inherits or transforms a given
semantic vector using the mapping function, fpi : Rd → Rd. Hence, the semantic
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vector vP for the relational pattern P is computed as,

vP=fp1

(
fp2

(
...fpn

(
tanh

(
vp(n+1)

+vp(n+2)
+...vpm

m−n

))))
. (3.3)

We design the mapping function fpi using Recursive NN [Socher et al., 2011b]. More
specifically, the mapping function for the transformational verb pi is modeled using a
matrix Wi ∈ Rd×d and an activation function.

fpi(v) = tanh(Wpiv) (3.4)

In short, the proposed method computes the meaning of content words of a rela-
tional pattern as the vector mean, and inherits/transforms the meaning using matrix-
vector products of Recursive NN.

3.1.3 Training

The proposed method is identical to the Skip-gram model when a context window
involves no relational pattern. In other words, we train vw and ṽc in the same manner as
the original Skip-gram model with negative sampling. We summarize the differences
from the original Skip-gram model.

1. We treat a relational pattern as a ‘word’, but its semantic vector is computed
using Formula 3.3. We update the vectors for content words and matrices for
transformational verbs to enable the composed vector of the relational pattern P

to predict context words c well.

2. In addition to word vectors v and ṽ, we train semantic matrices W for the trans-
formational verbs. We use backpropagation for updating vectors and matrices.

3. We do not use Formula 3.3 for computing a context vector of a relational pat-
tern. In other words, when the negative sampling picks a relational pattern for a
centered word, we use a context vector ṽ assigned for the pattern.

4. We apply the activation function tanh even for word vectors v. This keeps the
value range of semantic vectors consistent between composed vectors and word
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vectors. Each dimension of a semantic vector of a relational pattern is bound to
the range of (−1, 1), because Formula 3.3 uses tanh as an activation function.

Meanwhile, some transformational verbs (e.g., light verbs) may not contribute
to meanings. For example, the word ‘take’ in the pattern “take care of” does not
have a strong influence on the meaning of the pattern. Thus, we explore the use of
l1-regularization to encourage diagonal matrices. We modify the objective function
(Equation 2.4) into:

J ′ = −
∑
w∈D

∑
c∈Cw

log p(c|w) + λ
∑
W∈W

r(W ). (3.5)

Here, W represents the set of all matrices for the transformational verbs. The function
r(W ) computes the l1-norm from off-diagonal elements of W ,

r(W ) =
∑
i̸=j

|Wi,j|. (3.6)

3.2 Experiments

3.2.1 Corpora and training settings

We used ukWaC1 as the corpus for training the semantic vectors and matrices. This
corpus includes the text of Web pages crawled from the .uk domain, and contains 2
billion words. This corpus also includes parts-of-speech tags and lemmas annotated
by the TreeTagger2. In our experiment, we lowercased words and used the lemmas
except for past participle forms of verbs (we used their surface forms)3. Furthermore,
tokens consisting of a single character (e.g., ‘a’ and ‘b’), determiners (e.g., ‘the’),
interrogative words (e.g., ‘what’), and prepositions were removed as stop words.

We applied Reverb [Fader et al., 2011] to the ukWaC corpus to extract relational
pattern candidates. To remove unuseful relational patterns, we followed the filtering
rules that are compatible with the ones used in the publicly available extraction result4:

1http://wacky.sslmit.unibo.it/doku.php?id=corpora
2http://www.cis.uni-muenchen.de/˜schmid/tools/TreeTagger/
3We use past particle forms to express the passive/active voice.
4http://reverb.cs.washington.edu/
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the confidence score of a pattern must be no less than 0.9 at least once in the cor-
pus, a relational pattern must not contain a temporal expression (e.g., ‘yesterday’ and
‘tonight’), and the frequency of occurrence of a pattern must be no less than 5. Addi-
tionally, throughout the experiments, we removed relational patterns that appear in the
evaluation data in order to examine the performance of the proposed method in com-
posing semantic vectors of unseen relational patterns. After the above preprocessing,
we obtained 55, 885 relational patterns.

Verbs appearing in five or more kinds of relational patterns were identified as trans-
formational verbs. We removed the verb ‘be’ in this experiment. Using the criterion,
we identified 697 verbs as transformational verbs in relational patterns. If a relational
pattern consists only of transformational verbs, we regarded the last word as a content
word. While there may be some room for consideration regarding the definition of
transformational verbs and content words, we used these criteria in this experiment.

When training the proposed method, we removed words and relational patterns ap-
pearing less than 10 times. As a result, we obtained approximately 0.7 million words
(including relational patterns) as targets for training semantic vectors. When a trans-
formational verb appears outside of a relational pattern (e.g., ‘reduce’), we update a
vector for the word similarly as for an ordinary word.

For comparing with the existing methods, we used the same hyper-parameters as
the ones presented in the papers [Mikolov et al., 2013b; Socher et al., 2012]. We set
the number of dimensions d = 50, following Socher et al. [2012]. For the width of
context window h, number of negative samples k, and subsampling parameter in the
Skip-gram, we used the same hyper-parameters as in Mikolov et al. [2013b]: h = 5,
k = 5, and subsampling with 10−5. We initialize word vectors v and context vectors ṽ
using the result from the original Skip-gram model [Mikolov et al., 2013b]. Elements
in semantic matrices W are initialized with random values sampled from a Gaussian
distribution with mean 0 and variance 0.1. We learn parameters (v, ṽ, and W ) by the
backpropagation with the stochastic gradient descent (SGD) method. We control the
learning rate α for an instance by using the formula implemented in word2vec1:

α = α0 ∗ (1−
the number of processed sentences
the number of total sentences + 1

). (3.7)

1https://code.google.com/p/word2vec/
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In Equation 3.7, α0 represents the initial learning rate (0.025 in this experiments).
Equation 3.7 decreases the learning rate steadily according to the number of processed
sentences.

3.2.2 Evaluation datasets

We conducted three experiments, pattern similarity, relation classification, and word
similarity.

Pattern similarity We would like to examine whether our proposed method can
successfully compose semantic vectors of relational patterns. The performance of a
method can be measured by the correlation between similarity judgments of humans
for relational patterns and the similarities of the corresponding semantic vectors com-
puted by the method. However, unfortunately, no existing dataset provides similarity
judgements between relational patterns. Instead, we adapted the dataset developed
for semantic inferences between relational patterns [Zeichner et al., 2012]. Using re-
lational patterns extracted by Reverb, this dataset labels whether a pair of relational
patterns (e.g., ‘X prevent Y’ and “X reduce the risk of Y”) is meaningful1 or not. A
meaningful pair is annotated with a label indicating whether the pair has an inference
relation (entailment). The dataset consists of 6, 567 pairs overall.

After discarding pairs labeled meaningless and cases where the set of arguments
is reversed between paired patterns such as “X contain embedded Y” and “Y be em-
bedded within X”, we extracted 5, 409 pairs for evaluation. The evaluation dataset
includes 2, 447 pairs with inference relation (similar), 2, 962 pairs without inference
relation (dissimilar). This dataset includes only binary decisions (similar or dissimilar)
for relational patterns, whereas similarity values computed by a method range in [0,
1.0]. Thus, we regard pattern pairs having similarity values greater than a threshold as
‘similar’, and the rest as ‘dissimilar’. In this way, we can measure the precision and
recall of a method for detecting similar relational patterns with the given threshold. By

1When an annotator judges a pair, the slots of relational patterns are filled with the same subject
and object. If the annotator can easily understand the both of expressions, the pair is meaningful. Take
the pair “X belong to Y” and “X be property of Y” as an example. If the pair is filled with “Such people”
and “the left”, it is unrealistic to understand the meaning of “Such people be property of the left”. In
this case, the pair is annotated with meaningless.
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changing the threshold from 0.0 to 1.0, we can draw a precision-recall curve for each
method.

Relation classification To examine the contribution of this work to the relation clas-
sification task, we used the SemEval-2010 Task 8 dataset [Hendrickx et al., 2010]. The
task is to identify the relationship of a given entity pair. The dataset consists of 10, 717
relation instances (8, 000 training and 2, 717 test instances), each of which is anno-
tated with a relation label. The data set has 19 candidate relation labels, nine directed
relationships (e.g.,CAUSE-EFFECT) and one undirected relationship OTHER. For ex-
ample, the entity pair ‘burst’ and ‘pressure’ in the sentence “The burst has been caused
by water hammer pressure” is labeled as CAUSE-EFFECT(e1, e2).

Word similarity We also evaluated the word vectors to verify that the proposed
method does not degrade the quality of word vectors. We used a variety of word
similarity datasets: WordSim-353 [Finkelstein et al., 2001], MC [Miller and Charles,
1991], RG [Rubenstein and Goodenough, 1965], and SCWS [Huang et al., 2012]. For
each dataset, the numbers of word pairs are 353, 30, 65, and 2,003. For evaluation, we
used all word pairs included in the datasets after lowercasing and lemmatizing simi-
larly to the training procedure. We calculate Spearman’s rank correlation coefficients
between human judgments and cosine similarity values of the semantic vectors com-
puted by each method.

3.2.3 Results

Pattern similarity Figure 3.2 shows precision-recall curves of the proposed method
and baseline methods on the pattern-similarity task. The red locus shows the perfor-
mance of the proposed method. In this figure, we set the parameter for l1-regularization
to 106, because the parameter achieved the best performance (Table 3.1). The blue lo-
cus corresponds to the Skip-gram model, in which relational patterns are regarded as
single words. This treatment is identical to the procedure for training phrase vectors
in Mikolov et al. [2013b]. The green locus shows the performance of additive com-
positions of word vectors trained by the Skip-gram model. In this method, we trained
word vectors as usual (without considering relational patterns), and computed vectors
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Figure 3.2: Precision-recall curve of each method on the pattern-similarity task

of relational patterns as the mean of vectors of constituent words. This treatment is the
popular and strong baseline method to compute a phrase vector from its constituent
words [Muraoka et al., 2014]. The light blue locus reports the performance when
we fix matrices for transformational verbs as identity matrices: this corresponds to
ignoring transformational verbs in a relational pattern. The yellow and purple loci cor-
respond to assigning every verb (yellow) and every word (purple), respectively, with
a matrix (rather than a vector). In these settings, we use a vector representation for a
content word that are located at the end of relational patterns. In other words, these
settings are more flexible than the recommended setting (red) for composing semantic
vectors, having more free parameters to train the models.

Figure 3.2 shows that the proposed method performed better than all baseline meth-
ods. It is noteworthy that the proposed method performed better than the Skip-gram
model with additive composition in green, which has been regarded as a strong base-
line for semantic composition. This result indicates that representing transformational
verbs with matrices in Recursive NN is more suitable than additive composition for
computing the semantic vectors of relational patterns.

The proposed method outperformed the setting with transformational verbs ignored
(light blue). This result indicates that the treatment for transformational verbs is im-
portant for composing semantic vectors of relational patterns. In fact, the proposed
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Method AUC Sparsity
Skip-gram (phrase) 0.557 —
Skip-gram (additive) 0.568 —
Identity matrix 0.552 —
Every verb has a matrix 0.566 —
Every word has a matrix 0.561 —
Proposed (λ = 0) 0.570 0.0%
Proposed (λ = 1) 0.570 0.0%
Proposed (λ = 10) 0.570 0.7%
Proposed (λ = 102) 0.573 14.4%
Proposed (λ = 103) 0.574∗ 54.4%
Proposed (λ = 104) 0.575∗ 88.2%
Proposed (λ = 105) 0.576∗ 96.6%
Proposed (λ = 106) 0.576∗ 97.8%
Proposed (λ = 107) 0.575∗ 98.0%

Table 3.1: Area under the curve (AUC) of each method on the pattern-similarity task.
This table also reports the sparsity (the ratio of zero-elements) of matrices with differ-
ent parameters for l1-regularization. If a method outperforms the Skip-gram (additive)
with 95% statistical significance (p < 0.05), we put * on the value of AUC.

method successfully computes semantic vectors of relational patterns with inhibitory
verbs: for example, the proposed method could predict the similarity between “prevent
the growth of” and ‘inhibit’ while the use of identity matrices cannot.

The comparison among the proposed method (red), representing every verb with
a matrix (yellow), and representing every word with a matrix (purple) demonstrates
the effectiveness of identifying transformational verbs in advance. This result sug-
gests that transformational verbs (verbs appearing frequently in relational patterns)
can inherit/change the meaning and that it is important to incorporate their behaviors
in composing semantic vectors of relational patterns.

Training semantic vectors of relational patterns by regarding a relation pattern as
a single word (blue) performed worse than most of other methods in this experiment.
This suggests the difficulty in learning vector representations of relational patterns only
with the distributional hypothesis. The incorporation of the distributional hypothesis
with the semantic compositionality is the key to success in modeling semantic vectors
of relational patterns.

Table 3.1 shows the area under the curve (AUC) of each method appearing in Fig-
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ure 3.2. In addition to AUC values, we report the sparsity (the percentage of zero ele-
ments in matrices), changing the parameter for l1-regularization from 0 to 107 in pow-
ers of ten1. Again, we can reconfirm from this table that the proposed method outper-
forms the baseline methods. Moreover, the methods with λ = 103, 104, 105, 106, and 107

outperform the strong baseline, Skip-gram (additive) with 95% statistical significance
(p < 0.05) measured by paired bootstrap resampling [Koehn, 2004]. The proposed
method obtained the best performance (0.576) with over 95% sparsity (λ = 105 and
106). The results indicate that the use of l1-regularization for off-diagonal elements of
matrices improves the performance even though the obtained model becomes compact.
However, the model with λ = 107 was too sparse to achieve the best performance.

Table 3.1 also shows that representing every verb with a matrix or representing
every word with a matrix performed worse than Skip-gram (additive). This also sug-
gests that it is essential to distinguish transformational verbs from content words. In
addition, representing content words with matrices gave too much flexibility for this
task.

Relation classification Table 3.2 shows the performance of each method on the rela-
tion classification task. The top 4 rows represent the results of the baseline method and
improvements by using semantic vectors computed by the proposed method. To predict
whether a given entity pair has a specific relation, we built one-versus-one classifiers
modeled by SVM with radial basis function (RBF) kernel. We defined basic features
for the classifiers: parts-of-speech tags, surface forms, and lemmas of words appearing
between an entity pair, and lemmas of the words in the entity pair. In addition, we in-
cluded the value of each dimension of the semantic vectors of a relational pattern and
entity pairs as features in order to examine the effect of the semantic vectors obtained
by the proposed method with (λ = 106). Moreover, we employed named entity infor-
mation and WordNet super sense classes predicted by a super sense tagger [Ciaramita
and Altun, 2006]. We used LIBSVM2 for training SVM models. For hyper-parameters,
we determined C = 8.0 and γ = 0.03125 based on 5-fold cross-validation.

Table 3.2 shows that the use of semantic vectors of the proposed method boosted
the performance from 76.0 to 79.0 F1 scores. Moreover, even with the external knowl-

1We stopped increasing λ to 107 because the AUC decreased when we changed λ from 106 to 107.
2https://www.csie.ntu.edu.tw/˜cjlin/libsvm/
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Method Features F1
SVM basic features 76.0
(Use semantic vectors basic features, semantic vectors 79.0
obtained by the proposed method) basic features, WordNet, NE 79.9

basic features, semantic vectors, 82.1
WordNet, NE

SVM (Best in SemEval 2010) POS, prefixes, morphological, WordNet,
[Rink and Harabagiu, 2010] dependency parse, Levin classed, ProBank, 82.2

FrameNet, NomLex-Plus, Google n-gram,
paraphrases, TextRunner

Recursive NN - 74.8
[Socher et al., 2011b] WordNet, NE 77.6
MV-RNN - 79.1
[Socher et al., 2012] WordNet, NE 82.4
CNN [Zeng et al., 2014] WordNet 82.7
FCM - 80.6
[Yu et al., 2014] dependency parse, NE 83.0
CR-CNN [dos Santos et al., 2015] - 84.1
RelEmb - 82.8
[Hashimoto et al., 2015] dependency parse, WordNet, NE 83.5
depLCNN+NS - 84.0
[Xu et al., 2015] WordNet 85.6

Table 3.2: Comparison of using the proposed method with previously published re-
sults.

edge (WordNet super sense), semantic vectors computed by the proposed method im-
proved the performance from 79.9 to 82.1. This demonstrates the usefulness of the
semantic vectors computed by the proposed method for the task of relation classifica-
tion.

For comparison, Table 3.2 includes the performance reported in the previous work.
Table 3.2 shows that using our semantic vectors exhibited performance closed to the
best method in the SemEval-2010 task 8 competition [Rink and Harabagiu, 2010].
The proposed method outperformed Recursive NN [Socher et al., 2011b] by a large
margin. Moreover, the proposed method achieved a comparable performance with
MV-RNN [Socher et al., 2012].

However, the best result obtained by the proposed method was lower than that
of the state-of-the-art methods. These methods specially train vector representations
for words such that it predicts predefined relation labels in the SemEval-2010 Task
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Method WS353 MC RG SCWS
Baseline (Skip-gram without relational patterns) 63.0 69.5 74.2 60.3
Proposed (λ = 106) 68.4 73.7 75.4 61.5

Table 3.3: Spearman’s rank correlation coefficients on the word similarity tasks.
lambda*=*0�

(a) λ = 0

lambda*=*1�

(b) λ = 1

lambda*=*10^3�

(c) λ = 103

lambda*=*10^6�

(d) λ = 106

Figure 3.3: Examples of the matrices learned using the proposed method (λ = 0, 1,
103, and 106).

8 dataset. In other words, they fine-tuned vector representations for this task. In
fact, Yu et al. [2014] reported that fine-tuning improved the performance. In addi-
tion, Hashimoto et al. [2015] indicated that they achieved a better performance when
they refined vector representations for initialization. Therefore, we may obtain a fur-
ther improvement if we tune matrices and vectors in our model specialized for the
SemEval-2010 Task 8. In contrast, our focus is to model semantic composition of re-
lational patterns in a generic and unsupervised fashion. We will explore the possibility
of fine-tuning in future work.

Word similarity Table 3.3 reports the results for word similarity on four different
datasets. In this task, we compared the proposed method with the Skip-gram model
ignoring relational patterns. Table 3.3 shows that the proposed method yielded the
better performance than the Skip-gram model without relational patterns. In other
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words, the result indicates that our approach also improved the quality of the semantic
vectors of words.

3.2.4 Visualizing the matrices

Figure 3.3 shows a visualization of matrices for the words ‘have’ and ‘prevent’ learned
by the proposed method with different parameters for l1-regularization (λ = 0, 1,
103, and 106). The values of the diagonal elements in the matrix for ‘have’ are high
while the off-diagonal elements are close to zero. In other words, the matrix for ‘have’
is close to the identity matrix, implying that the word ‘have’ inherits the meaning
from content words. The proposed method learned this behavior because a number of
relational patterns (e.g., “have access to” and “have an impact on”) include the word
‘have’, but their contexts are similar to those for content words (e.g., ‘access’ and
‘impact’). We could observe the similar tendency for verbs such as ‘make’ and ‘take’.

In contrast, the matrix for ‘prevent’ is entirely different from that for ‘have’. With
the small l1-regularization parameters (λ = 0 and 1), the matrix for ‘prevent’ does
not have an obvious tendency. With the large l1-regularization parameters (λ = 103

and 106), the matrix is close to the diagonal matrix. However, the matrix is different
from the identity matrix: each diagonal element have a non-uniform value. This is
probably because the word ‘prevent’ tends to negate the meaning of content words, as
in “prevent the growth of”. Thus, the proposed method found a matrix so that it does
not pass the meaning of the content word (e.g., ‘growth’) directly to that of the whole.

3.3 Related Work

Relation Extraction A number of previous studies extracted semantic relations be-
tween entities using linguistic patterns [Carlson et al., 2010; Min et al., 2012; Nakas-
hole et al., 2012; Pantel and Pennacchiotti, 2006; Rosenfeld and Feldman, 2007].
These studies mostly explored methods for obtaining relation instances with high-
precision e.g., using pointwise mutual information between entity pairs and patterns [Pan-
tel and Pennacchiotti, 2006], checking types of arguments of relational patterns [Rosen-
feld and Feldman, 2007], and extracting entities and relation instances simultane-
ously [Carlson et al., 2010]. On the other hand, Min et al. [2012] improved recall
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by incorporating various knowledge sources into the extracting algorithm. However,
these approaches suffer from the data sparseness problem described in Section 1.

Nakashole et al. [2012] presented PATTY, a large resource for relational patterns.
PATTY has an automatic method for inducing rules for generalizing relational pat-
terns with part-of-speech tags, wildcards, and argument types. For example, PATTY
can generalize the relational pattern “singer sings her song” into “singer sings [prp]
song”, where [prp] represents a pronoun. This approach could reduce the data sparse-
ness problem to some extent, but could not model the compositionality of relational
patterns, e.g., similarity between words in two relational patterns.

Semantic composition Mitchell and Lapata [2010] demonstrated the ability of com-
puting the meaning of a phrase from constituent words. They explored various func-
tions for composing phrase vectors, e.g., additive and multiplicative compositions.
Mikolov et al. [2013b] proposed the Skip-gram model, which was inspired by neu-
ral language models [Bengio et al., 2003; Collobert and Weston, 2008]. The Skip-
gram model exhibits additive compositionality. Levy and Goldberg [2014b] and Levy
and Goldberg [2014a] provided theoretical analyses of additive compositionality of
the Skip-gram model with negative sampling. Pennington et al. [2014] demonstrated
that semantic composition could be modeled also by a co-occurrence matrix between
words and their context words. Although these studies achieved good performance in
additive composition, they cannot model the case in which a word such as ‘prevent’ or
‘inhibit’ changes the meaning of an entire phrase, e.g., “prevent the growth of.” Baroni
and Zamparelli [2010] suggested representing modifiers with matrices rather than with
vectors.

MV-RNN [Socher et al., 2012], which is the extension method of Recursive NN [Socher
et al., 2011b], can handle a word changing the meaning but they requires supervision
data for specific tasks (e.g., sentiment analysis). In addition, those authors did not
determine whether the vector representation of internal nodes of a tree really exhibits
the meanings of the phrases. Muraoka et al. [2014] proposed a method that reduces
MV-RNN parameters. The method uses a single matrix for composing a phrase with
the same part-of-speech pattern (e.g., adj–noun). However, they did not evaluate the
method for composing a phrase vector from three or more words. Socher et al. [2011a]
proposed a method to learn word vectors and a matrix from an unlabeled corpus us-
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ing an autoencoder but this approach uses only a single matrix for vector composi-
tion. In other words, the method cannot take modification of each word into account.
Hashimoto et al. [2014] proposed a method for training weights for linear combina-
tions of word vectors. Although Their method jointly learns the vector representation
and weighting factors of words from an unlabeled corpus, they cannot model changing
aspects of words without the capability of linear transformations.

3.4 Conclusion

In this chapter, we proposed a novel method for computing the meanings of relational
patterns based on semantic compositionality. We extended the Skip-gram model to
incorporate semantic compositions modeled by Recursive NNs. In addition, we intro-
duced l1-regularization to obtain a simpler model. The experimental results showed
that the proposed method can successfully model semantic compositions of relational
patterns, outperforming strong baselines such as additive composition. The experi-
ments also demonstrated the contribution of this work to the task of relation classifi-
cation. We confirmed that the proposed method could improve not only the quality of
vectors for relational patterns but also that for words.

In this study, we defined transformational verbs heuristically. Even though this
study could demonstrate superiority in handling transformational verbs, we need to
explore a better approach for determining whether a word should have a vector or
matrix.
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Chapter 4

Data Construction for Modeling
Semantic Similarity

In the previous chapter, we use inference relation dataset to evaluate the ability to
compute the meanings of relational patterns. However, the inference relation dataset
is insufficient for the evaluation because inference relations are quite different from
semantic similarity. This chapter describes the difference between inference relations
and semantic similarity and presents a new dataset representing semantic similarity for
relational pattern pairs.

4.1 Data Construction

4.1.1 Target relation instances

We build a new dataset upon the work of Zeichner et al. [2012], which consists of re-
lational patterns with semantic inference labels annotated. The dataset includes 5,555
pairs1 extracted by Reverb [Fader et al., 2011], 2,447 pairs with inference relation and
3,108 pairs (the rest) without one.

Initially, we considered using this high-quality dataset as it is for semantic mod-
eling of relational patterns. However, we found that inference relations exhibit quite

1More precisely, the dataset includes 1,012 meaningless pairs in addition to 5,555 pairs. A pair
of relational patterns was annotated as meaningless if the annotators were unable to understand the
meaning of the patterns easily. We ignore the meaningless pairs in this study.
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different properties from those of semantic similarity. Take a relational pattern pair “X

be the part of Y” and “X be an essential part of Y” filled with “X = the small intestine,
Y = the digestive system” as an instance. The pattern “X be the part of Y” does not
entail “X be an essential part of Y” because the meaning of the former does not include
‘essential’. Nevertheless, both statements are similar, representing the same relation
(PART-OF). Another uncomfortable pair is “X fall down Y” and “X go up Y” filled with
“X = the dude, Y = the stairs”. The dataset indicates that the former entails the latter
probably because falling down from the stairs requires going up there, but they present
the opposite meaning. For this reason, we decided to re-annotate semantic similarity
judgments on every pair of relational patterns on the dataset.

4.1.2 Annotation guideline

We use instance-based judgment in a similar manner to that of Zeichner et al. [2012]
to secure a high inter-annotator agreement. In instance-based judgment, an annotator
judges a pair of relational patterns whose variable slots are filled with the same entity
pair. In other words, he or she does not make a judgment for a pair of relational
patterns with variables, “X prevent Y” and “X reduce the risk of Y”, but two instantiated
statements “Cephalexin prevent the bacteria” and “Cephalexin reduce the risk of the
bacteria” (“X = Cephalexin, Y = the bacteria”). We use the entity pairs provided in
Zeichner et al. [2012].

We asked annotators to make a judgment for a pair of relation instances by choosing
a rating from 1 (dissimilar) to 7 (very similar). We provided the following instructions
for judgment, which is compatible with Mitchell and Lapata [2010]: (1) rate 6 or 7 if
the meanings of two statements are the same or mostly the same (e.g., “Palmer team
with Jack Nicklaus” and “Palmer join with Jack Nicklaus”); (2) rate 1 or 2 if two
statements are dissimilar or unrelated (e.g., “the kids grow up with him” and “the kids
forget about him”); (3) rate 3, 4, or 5 if two statements have some relationships (e.g.,
“Many of you know about the site” and “Many of you get more information about the
site”, where the two statements differ but also reasonably resemble to some extent).
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Figure 4.1: Number of judgments for each similarity rating. The total number of
judgments is 27, 775 (5, 555 pairs × 5 workers).

4.1.3 Annotation procedure

We use a crowdsourcing service CrowdFlower1 to collect similarity judgments from
the crowds. CrowdFlower has the mechanism to assess the reliability of annotators
using Gold Standard Data (Gold, hereafter), which consists of pairs of relational pat-
terns with similarity scores assigned. Gold examples are regularly inserted throughout
the judgment job to enable measurement of the performance of each worker2. Two
authors of this paper annotated 100 pairs extracted randomly from 5,555 pairs, and
prepared 80 Gold examples showing high agreement. Ratings of the Gold examples
were used merely for quality assessment of the workers. In other words, we discarded
the similarity ratings of the Gold examples, and used those judged by the workers.

To build a high quality dataset, we use judgments from workers whose confidence
values (reliability scores) computed by CrowdFlower are greater than 75%. Addition-
ally, we force every pair to have at least five judgments from the workers. Conse-
quently, 60 workers participated in this job. In the final version of this dataset, each
pair has five similarity ratings judged by the five most reliable workers who were in-
volved in the pair.

Figure 4.1 presents the number of judgments for each similarity rating. Workers
seldom rated 7 for a pair of relational patterns, probably because most pairs have at
least one difference in content words. The mean of the standard deviations of similarity
ratings of all pairs is 1.16. Moreover, we computed Spearman’s ρ between similarity

1http://www.crowdflower.com/
2We allow ±1 differences in rating when we measure the performance of the workers.
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judgments from each worker and the mean of five judgments in the dataset. The mean
of Spearman’s ρ of workers involved in the dataset is 0.728. These statistics show a
high inter-annotator agreement of the dataset.

4.2 Related Work

Mitchell and Lapata [2010] was a pioneering work in semantic modeling of short
phrases. They constructed the dataset that contains two-word phrase pairs with se-
mantic similarity judged by human annotators. Korkontzelos et al. [2013] provided a
semantic similarity dataset with pairs of two words and a single word. Wieting et al.
[2015] annotated a part of PPDB [Ganitkevitch et al., 2013] to evaluate semantic mod-
eling of paraphrases. Although the target unit of semantic modeling is different from
that for these previous studies, we follow the annotation guideline and instruction of
Mitchell and Lapata [2010] to build the new dataset.

The task addressed in this chapter is also related to the Semantic Textual Similarity
(STS) task [Agirre et al., 2012]. STS is the task to measure the degree of semantic
similarity between two sentences. Even though a relational pattern appears as a part
of a sentence, it may be difficult to transfer findings from one to another: for exam-
ple, the encoders of RNN and its variants explored in this study may exhibit different
characteristics, influenced by the length and complexity of input text expressions.

4.3 Conclusion

In this chapter, we addressed to construct a new dataset in which humans rated mul-
tiple similarity scores for every pair of relational patterns on the dataset of semantic
inference [Zeichner et al., 2012]. The new dataset shows a high inter-annotator agree-
ment, following the annotation guideline of Mitchell and Lapata [2010]. The dataset
is publicly available on the Web site1.

1http://github.com/takase/relPatSim
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Chapter 5

Composing Distributed
Representations of Phrases with Gated
Additive Composition

Modified recursive neural network proposed in Chapter 3 is ad hoc because it requires
identifying verbs and other content words in advance. Moreover, the method applies
additive composition to the content words but additive composition cannot handle the
importance of each word. In this chapter, to address the problem, we propose a more
general neural encoder: Gated Additive Composition.

We also conduct a comparative study of well known encoders on phrase compo-
sition task. We use several datasets including relational pattern dataset constructed in
Chapter 4. In addition, we investigate the enhancement by distributed representations
on the relation classification task. Through experiments, we explore the best way to
compose distributed representations of phrases, usefulness of the constructed relational
pattern dataset, and contribution of distributed representations to NLP applications.

5.1 Encoders

We adopt additive composition and some neural methods as encoders for phrase com-
position. In this section, we explain each method briefly.
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Figure 5.1: The RNN architecture.

5.1.1 Additive Composition

Additive composition, which is a simple way to embed phrases into distributed repre-
sentations, is computing the mean of distributed representations of constituent words [Mitchell
and Lapata, 2010]. Presuming that a target phrase consists of a sequence of T words
w1, ..., wT , then we let xt ∈ Rd the distributed representation of the word wt. This
composition method computes 1

T

∑T
t=1 xt as the distributed representation of the tar-

get phrase. Additive composition is not only known as a strong baseline among various
methods empirically [Muraoka et al., 2014] but also regarded as an approximation of
distributed representations of phrases theoretically [Tian et al., 2016]. However, addi-
tive composition ignores the order of word sequence and the importance of each word.
Consider the phrase “have access to”, whose meaning is mostly identical to that of
the verb “access”. Because ‘have’ in the phrase is a light verb and ‘to’ is a functional
word, it may be harmful to compose distributed representations of ‘have’ and ‘to’ to
compute the meaning of the phrase.

5.1.2 Recurrent Neural Network

Recently, a number of studies reported that Recurrent Neural Network (RNN) and its
variants are successful in composing distributed representations of phrases and sen-
tences [Cho et al., 2014; Sutskever et al., 2014]. RNN and its variants can handle the
order of word sequence because they scan word by word following the order. For a
given distributed representation xt at position t, the vanilla RNN [Elman, 1990] com-
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Figure 5.2: The LSTM architecture.

putes the hidden state ht ∈ Rd by the following recursive equation

ht = g(Wxxt +Whht−1 + b). (5.1)

Here, Wx and Wh are d×d matrices, b ∈ Rd is a bias term, and g(.) is the elementwise
activation function (tanh used in usual). We set h0 = 0 at t = 1. In essence, RNN
computes the hidden state ht based on the one at the previous position (ht−1) and
the distributed representation xt of the word wt as shown in Figure 5.1. Applying
Equation 5.1 from t = 1 to T , we use hT as the distributed representation of the
phrase.

Recursive Neural Network [Socher et al., 2011b] is regarded as an extension of
RNN on a tree structure such as a parse tree. Although we are interested in exploring
usefulness of a syntactic tree, we omit to investigate the issue in this study. There-
fore, in this study, we focus on computing the distributed representation of given word
sequence without any other linguistic information.

5.1.3 RNN Variants

It is hard for RNN to handle long distance dependencies due to the vanishing or ex-
ploding gradient problem in training procedure. To deal with the problems, Hochreiter
and Schmidhuber [1997] proposed Long Short-Term Memory (LSTM) that is RNN
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combined with a gate mechanism. LSTM consists of the input gate it ∈ Rd, forget
gate ft ∈ Rd, output gate ot ∈ Rd, memory cell ct ∈ Rd, and hidden state ht ∈ Rd.
For a given distributed representation xt at position t, LSTM computes each value by
the following equations:

jt = g(Wjxxt +Wjhht−1 + bj), (5.2)

it = σ(Wixxt +Wihht−1 + bi), (5.3)

ft = σ(Wfxxt +Wfhht−1 + bf ), (5.4)

ot = σ(Woxxt +Wohht−1 + bo), (5.5)

ct = ft ⊙ ct−1 + it ⊙ jt, (5.6)

ht = ot ⊙ g(ct). (5.7)

In these equations, Wjx, Wjh, Wix, Wih, Wfx, Wfh, Wox, Woh are d × d matrices,
bj, bi, bf , bo ∈ Rd are bias terms, σ(.) is the elementwise sigmoid function, and the
operator ⊙ calculates elementwise multiplications. We set c0 = 0 and h0 = 0 at
t = 1. In short, LSTM computes the hidden state ht and the memory cell ct based on
those at the previous position (ht−1 and ct−1) and the distributed representation xt of
the input word wt. Figure 5.2 shows the way to obtain the distributed representation
of the phrase by using LSTM. Figure 5.2 omits the calculation of each gate to be
easy to understand the overview. In addition to resolving vanishing (or exploding)
gradient problem, Takase et al. [2016b] implied that a gate mechanism helps to handle
the importance of each word in phrase composition. For example, the input gate it

closes when an input word is a functional word. Moreover, LSTM is commonly used
to model sentences [Sutskever et al., 2014]. Applying these equations from t = 1 to
T , we use hT as the distributed representation of the phrase.

Cho et al. [2014] proposed Gated Recurrent Unit (GRU), that is the competitive
method with LSTM. GRU also has a gate mechanism: the reset gate rt ∈ Rd and the
update gate zt ∈ Rd. As shown in Figure 5.3, GRU computes the hidden state ht ∈ Rd
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for a given distributed representation xt by the following equations:

rt = σ(Wrxxt +Wrhht−1 + br), (5.8)

zt = σ(Wzxxt +Wzhht−1 + bz), (5.9)

h̃t = g(Whxxt +Whh(rt ⊙ ht−1) + bh), (5.10)

ht = zt ⊙ ht−1 + (1− zt)⊙ h̃t. (5.11)

In these equations, Wrx, Wrh, Wzx, Wzh, Whx, Whh are d× d matrices, br, bz, bh ∈ Rd

are bias terms. We set h0 = 0 at t = 1 in the same as RNN and LSTM. Some
researchers reported that GRU is superior to LSTM [Chung et al., 2014] but we have
no consensus about the superiority in phrase composition.

Pay attention back to additive composition. As mentioned above, additive composi-
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tion can compute approximate distributed representations of phrases theoretically [Tian
et al., 2016]. Therefore, it is an interesting issue to extend additive composition to be
able to handle the order of word sequence and the importance of each constituent word.
To address this issue, we propose Gated Additive Composition (GAC) that consists of
the input gate it ∈ Rd, forget gate ft ∈ Rd and hidden state ht ∈ Rd:

it = σ(Waxxt +Wahht−1 + ba), (5.12)

ft = σ(Wbxxt +Wbhht−1 + bb), (5.13)

ht = g(ft ⊙ ht−1 + it ⊙ xt). (5.14)

In these equations, Wax, Wah, Wbx, Wbh are d× d matrices, ba, bb ∈ Rd are bias terms.
We set h0 = 0 at t = 1 in the same as other methods. As shown in Figure 5.4, GAC
employs not matrices but vectors (gates) when it computes the hidden state. There-
fore, Equation 5.14 is interpreted as a weighted additive composition between the dis-
tributed representation xt of the input word wt and the previous hidden state ht−1. In
other words, GAC is interpreted as a weighted additive composition among constituent
words. The input gate it and forget gate ft control the elementwise weights. Essen-
tially, the gate mechanism ignore unimportant words and forget meaningless contexts
(scanned words).
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5.1.4 Convolutional Neural Network

Convolutional Neural Networks (CNNs) [Lecun et al., 1998] are widely used to model
the meanings of sentences [Kalchbrenner et al., 2014; Yin and Schütze, 2015; Yin
et al., 2016]. In this study, we employ the basic CNN that computes the distributed
representation of the phrase by the following equations:

convt = σ(Wconv

[
xt−(n−1)/2, ..., xt+(n−1)/2

]
+ bconv), (5.15)

pool = maxpool(
[
tconv1, ...,

tconvT
]
), (5.16)

h = g(pool). (5.17)

In these equations, Wconv is a d×(dn) matrix, bconv ∈ Rd is a bias term,
[
xt−(n−1)/2, ..., xt+(n−1)/2

]
means a concatenation of distributed representations of n words around wt, n is a hy-
perparameter, and maxpool represents the max pooling operation that extracts a max-
imum value from each row of an input matrix. Figure 5.5 shows the overview of CNN
when we define n = 3. If t − (n − 1)/2 is smaller than 1, we use padding vectors as
shown in Figure 5.5. In essence, CNN computes the distributed representation from
each n word sequence in the target phrase. In other words, CNN pays attention to
n-gram in the phrase.

2–5 are typically used as n. In this study, we define n = 3 because most of phrases
in experiments consist of 2 or 3 words.

5.2 Experiments

We compared encoders explained in the previous section on several phrase composition
datasets. We used two kinds of datasets. The one consists of only short phrases (bi-
gram composition [Mitchell and Lapata, 2010], SemEval 2013 Task 5 [Korkontzelos
et al., 2013]) and the other consists of arbitrary-length phrases (annotated PPDB [Wi-
eting et al., 2015], the relational pattern dataset). To learn parameters of encoders,
we adapted training procedures proposed in previous studies for each dataset. From
a standpoint of the training procedure, we employed supervised learning for three
datasets: bigram composition, SemEval 2013 Task 5, and annotated PPDB; on the
other hand, we trained parameters with unlabeled data for relational pattern dataset.
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In this section, we explain datasets and training procedures first, and then describe the
comparison results.

5.2.1 Experimental Settings

5.2.1.1 Bigram Composition

Mitchell and Lapata [2010] produced the dataset containing semantic similarity judg-
ments from 1 (dissimilar) to 7 (almost the same) by human annotators for each bigram
pair. The dataset is composed of three phrase types: adjective noun (JN), compound
noun (NN), and verb object (VN). Each phrase type contains 108 bigram pairs and each
of pairs has 18 similarity judgments. For example, in compound noun, the bigram pair
“phone call” and “committee meeting” is annotated 2, 5, 7, 2, and so on.

Wieting et al. [2015] suggested the similarity judgments are not consistent with
the notion of paraphrase tasks. Therefore, they re-annotated semantic similarities to
bigram pairs in the dataset. In this study, we exploited this refined dataset for encoder
comparison.

In addition to the data construction, Wieting et al. [2015] applied neural network
methods to phrase composition. In the bigram composition task, we adopted the same
training procedure and training data as Wieting et al. [2015]. The training data1 con-
sists of 133,997 JN pairs, 35,601 NN pairs, and 62,640 VN pairs extracted from the
XL portion of PPDB [Ganitkevitch et al., 2013].

We assume the training data is a set P of phrase pairs ⟨p1, p2⟩. We trained param-
eters to make distributed representations of phrase pairs ⟨p1, p2⟩ ∈ P to be similar to
each other. To achieve the purpose, we minimized the following objective function by
using AdaGrad [Duchi et al., 2011] with mini-batches:∑

⟨p1,p2⟩∈P

max(0, δ − hp1 · hp2 + hp1 · hp2)

+max(0, δ − hp1 · hp2 + hp1 · hp2)

+λθ||θ||2 + λX ||Xinitial −X||2. (5.18)

In this equation, λθ and λX represent the importance of regularization terms, θ is pa-

1ttic.uchicago.edu/˜wieting/
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rameters of encoders1, X is the matrix that consists of distributed representations of all
words in vocabulary, Xinitial is the initial values of X , hp is the distributed representa-
tion of the phrase p computed by each encoder such as RNN, δ is the margin, and p is
a sampled negative example taken from a mini-batch. In short, this objective function
requires distributed representations of given phrase pairs to be more similar to each
other than respective negative examples by a margin of at least δ.

We chose the most similar phrase in the mini-batch excluding the given phrase pair
as the negative example. For example, we selected p2 for the phrase pair ⟨p1, p2⟩:

p2 = argmax⟨p1,p2⟩∈Pb\⟨p1,p2⟩hp1 · hp2 ,

where Pb ⊆ P is the current mini-batch.
We initialized distributed representations of words with publicly available para-

gram vectors2 [Wieting et al., 2015]. The number of dimensions of the vectors is 25.
In this experiment, we update distributed representations of words besides matrices
contained in each encoder.

For hyperparameters, we set the initial learning rate to 0.5 for distributed represen-
tations of words and 0.05 for the encoder parameters, the number of epoch to 5, and
the margin to 1. We conducted a coarse grid search for the others: λθ, λX , and mini-
batch size. We searched λθ in {10, 1, 10−1, ..., 10−6}, λX in {10−1, 10−2, 10−3, 0}, and
mini-batch size in {100, 250, 500, 1000, 2000}. We tuned these hyperparameters using
the dataset produced by Mitchell and Lapata [2010] as development set.

5.2.1.2 SemEval 2013 Task 5

SemEval 2013 Task 5 [Korkontzelos et al., 2013] is the task to compute semantic sim-
ilarity between words and bigrams. Concretely, the task is a binary classification task
to judge whether an input pair of a bigram and a word is a paraphrase or not. For
example, we should be able to find out that ‘bag’ and “flexible container” are simi-
lar whereas ‘zoning’ and “extended session” are not. The dataset consists of 11,722
training instances and 7,814 test instances.

1We exclude distributed representations of words from encoder parameters. In other words, we
consider matrices belonging to each encoder as encoder parameters.

2http://ttic.uchicago.edu/˜wieting/
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We classified each instance into similar or dissimilar by computing dot product
between the distributed representation of the word and the one of the phrase. More
specifically, we used the dot product as the feature for a linear classifier. To learn
parameters, we minimized the following objective function J with Adam [Kingma
and Ba, 2015]:

q = σ(α(hpn · xn)), (5.19)

J = −
∑

⟨pn,wn,yn⟩∈P

yn log(q) + (1− yn) log(1− q). (5.20)

In these equations, α is a weight scalar, P is a set of training instances, and each
instance consists of a bigram pn, a word wn, and a label representing the pair is a
paraphrase yn = 1 or not yn = 0. Essentially, equation 5.19 represents the probability
that the bigram pn is a paraphrase of the word wn. That is, equation 5.20 is the sigmoid
cross entropy.

SemEval 2013 Task 5 dataset does not contain development set. Therefore, to tune
the number of epoch for each method, we divided training data in the ratio of 1 to 9
and used the small part as development set. We chose the number of epoch with the
development set, and then we trained encoders on whole training data with the selected
epoch number.

To obtain initial values, we applied word2vec1 to ukWaC2. For the number of di-
mensions, we employed the same value as [Yu and Dredze, 2015]: d = 200. We ini-
tialized the distributed representations of words with the word2vec result and updated
the distributed representations during training.

5.2.1.3 Annotated PPDB

Wieting et al. [2015] created the annotated PPDB that contains arbitrary-length phrase
pairs with semantic similarity ratings from 1 (dissimilar) to 5 (very similar). They
extracted phrase pairs from PPDB, and asked workers in Amazon Mechanical Turk
to judge semantic similarity of a given phrase pair. After annotation, they divided the
1,260 annotated phrase pairs into development set (260 pairs) and test set (1,000 pairs).

1code.google.com/archive/p/word2vec/
2wacky.sslmit.unibo.it/doku.php?id=corpora
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Wieting et al. [2015] also provided training data to model phrase composition.
They extracted phrase pairs from PPDB, and filtered out pairs that may not have para-
phrase relations. Finally, the training data contains 60,000 phrase pairs.

We employed the same training procedure as Wieting et al. [2015]: used training
data described above, initialized distributed representations of words with publicly
available paragram vectors, conducted a coarse grid search for hyperparameters in
the same space in Section 5.2.1.1, and adopted the objective function explained in
Section 5.2.1.1 with AdaGrad. In addition to parameters of encoders, we updated
distributed representations of words.

5.2.1.4 Relational Pattern

We call a word sequence appearing between an entity pair by a relational pattern. For
example, in the sentence “Tobacco increases the risk of cancer”, we regard the phrase
“increases the risk of” as a relational pattern. In Chapter 4, we provide relational pat-
tern pairs with semantic similarity ratings from 1 (dissimilar) to 7 (very similar). We
focus on the existing dataset that contains annotations whether a relational pattern pair
has an entailment relation or not [Zeichner et al., 2012]. This thesis re-annotates se-
mantic similarity judgments on every relational pattern pair by using a crowdsourcing
service.

For training, we apply Skip-gram with negative sampling [Mikolov et al., 2013b]
to the ukWaC corpus. More specifically, we define the log-likelihood of the relational
pattern p as follows:

∑
τ∈Sp

(
log σ(h⊤

p x̃τ ) +
K∑
k=1

log σ(−h⊤
p x̃τ̆ )

)
, (5.21)

where Sp is a set of L words surrounding the relational pattern p, K is the number of
negative samples, xτ̆ is the distributed representation of the negative sampled word wτ̆ .
We maximized the log-likelihood with SGD through all relational patterns extracted
from the ukWaC corpus by Reverb [Fader et al., 2011].

For hyperparameters, we defined the window size L = 5, the number of negative
samples K = 20, the subsampling of 10−5, the number of dimensions of distributed
representations d = 300. We initialized distributed representations of words by the
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Bigram Composition SemEval 2013 Annotated
Method JN NN VN Task 5 PPDB

Add (init) 0.50 0.29 0.58 77.3 ± 0.1 0.32
Add 0.62 0.40 0.59 79.0 ± 0.2 0.47
RNN 0.55 ± 0.02 0.33 ± 0.05 0.43 ± 0.02 71.9 ± 0.7 0.23 ± 0.02
LSTM 0.58 ± 0.01 0.33 ± 0.04 0.46 ± 0.02 77.1 ± 0.4 0.30 ± 0.01
GRU 0.59 ± 0.02 0.36 ± 0.08 0.55 ± 0.02 78.1 ± 0.4 0.33 ± 0.01
GAC 0.56 ± 0.00 0.40 ± 0.04 0.54 ± 0.01 82.2 ± 0.3 0.46 ± 0.01
CNN 0.60 ± 0.03 0.35 ± 0.08 0.43 ± 0.01 78.0 ± 0.4 0.43 ± 0.01
Recursive NN
[Wieting et al., 2015] 0.57 0.44 0.55 – 0.40
Hashimoto et al. [2014] 0.38 0.39 0.45 – –
FCT-J
[Yu and Dredze, 2015] – – – 70.7 –
HsH [Wartena, 2013] – – – 80.3 –

Table 5.1: Results on each dataset. The columns of bigram composition and annotated
PPDB show Spearman’s rank correlation. The column of SemEval 2013 Task 5 shows
accuracy. Add (init) represents the performance of additive composition with initial
distributed representations. The highest score in each column is represented by bold.

result of word2vec, and updated the distributed representations during training. In this
training, we also used single words (words not included in a set of relational patterns)
to update distributed representations.

5.2.2 Results

The first group of Table 5.1 shows the results of encoders trained for each dataset
except for relational patterns1. For bigram composition and annotated PPDB, we com-
puted cosine similarity between distributed representations obtained by each encoder,
and then we evaluate Spearman’s rank correlation ρ between the calculated cosine
similarities and similarity judgments in each dataset. For SemEval 2013 Task 5, we
computed the accuracy on test set. The first group of Table 5.1 indicates the means and
standard deviations of 5 models trained from different initial values with the best hy-
perparameters for each encoder2. Table 5.1 also shows the results reported in previous
researches [Wartena, 2013; Wieting et al., 2015; Yu and Dredze, 2015]. In particular,

1We report the result on the relational pattern dataset latter.
2In addition to parameters of encoders, we used different distributed representations of words except

for the case in which we used publicly available paragram vectors. Therefore, we describes the mean
and standard deviation of Add (init) on SemEVal 2013 Task 5 and relational pattern dataset.
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Figure 5.6: Performance of each method on the relational pattern similarity task with
variation in the number of dimensions.

Recursive NN indicates the performance of Recursive Neural Network trained from
the same initial values with the same manner in this study.

In bigram composition, additive composition (Add) achieves the best performance
in JN and VN. For NN, Recursive NN achieves the best score, on the other hand, we
can consider that GAC and GRU are comparable to Recursive NN when we take the
standard deviation into account. In fact, the one of GAC models wins Recursive NN
because it achieves ρ = 0.47 on NN.

For VN, encoders except for additive composition lower the Spearman’s ρ from
the initial distributed representations. In other words, most encoders fail to acquire
good composition functions (parameters) in training. We suppose that the training
data contains a lot of incorrect instances because the training data is generated from
PPDB automatically.

In SemEval 2013 Task 5, GAC achieves the highest accuracy among encoders.
Moreover, GAC outperforms HsH that obtains semantic vectors from ukWaC corpus
(the same corpus in this study). This result means that GAC achieves the state-of-the-
art accuracy because HsH is the best method in SemEval 2013 Task 5 to date. On
the other hand, all neural encoders are defeated against trained additive composition
except for GAC. We suppose they suffer from overfitting because the losses computed
by them are lower than the one by additive composition during training.

In annotated PPDB, additive composition achieves the best performance among en-
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coders. Moreover, GAC is comparable to additive composition because three of GAC
models achieve the same ρ as additive composition. Surprisingly, Table 5.1 indicates
that the Spearman’s ρ of GRU and LSTM are almost the same as additive composi-
tion with initial values even though both of them are successful in several NLP tasks.
By comparing to Recursive NN, we suppose that additive composition and GAC are
superior encoders in bigram composition and annotated PPDB because they achieve
comparable (or better) performance to Recursive Neural Network without additional
information i.e., a syntactic tree.

Figure 5.6 shows Spearman’s rank correlations of different encoders when the num-
ber of dimensions of vectors is 100–500 on the constructed relational pattern dataset.
The figure shows that GAC achieves the best performance on all dimensions.

Figure 5.6 includes the performance of the naı̈ve approach, “NoComp”, which re-
gards a relational pattern as a single unit (word). In this approach, we allocated a
vector hp for each relational pattern p in Equation 5.21 instead of the vector compo-
sition, and trained the vectors of relational patterns using the Skip-gram model. The
performance was poor for two reasons: we were unable to compute similarity values
for 1,744 pairs because relational patterns in these pairs do not appear in ukWaC; and
relational patterns could not obtain sufficient statistics because of data sparseness.

Figure 5.6 also includes the result of the modified recursive neural network pro-
posed in Chapter 3. We used λ = 106 for l1 regularization because the value achieved
the highest scores on the experiments in Chapter 3. In Chapter 3, we used only con-
tent words for phrase composition but used all words contained in the given relational
pattern in this experiment in order for a fair comparison. Figure 5.6 shows that the
modified recursive neural network is defeated additive composition even though the
modified recursive neural network outperforms additive composition on the experi-
ments in Chapter 3. We consider three reasons. First, the evaluation data and the
indicator for evaluation are different from experiments in Chapter 3. Thus, naturally,
the performance of each method is different from the one in Chapter 3. Second, we
used more vectors and matrices than the experiments in Chapter 3 because we used
all words in the given relational pattern as explained above. Third, since the modified
recursive neural network has parameters more than 200 times as many as the simple
RNN, it is difficult to train the modified recursive neural network.

Figure 5.6 shows that neural encoders outperform additive composition, except for
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Length # NoComp Add LSTM GRU RNN GAC
1 636 0.324 0.324 0.324 0.324 0.324 0.324
2 1,018 0.215 0.319 0.257 0.274 0.285 0.321
3 2,272 0.234 0.386 0.344 0.370 0.387 0.404
4 1,206 0.208 0.306 0.314 0.329 0.319 0.323

> 5 423 0.278 0.315 0.369 0.384 0.394 0.357
All 5,555 0.215 0.340 0.336 0.356 0.362 0.370

Table 5.2: Spearman’s rank correlations on different pattern lengths (number of di-
mensions d = 500).

the modified recursive neural network and LSTM. This result suggests that neural en-
coders can reach better composition function than additive composition. However, we
consider that neural encoders except for GAC are easy to be overfitting because Ta-
ble 5.1 indicates that most encoders are defeated against additive composition. More-
over, these results show that additive composition is stronger than other encoders ex-
cept for relational pattern dataset even though it is much simpler than others.

5.2.2.1 Discussions

Table 5.2 reports Spearman’s rank correlations computed for each pattern length. Here,
the length of a relational-pattern pair is defined by the maximum of the lengths of two
patterns in the pair. In length of 1, all methods achieve the same correlation score
because they use the same word vector xt. The table shows that additive composition
(Add) performs well for shorter relational patterns (lengths of 2 and 3) but poorly for
longer ones (lengths of 4 and 5+). GAC also exhibits the similar tendency to Add, but
it outperforms Add for shorter patterns (lengths of 2 and 3) probably because of the
adaptive control of input and forget gates. In contrast, RNN and its variants (RNN,
GRU, and LSTM) enjoy the advantage on longer patterns (lengths of 4 and 5+).

To examine the roles of input and forget gates of GAC, we visualize the moments
when input/forget gates are wide open or closed. More precisely, we extract the input
word and scanned words when |it|2 or |ft|2 is small (close to zero) or large (close to
one) on the relational-pattern dataset. We restate that we compose a pattern vector in
backward order (from the last to the first): GAC scans ‘of’, ‘author’, and ‘be’ in this
order for composing the vector of the relational pattern ‘be author of’.
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wt wt+1 wt+2 ...

large it reimburse for
(input payable in
open) liable to

small it a charter member of
(input a valuable member of
close) be an avid reader of

large ft be eligible to participate in
(forget be require to submit
open) be request to submit

small ft coauthor of
(forget capital of
close) center of

Table 5.3: Prominent moments for input/forget gates.

Table 5.3 displays the top three examples identified using the procedure. The table
shows two groups of tendencies. Input gates open and forget gates close when scanned
words are only a preposition and the current word is a content word. In these situations,
GAC tries to read the semantic vector of the content word and to ignore the semantic
vector of the preposition. In contrast, input gates close and forget gates open when
the current word is ‘be’ or ‘a’ and scanned words form a noun phrase (e.g., “charter
member of”), a complement (e.g., “eligible to participate in”), or a passive voice (e.g.,
“require(d) to submit”). This behavior is also reasonable because GAC emphasizes
informative words more than functional words.

5.2.3 Relation classification

5.2.3.1 Experimental settings

To examine the usefulness of the dataset and distributed representations for a different
application, we address the task of relation classification on the SemEval 2010 Task
8 dataset [Hendrickx et al., 2010]. In other words, we explore whether high-quality
distributed representations of relational patterns are effective to identify a relation type
of an entity pair.

The dataset consists of 10, 717 relation instances (8, 000 training and 2, 717 test
instances) with their relation types annotated. The dataset defines 9 directed relations
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Method Feature set F1
SVM (Linear kernel) + NoComp embeddings 55.2
SVM (Linear kernel) + LSTM embeddings 73.7
SVM (Linear kernel) + Add embeddings 71.9
SVM (Linear kernel) + GRU embeddings 74.8
SVM (Linear kernel) + RNN embeddings 73.8
SVM (Linear kernel) + GAC embeddings 75.2
SVM (RBF kernel) BoW, POS 77.3
SVM (RBF kernel) + NoComp embeddings, BoW, POS 79.9
SVM (RBF kernel) + LSTM embeddings, BoW, POS 81.1
SVM (RBF kernel) + Add embeddings, BoW, POS 81.1
SVM (RBF kernel) + GRU embeddings, BoW, POS 81.4
SVM (RBF kernel) + RNN embeddings, BoW, POS 81.7
SVM (RBF kernel) + GAC embeddings, BoW, POS 82.0

+ dependency, WordNet, NE 83.7
Ranking loss + GAC w/ fine-tuning embeddings, BoW, POS

+ dependency, WordNet, NE 84.2
SVM [Rink and Harabagiu, 2010] BoW, POS, dependency, Google n-gram, etc. 82.2
MV-RNN [Socher et al., 2012] embeddings, parse trees 79.1

+ WordNet, POS, NE 82.4
FCM [Gormley et al., 2015] w/o fine-tuning embeddings, dependency 79.4

+ WordNet 82.0
w/ fine-tuning embeddings, dependency 82.2

+ NE 83.4
RelEmb [Hashimoto et al., 2015] embeddings 82.8

+ dependency, WordNet, NE 83.5
CR-CNN [dos Santos et al., 2015] w/ Other embeddings, word position embeddings 82.7
w/o Other embeddings, word position embeddings 84.1
depLCNN [Xu et al., 2015] embeddings, dependency 81.9

+ WordNet 83.7
depLCNN + NS embeddings, dependency 84.0

+ WordNet 85.6

Table 5.4: F1 scores on the SemEval 2010 dataset.

(e.g.,CAUSE-EFFECT) and 1 undirected relation OTHER. Given a pair of entity men-
tions, the task is to identify a relation type in 19 candidate labels (2 × 9 directed +

1 undirected relations). For example, given the pair of entity mentions e1 = ‘burst’
and e2 = ‘pressure’ in the sentence “The burst has been caused by water hammer
pressure”, a system is expected to predict CAUSE-EFFECT(e2, e1).

We used Support Vector Machines (SVM) with a linear kernel and a Radial Basis
Function (RBF) kernel implemented in LIBSVM1. Concretely, we use distributed rep-

1https://www.csie.ntu.edu.tw/˜cjlin/libsvm/
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resentations of a relational pattern, entities, and a word before and after the entity pair
(number of dimensions d = 500) as features to train the SVM with a linear kernel. In
this task, we regard words appearing between an entity pair as a relational pattern. We
compare the vector representations of relational patterns computed by NoComp and the
five encoders presented in Section 5.2.2.1: additive composition, RNN, GRU, LSTM,
and GAC. Additionally, we incorporate lexical features: part-of-speech tags (predicted
by TreeTagger), surface forms, lemmas of words appearing between an entity pair, and
lemmas of the words in the entity pair as features when we train the SVM with a RBF
kernel. Hyper-parameters related to SVM were tuned by 5-fold cross validation on the
training data.

5.2.3.2 Results and discussions

Table 5.4 presents the macro-averaged F1 scores on the SemEval 2010 Task 8 dataset.
The first group of the table shows the results of using distributed representations as fea-
tures for the SVM with a linear kernel. These results indicate that the model achieving
high score on the relational pattern dataset such as RNN, GRU, and GAC also achieve
high score on the relation classification task. Especially, GAC that achieves the best
performance on the relational pattern dataset achieves the best score on the first group
of the table.

The second group of the table provides the result of lexical features and enhance-
ments with the distributed representations. We can observe a significant improvement
even from the distributed representation of NoComp (77.3 to 79.9). Moreover, the
distributed representation that exhibited the high performance on the pattern similarity
task was also successful on this task; GAC, which yielded the highest performance on
the pattern similarity task, also achieved the best performance (82.0) of all encoders
on this task.

It is noteworthy that the improvements brought by the different encoders on this
task roughly correspond to the performance on the pattern similarity task. This fact
implies two potential impacts. First, the distributed representations of relational pat-
terns are useful and easily transferable to other tasks such as knowledge base popu-
lation. Second, the pattern similarity dataset provides a gauge to predict successes of
distributed representations in another task.
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We could further improve the performance of SVM + GAC by incorporating ex-
ternal resources in the similar manner as the previous studies did. Concretely, SVM
+ GAC achieved 83.7 F1 score by adding features for WordNet, named entities (NE),
and dependency paths explained in Hashimoto et al. [2015]. Moreover, we could ob-
tain 84.2 F1 score, using the ranking based loss function [dos Santos et al., 2015] and
fine-tuning of the distributed representations initially trained by GAC. Currently, this
is the second best score among the performance values reported in the previous studies
on this task (the second group of Table 5.4). If we could use the negative sampling
technique proposed by Xu et al. [2015], we might improve the performance further1.

5.3 Related Work

Mitchell and Lapata [2010] is a pioneer work in modeling the meanings of phrases.
They introduced the bigram composition dataset that consists of bigram pairs with
human annotated semantic similarity. Moreover, they compared several composition
functions including additive composition on the constructed dataset. After this study,
several researchers tackled to find the most suitable method to compose vector repre-
sentations. Muraoka et al. [2014] compared additive composition, Recursive Neural
Network, and its variants on the bigram composition dataset. Takase et al. [2016b]
provided the dataset that consists of relational pattern pairs with semantic similarity
judged by crowdsourcing workers and compared additive composition, RNN, GRU,
LSTM, and GAC on the constructed dataset. These studies revealed pros/cons of each
method empirically but they restricted a target linguistic unit. Hill et al. [2016a] inves-
tigated the performance of several neural methods such as Skip-thought [Kiros et al.,
2015] on embedding sentences into distributed representations. Although they ex-
ploited various tasks for comparison, settings (e.g., an objective function) in training
encoders are different from each other. In other words, it is unclear what factors con-
tribute to phrase composition in their comparison.

Mikolov et al. [2013b] suggested that additive composition of distributed represen-
tations is useful to model the meanings of phrases. Muraoka et al. [2014] demonstrated

1In fact, we made substantial efforts to introduce the negative sampling technique. However, Xu
et al. [2015] omits the detail of the technique probably because of the severe page limit of short papers.
For this reason, we could not reproduce their method in this study.
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that additive composition is stronger than the vanilla Recursive Neural Network and
most of its variants. In addition to these empirical studies, for bigram, Tian et al.
[2016] proved that additive composition can provide an ideal distributed representa-
tion acquired from an infinite amount of corpus.

To compose distributed representations of arbitrary-length phrases, Pham et al.
[2015] and Kenter et al. [2016] employed additive composition. The difference of
these studies is a training objective. Pham et al. [2015] applied Skip-gram objec-
tive [Mikolov et al., 2013b] to be able to predict surrounding words from a target
phrase. Kenter et al. [2016] train distributed representations to be able to surround-
ing sentences from the encoded distributed representation of a target sentence. Yu
and Dredze [2015] adopted weighted additive composition to model the meanings of
phrases. They proposed the method to tune the weight vector for each word by using
linguistic features such as POS tags. Besides additive composition, previous studies
adapted neural encoders including Recursive Neural Network [Socher et al., 2011a],
LSTM [Hill et al., 2016b], GRU [Kiros et al., 2015], and GAC [Takase et al., 2016b]
to encode arbitrary-length phrases. In this study, we does not propose a novel com-
position function or objective function but conduct a fair comparison among those
encoders.

Nakashole et al. [2012] approached the similar task by constructing a taxonomy of
relational patterns. They represented a vector of a relational pattern as the distribution
of entity pairs co-occurring with the relational pattern. Grycner et al. [2015] extended
Nakashole et al. [2012] to generalize dimensions of the vector space (entity pairs) by
incorporating hyponymy relation between entities. They also used external resources
to recognize the transitivity of pattern pairs and applied transitivities to find patterns
in entailment relation. These studies did not consider semantic composition of rela-
tional patterns. Thus, they might suffer from the data sparseness problem, as shown by
NoComp in Figure 5.6.

Numerous studies have been aimed at encoding distributed representations of phrases
and sentences from word embeddings by using: Recursive Neural Network [Socher
et al., 2011b], Matrix Vector Recursive Neural Network [Socher et al., 2012], Recur-
sive Neural Network with different weight matrices corresponding to syntactic cate-
gories [Socher et al., 2013] or word types [Takase et al., 2016a], RNN [Sutskever et al.,
2011], LSTM [Sutskever et al., 2014], GRU [Cho et al., 2014], PAS-CLBLM [Hashimoto
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et al., 2014], etc. As described in Section 5.1, we applied RNN, GRU, and LSTM to
compute distributed representations of relational patterns because recent papers have
demonstrated their superiority in semantic composition [Sutskever et al., 2014; Tang
et al., 2015]. In this paper, we presented a comparative study of different encoders for
semantic modeling of relational patterns.

To investigate usefulness of the distributed representations and the new dataset, we
adopted the relation classification task (SemEval 2010 Task 8) as a real application. On
the SemEval 2010 Task 8, several studies considered semantic composition. Gormley
et al. [2015] proposed Feature-rich Compositional Embedding Model (FCM) that can
combine binary features (e.g., positional indicators) with word embeddings via outer
products. dos Santos et al. [2015] addressed the task using Convolutional Neural Net-
work (CNN). Xu et al. [2015] achieved a higher performance than dos Santos et al.
[2015] by application of CNN on dependency paths.

In addition to the relation classification task, we briefly describe other applications.
To populate a knowledge base, Riedel et al. [2013] jointly learned latent feature vec-
tors of entities, relational patterns, and relation types in the knowledge base. Toutanova
et al. [2015] adapted CNN to capture the compositional structure of a relational pat-
tern during the joint learning. For open domain question answering, Yih et al. [2014]
proposed the method to map an interrogative sentence on an entity and a relation type
contained in a knowledge base by using CNN.

Although these reports described good performance on the respective tasks, we are
unsure of the generality of distributed representations trained for a specific task such
as the relation classification. In contrast, this paper demonstrated the contribution of
distributed representations trained in a generic manner (with the Skip-gram objective)
to the task of relation classification.

5.4 Conclusion

In this chapter, we compared additive composition and commonly used neural en-
coders on phrase composition. The comparison suggests that GAC is superior to other
encoders because it achieves high performance and more robust than others. Moreover,
GAC outperforms the state-of-the-art score in SemEval 2013 Task 5. Furthermore, the
experimental results indicate that additive composition is strong encoder.
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We also investigate the usefulness of constructed relational pattern dataset. Ex-
perimental results demonstrate that the presented dataset is useful to predict successes
of the distributed representations in the relation classification task. Moreover, experi-
ments indicate that distributed representations computed by neural encoders contribute
to downstream NLP applications such as the relation classification task.
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Chapter 6

Encoding Semantic and Syntactic
Features

Neural network-based encoder-decoder models are cutting-edge methodologies for
tackling natural language generation (NLG) tasks, i.e., machine translation [Cho et al.,
2014], image captioning [Vinyals et al., 2015], video description [Venugopalan et al.,
2015], and headline generation [Rush et al., 2015] because neural encoders can em-
bed syntactic and semantic information into distributed representations implicitly. We
consider structural, syntactic, and semantic information underlying input text such as
POS tagging, dependency parsing, named entity recognition, and semantic role label-
ing has the potential for improving the quality of NLG tasks. However, to the best of
our knowledge, there is no clear evidence that syntactic and semantic information can
enhance the recently developed encoder-decoder models in NLG tasks.

To answer this research question, this chapter proposes and evaluates a headline
generation method based on an encoder-decoder architecture on Abstract Meaning

Representation (AMR). The method is essentially an extension of attention-based sum-

marization (ABS) [Rush et al., 2015]. Our proposed method encodes results obtained
from an AMR parser by using a modified version of Tree-LSTM encoder [Tai et al.,
2015] as additional information of the baseline ABS model. Conceptually, the reason
for using AMR for headline generation is that information presented in AMR, such as
predicate-argument structures and named entities, can be effective clues when produc-
ing shorter summaries (headlines) from original longer sentences. We expect that the
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quality of headlines will improve with this reasonable combination (ABS and AMR).

6.1 Attention-based summarization (ABS)

ABS proposed in Rush et al. [2015] has achieved state-of-the-art performance on the
benchmark data of headline generation including the DUC-2004 dataset [Over et al.,
2007]. Figure 6.1 illustrates the model structure of ABS. The model predicts a word
sequence (summary) based on the combination of the neural network language model
and an input sentence encoder.

Let V be a vocabulary. xi is the i-th indicator vector corresponding to the i-th
word in the input sentence. Suppose we have M words of an input sentence. X

represents an input sentence, which is represented as a sequence of indicator vectors,
whose length is M . That is, xi ∈ {0, 1}|V |, and X = (x1, . . . , xM). Similarly, let Y
represent a sequence of indicator vectors Y = (y1, . . . , yL), whose length is L. Here,
we assume L < M . YC,i is a short notation of the list of vectors, which consists of the
sub-sequence in Y from yi−C+1 to yi. We assume a one-hot vector for a special start
symbol, such as “⟨S⟩”, when i < 1. Then, ABS outputs a summary Ŷ given an input
sentence X as follows:

Ŷ = argmax
Y

{
log p(Y |X)

}
, (6.1)

log p(Y |X) ≈
L−1∑
i=0

log p(yi+1|X,YC,i), (6.2)

p(yi+1|X, YC,i)

∝ exp
(
nnlm(YC,i) + enc(X, YC,i)

)
, (6.3)

where nnlm(YC,i) is a feed-forward neural network language model proposed in [Ben-
gio et al., 2003], and enc(X, YC,i) is an input sentence encoder with attention mecha-
nism.

This paper uses D and H as denoting sizes (dimensions) of vectors for word em-
bedding and hidden layer, respectively. Let E ∈ RD×|V | be an embedding matrix
of output words. Moreover, let U ∈ RH×(CD) and O ∈ R|V |×H be weight matrices
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<s>   canadian   prime  …   year <s>  canada     …     nato

Fx1 Fx3Fx2 FxM
Eyi�C+1 Eyi

E0yiE0yi�C+1

nnlmenc

yi+1

input sentence headline

Figure 6.1: Model structure of ‘attention-based summarization (ABS)’.

of hidden and output layers, respectively1. Using the above notations, nnlm(YC,i) in
Equation 6.3 can be written as follows:

nnlm(YC,i) = Oh, h = tanh(Uỹc), (6.4)

where ỹc is a concatenation of output embedding vectors from i− C + 1 to i, that is,
ỹc = (Eyi−C+1 · · ·Eyi). Therefore, ỹc is a (CD) dimensional vector.

Next, F ∈ RD×|V | and E ′ ∈ RD×|V | denote embedding matrices of input and output
words, respectively. O′ ∈ R|V |×D is a weight matrix for the output layer. P ∈ RD×(CD)

is a weight matrix for mapping embedding of C output words onto embedding of input
words. X̃ is a matrix form of a list of input embeddings, namely, X̃ =

[
x̃1, . . . , x̃M

]
,

where x̃i = Fxi. Then, enc(X, YC,i) is defined as the following equations:

enc(X, YC,i) = O′X̄p, (6.5)

p ∝ exp(X̃TP ỹ′c), (6.6)

where ỹ′c is a concatenation of output embedding vectors from i− C + 1 to i similar
to ỹc, that is, ỹ′c = (E ′yi−C+1 · · ·E ′yi). Moreover, X̄ is a matrix form of a list of

1Following Rush et al. [2015], we omit bias terms throughout the paper for readability, though each
weight matrix also has a bias term.
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Figure 6.2: Model structure of our proposed attention-based AMR encoder; it outputs
a headline using ABS and encoded AMR with attention.

averaged input word embeddings within window size Q, namely, X̄ = [x̄1, . . . , x̄M ],
where x̄i =

∑i+Q
q=i−Q

1
Q
x̃q.

Equation 6.6 is generally referred to as the attention model, which is introduced to
encode a relationship between input words and the previous C output words. For ex-
ample, if the previous C output words are assumed to align to xi, then the surrounding
Q words (xi−Q, . . . , xi+Q) are highly weighted by Equation 6.5.

6.2 Proposed Method

Our assumption here is that syntactic and semantic features of an input sentence can
greatly help for generating a headline. For example, the meanings of subjects, pred-
icates, and objects in a generated headline should correspond to the ones appearing
in an input sentence. Thus, we incorporate syntactic and semantic features into the
framework of headline generation. This paper uses an AMR as a case study of the
additional features.

58



6.2.1 Abstract Meaning Representation (AMR)

An Abstract Meaning Representation (AMR) is a rooted, directed, acyclic graph that
encodes the meaning of a sentence. Nodes in an AMR graph represent ‘concepts’,
and directed edges represent a relationship between nodes. Concepts consist of En-
glish words, PropBank event predicates, and special labels such as “person”. For
edges, AMR has approximately 100 relations [Banarescu et al., 2013] including se-
mantic roles based on the PropBank annotations in OntoNotes [Hovy et al., 2006]. To
acquire AMRs for input sentences, we use the state-of-the-art transition-based AMR
parser [Wang et al., 2015].

6.2.2 Attention-Based AMR Encoder

Figure 6.2 shows a brief sketch of the model structure of our attention-based AMR en-
coder model. We utilize a variant of child-sum Tree-LSTM originally proposed in [Tai
et al., 2015] to encode syntactic and semantic information obtained from output of the
AMR parser into certain fixed-length embedding vectors. To simplify the computa-
tion, we transform a DAG structure of AMR parser output to a tree structure, which
we refer to as “tree-converted AMR structure”. This transformation can be performed
by separating multiple head nodes, which often appear for representing coreferential
concepts, to a corresponding number of out-edges to head nodes. Then, we straightfor-
wardly modify Tree-LSTM to also encode edge labels since AMR provides both node
and edge labels, and original Tree-LSTM only encodes node labels.

Let nj and ej be N and E dimensional embeddings for labels assigned to the j-th
node, and the out-edge directed to its parent node1. Win, Wfn, Won, Wun ∈ RD×N are
weight matrices for node embeddings nj

2. Similarly, Wie, Wfe, Woe, Wue ∈ RD×E are
weight matrices for edge embeddings ej . Wih, Wfh, Woh, Wuh ∈ RD×D are weight
matrices for output vectors connected from child nodes. B(j) represents a set of nodes,
which have a direct edge to the j-th node in our tree-converted AMR structure. Then,
we define embedding aj obtained at node j in tree-converted AMR structure via Tree-

1We prepare a special edge embedding for a root node.
2As with Equation 6.4, all the bias terms are omitted, though each weight matrix has one.
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LSTM as follows:

h̃j =
∑

k∈B(j)

ak, (6.7)

ij = σ
(
Winnj +Wieej +Wihh̃j

)
, (6.8)

fjk = σ
(
Wfnnj +Wfeej +Wfhak

)
, (6.9)

oj = σ
(
Wonnj +Woeej +Wohh̃j

)
, (6.10)

uj = tanh
(
Wunnj +Wueej +Wuhh̃j

)
, (6.11)

cj = ij ⊙ uj

∑
k∈B(j)

fjk ⊙ ck, (6.12)

aj = oj ⊙ tanh(cj). (6.13)

Let J represent the number of nodes in tree-converted AMR structure obtained
from a given input sentence. We introduce A ∈ RD×J as a matrix form of a list of
hidden states aj for all j, namely, A = [a1, . . . , aJ ]. Let O′′ ∈ R|V |×D be a weight
matrix for the output layer. Let S ∈ RD×(CD) be a weight matrix for mapping the
context embedding of C output words onto embeddings obtained from nodes. Then,
we define the attention-based AMR encoder ‘encAMR(A, YC,i)’ as follows:

encAMR(A, YC,i) = O′′As, (6.14)

s ∝ exp(ATSỹ′c). (6.15)

Finally, we combine our attention-based AMR encoder shown in Equation 6.14 as
an additional term of Equation 6.3 to build our headline generation system.

6.3 Experiments

To demonstrate the effectiveness of our proposed method, we conducted experiments
on benchmark data of the abstractive headline generation task described in Rush et al.
[2015].

For a fair comparison, we followed their evaluation setting. The training data was
obtained from the first sentence and the headline of a document in the annotated Giga-
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DUC-2004 Gigaword test data used Gigaword
in [Rush et al., 2015] Our sampled test data

Method R-1 R-2 R-L R-1 R-2 R-L R-1 R-2 R-L
ABS [Rush et al., 2015] 26.55 7.06 22.05 30.88 12.22 27.77 – – –
ABS (re-run) 28.05 7.38 23.15 31.26 12.46 28.25 32.93 13.43 29.80
ABS+AMR ∗28.80 ∗7.83 ∗23.62 31.64 ∗12.94 28.54 ∗33.43 ∗13.93 30.20
ABS+AMR(w/o attn) 28.28 7.21 23.12 30.89 12.40 27.94 31.32 12.83 28.46

Table 6.1: Results of methods on each dataset. We marked ∗ on the ABS+AMR results
if we observed statistical difference (p < 0.05) between ABS (re-run) and ABS+AMR
on the t-test. (R-1: ROUGE-1, R-2: ROUGE-2, R-L: ROUGE-L)

word corpus [Napoles et al., 2012]1. The development data is DUC-2003 data, and test
data are both DUC-2004 [Over et al., 2007] and sentence-headline pairs obtained from
the annotated Gigaword corpus as well as training data2. All of the generated headlines
were evaluated by ROUGE [Lin, 2004]3. For evaluation on DUC-2004, we removed
strings after 75-characters for each generated headline as described in the DUC-2004
evaluation. For evaluation on Gigaword, we forced the system outputs to be at most 8
words as in Rush et al. [2015] since the average length of headline in Gigaword is 8.3
words. For the pre-processing for all data, all letters were converted to lower case, all
digits were replaced with ‘#’, and words appearing less than five times with ‘UNK’.
Note that, for further evaluation, we prepared 2,000 sentence-headline pairs randomly
sampled from the test data section of the Gigaword corpus as our additional test data.

In our experiments, we refer to the baseline neural attention-based abstractive
summarization method described in Rush et al. [2015] as “ABS”, and our proposed
method of incorporating AMR structural information by a neural encoder to the base-
line method described in Section 6.2 as “ABS+AMR”. Additionally, we also evaluated
the performance of the AMR encoder without the attention mechanism, which we refer
to as “ABS+AMR(w/o attn)”, to investigate the contribution of the attention mecha-
nism on the AMR encoder. For the parameter estimation (training), we used stochastic
gradient descent to learn parameters. We tried several values for the initial learning
rate, and selected the value that achieved the best performance for each method. We
decayed the learning rate by half if the log-likelihood on the validation set did not
improve for an epoch. Hyper-parameters we selected were D = 200, H = 400,

1Training data can be obtained by using the script distributed by the authors of Rush et al. [2015].
2Gigaword test data can be obtained from https://github.com/harvardnlp/sent-summary
3We used the ROUGE-1.5.5 script with option “−n2 −m −b75 −d”, and computed the average

of each ROUGE score.
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N = 200, E = 50, C = 5, and Q = 2. We re-normalized the embedding after each
epoch [Hinton et al., 2012].

For ABS+AMR, we used the two-step training scheme to accelerate the training
speed. The first phase learns the parameters of the ABS. The second phase trains the
parameters of the AMR encoder by using 1 million training pairs while the parameters
of the baseline ABS were fixed and unchanged to prevent overfitting.

Table 6.1 shows the recall of ROUGE [Lin, 2004] on each dataset. ABS (re-run)
represents the performance of ABS re-trained by the distributed scripts1. We can see
that the proposed method, ABS+AMR, outperforms the baseline ABS on all datasets.
In particular, ABS+AMR achieved statistically significant gain from ABS (re-run) for
ROUGE-1 and ROUGE-2 on DUC-2004. However in contrast, we observed that the
improvements on Gigaword (the same test data as Rush et al. [2015]) seem to be lim-
ited compared with the DUC-2004 dataset. We assume that this limited gain is caused
largely by the quality of AMR parsing results. This means that the Gigaword test data
provided by Rush et al. [2015] is already pre-processed. Therefore, the quality of the
AMR parsing results seems relatively worse on this pre-processed data since, for ex-
ample, many low-occurrence words in the data were already replaced with “UNK”.
To provide evidence of this assumption, we also evaluated the performance on our ran-
domly selected 2,000 sentence-headline test data also taken from the test data section of
the annotated Gigaword corpus. “Gigaword (randomly sampled)” in Table 6.1 shows
the results of this setting. We found the statistical difference between ABS(re-run) and
ABS+AMR on ROUGE-1 and ROUGE-2.

We can also observe that ABS+AMR achieved the best ROUGE-1 scores on all of
the test data. According to this fact, ABS+AMR tends to successfully yield semanti-
cally important words. In other words, embeddings encoded through the AMR encoder
are useful for capturing important concepts in input sentences. Figure 6.3 supports this
observation. For example, ABS+AMR successfully added the correct modifier ‘saudi’
to “crown prince” in the first example. Moreover, ABS+AMR generated a consistent
subject in the third example.

The comparison between ABS+AMR(w/o attn) and ABS+AMR (with attention)
suggests that the attention mechanism is necessary for AMR encoding. In other words,
the encoder without the attention mechanism tends to be overfitting.

1https://github.com/facebook/NAMAS
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•  a"
I(1): crown prince abdallah ibn abdel aziz left saturday at the head of 
saudi arabia 's delegation to the islamic summit in islamabad , the 
official news agency spa reported .
G: saudi crown prince leaves for islamic summit
A: crown prince leaves for islamic summit in saudi arabia
P: saudi crown prince leaves for islamic summit in riyadh

I(2): a massive gothic revival building once christened the lunatic 
asylum west of the <unk> was auctioned off for $ #.# million -lrb- 
euro# .# million -rrb- .
G: massive ##th century us mental hospital fetches $ #.# million at 
auction
A: west african art sells for $ #.# million in
P: west african art auctioned off for $ #.# million

I(3): brooklyn , the new bastion of cool for many new yorkers , is 
poised to go mainstream chic .
G: high-end retailers are scouting sites in brooklyn
A: new yorkers are poised to go mainstream with chic
P: new york city is poised to go mainstream chic

Figure 6.3: Examples of generated headlines on Gigaword. I: input, G: true headline,
A: ABS (re-run), and P: ABS+AMR.

6.4 Related Work

Recently, the Recurrent Neural Network (RNN) and its variant have been applied suc-
cessfully to various NLP tasks. For headline generation tasks, Chopra et al. [2016]
exploited the RNN decoder (and its variant) with the attention mechanism instead of
the method of Rush et al. [2015]: the combination of the feed-forward neural net-
work language model and attention-based sentence encoder. Nallapati et al. [2016]
also adapted the RNN encoder-decoder with attention for headline generation tasks.
Moreover, they made some efforts such as hierarchical attention to improve the per-
formance. In addition to using a variant of RNN, Gulcehre et al. [2016] proposed a
method to handle infrequent words in natural language generation. Note that these
recent developments do not conflict with our method using the AMR encoder. This
is because the AMR encoder can be straightforwardly incorporated into their methods
as we have done in this paper, incorporating the AMR encoder into the baseline. We
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believe that our AMR encoder can possibly further improve the performance of their
methods. We will test that hypothesis in future study.

6.5 Conclusion

This chapter mainly discussed the usefulness of incorporating structural syntactic and
semantic information into novel attention-based encoder-decoder models on headline
generation tasks. We selected abstract meaning representation (AMR) as syntactic
and semantic information, and proposed an attention-based AMR encoder-decoder
model. The experimental results of headline generation benchmark data showed that
our attention-based AMR encoder-decoder model successfully improved standard au-
tomatic evaluation measures of headline generation tasks, ROUGE-1, ROUGE-2, and
ROUGE-L. We believe that our results provide empirical evidence that syntactic and
semantic information obtained from an automatic parser can help to improve the neural
encoder-decoder approach in NLG tasks.
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Chapter 7

Conclusions

While modeling the meanings of phrases is crucial technique in natural language pro-
cessing, few studies addressed to handle an arbitrary-length phrase. In this thesis, to
compute the meanings of arbitrary-length phrases, we have addressed three issues:

1. What is the most suitable way to encode an arbitrary-length phrase? There
are various neural encoders to compute distributed representations of phrases but
few researchers has paid attention to revealing the performance of each encoder.

2. Are distributed representations of phrases efficient in NLP applications? It
is intuitive that distributed representations of phrases are useful in downstream
tasks but the enhancement of them is unclear.

3. Do additional distributed representations enhance the performance of NLP
applications? To make the worth of NLP fundamental tasks clear, it is important
to investigate the improvement by distributed representations of syntactic and
semantic features.

The key contribution of this thesis can be summarized as follows:

• We constructed a new dataset to evaluate phrase composition. The dataset shows
high inter-annotator agreement by following the annotation guideline of Mitchell
and Lapata [2010]. We made the constructed dataset public on the Web1.

1http://github.com/takase/relPatSim
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• We proposed two novel encoders. One is modified recursive neural network to
model the verbs that change/inherit the meaning. The other one is more general
way because the neural encoder can identify the contribution of each word to the
meaning of a phrase automatically.

• We explored the suitable way to compose distributed representations of phrases
by comparing well know encoders on various datasets.

• We indicated that distributed representations computed by an encoder are useful
to NLP applications such as relation classification.

• We proposed a novel encoder for additional syntactic/semantic information such
as POS tags and demonstrated the enhancement by such information on the head-
line generation task.
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Ó Séaghdha, Sebastian Padó, Marco Pennacchiotti, Lorenza Romano, and Stan Sz-
pakowicz. Semeval-2010 task 8: Multi-way classification of semantic relations
between pairs of nominals. In Proceedings of the 5th International Workshop on

Semantic Evaluation (SemEval 2010), pages 33–38, 2010. 20, 48

Felix Hill, Kyunghyun Cho, and Anna Korhonen. Learning distributed representations
of sentences from unlabelled data. In Proceedings of the 2016 Conference of the

North American Chapter of the Association for Computational Linguistics: Human

Language Technologies (NAACL-HLT 2016), pages 1367–1377, 2016a. 51

Felix Hill, KyungHyun Cho, Anna Korhonen, and Yoshua Bengio. Learning to un-
derstand phrases by embedding the dictionary. Transactions of the Association for

Computational Linguistics, 4:17–30, 2016b. 52

Geoffrey E. Hinton, Nitish Srivastava, Alex Krizhevsky, Ilya Sutskever, and Ruslan
Salakhutdinov. Improving Neural Networks by Preventing Co-adaptation of Feature
Detectors. CoRR, abs/1207.0580, 2012. 62

70



REFERENCES

Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural Compu-

tation, 9(8):1735–1780, 1997. 35

Eduard Hovy, Mitchell Marcus, Martha Palmer, Lance Ramshaw, and Ralph
Weischedel. OntoNotes: The 90% Solution. In Proceedings of the Human Lan-

guage Technology Conference of the North American Chapter of the Association for

Computational Linguistics (HLT-NAACL 2006), pages 57–60, 2006. 59

Eric H. Huang, Richard Socher, Christopher D. Manning, and Andrew Y. Ng. Im-
proving word representations via global context and multiple word prototypes. In
Proceedings of the 50th Annual Meeting of the Association for Computational Lin-

guistics (ACL 2012), pages 873–882, 2012. 20

Nal Kalchbrenner, Edward Grefenstette, and Phil Blunsom. A convolutional neural
network for modelling sentences. In Proceedings of the 52nd Annual Meeting of the

Association for Computational Linguistics (ACL 2014), pages 655–665, 2014. 39

Tom Kenter, Alexey Borisov, and Maarten de Rijke. Siamese cbow: Optimizing word
embeddings for sentence representations. In Proceedings of the 54th Annual Meet-

ing of the Association for Computational Linguistics (ACL 2016), pages 941–951,
2016. 52

Diederik Kingma and Jimmy Ba. Adam: A method for stochastic optimization. CoRR,
abs/1412.6980, 2015. 42

Ryan Kiros, Yukun Zhu, Ruslan Salakhutdinov, Richard S. Zemel, Antonio Torralba,
Raquel Urtasun, and Sanja Fidler. Skip-thought vectors. In Advances in Neural

Information Processing Systems 28 (NIPS 2015), pages 3276–3284. 2015. 51, 52

Philipp Koehn. Statistical significance tests for machine translation evaluation. In
Dekang Lin and Dekai Wu, editors, Proceedings of the 2004 Conference on Em-

pirical Methods in Natural Language Processing (EMNLP 2004), pages 388–395,
2004. 23

Ioannis Korkontzelos, Torsten Zesch, Fabio Massimo Zanzotto, and Chris Biemann.
Semeval-2013 task 5: Evaluating phrasal semantics. In Second Joint Conference on

Lexical and Computational Semantics (*SEM 2013), pages 39–47, 2013. 32, 39, 41

71



REFERENCES

Yann Lecun, Lon Bottou, Yoshua Bengio, and Patrick Haffner. Gradient-based learn-
ing applied to document recognition. In Proceedings of the IEEE, pages 2278–2324,
1998. 39

Omer Levy and Yoav Goldberg. Neural word embedding as implicit matrix factoriza-
tion. In Proceedings of the 27th Advances in Neural Information Processing Systems

(NIPS 2014), pages 2177–2185. 2014a. 10, 27

Omer Levy and Yoav Goldberg. Linguistic regularities in sparse and explicit word
representations. In Proceedings of the 18th Conference on Computational Natural

Language Learning (CoNLL 2014), pages 171–180, 2014b. 27

Omer Levy, Yoav Goldberg, and Ido Dagan. Improving distributional similarity with
lessons learned from word embeddings. Transactions of the Association for Com-

putational Linguistics (TACL 2015), 3:211–225, 2015. 10

Chin-Yew Lin. ROUGE: A Package for Automatic Evaluation of Summaries. In Text

Summarization Branches Out: Proceedings of the Association for Computational

Linguistics Workshop, pages 74–81, 2004. 61, 62

Tomas Mikolov, Kai Chen, Gregory S. Corrado, and Jeffrey Dean. Efficient estimation
of word representations in vector space. 2013a. 7, 8

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Corrado, and Jeff Dean. Distributed
representations of words and phrases and their compositionality. In Proceedings of

the 26 th Advances in Neural Information Processing Systems (NIPS 2013), pages
3111–3119. 2013b. 2, 8, 12, 18, 20, 27, 43, 51, 52

George A Miller and Walter G Charles. Contextual correlates of semantic similarity.
Language and Cognitive Processes, 6(1):1–28, 1991. 20

Bonan Min, Shuming Shi, Ralph Grishman, and Chin-Yew Lin. Ensemble semantics
for large-scale unsupervised relation extraction. In Proceedings of the 2012 Joint

Conference on Empirical Methods in Natural Language Processing and Computa-

tional Natural Language Learning (EMNLP 2012), pages 1027–1037, 2012. 11,
26

72



REFERENCES

Jeff Mitchell and Mirella Lapata. Composition in distributional models of semantics.
Cognitive Science, 34(8):1388–1439, 2010. 4, 27, 30, 32, 34, 39, 40, 41, 51, 65

Thahir Mohamed, Estevam Hruschka, and Tom Mitchell. Discovering relations be-
tween noun categories. In Proceedings of the 2011 Conference on Empirical Meth-

ods in Natural Language Processing (EMNLP 2011), pages 1447–1455, 2011. 11

Masayasu Muraoka, Sonse Shimaoka, Kazeto Yamamoto, Yotaro Watanabe, Naoaki
Okazaki, and Kentaro Inui. Finding the best model among representative compo-
sitional models. In Proceedings of the 28th Pacific Asia Conference on Language,

Information, and Computation (PACLIC 2014), pages 65–74, 2014. 21, 27, 34, 51

Ndapandula Nakashole, Gerhard Weikum, and Fabian Suchanek. Patty: A taxonomy
of relational patterns with semantic types. In Proceedings of the 2012 Joint Con-

ference on Empirical Methods in Natural Language Processing and Computational

Natural Language Learning (EMNLP 2012), pages 1135–1145, 2012. 2, 11, 26, 27,
52

Ramesh Nallapati, Bowen Zhou, Cicero dos Santos, Caglar Gulcehre, and Bing Xiang.
Abstractive Text Summarization using Sequence-to-sequence RNNs and Beyond. In
Proceedings of the 20th SIGNLL Conference on Computational Natural Language

Learning (CoNLL 2016), pages 280–290, 2016. 63

Courtney Napoles, Matthew Gormley, and Benjamin Van Durme. Annotated Giga-
word. In Proceedings of the Joint Workshop on Automatic Knowledge Base Con-

struction and Web-scale Knowledge Extraction (AKBC-WEKEX), pages 95–100,
2012. 61

Paul Over, Hoa Dang, and Donna Harman. DUC in Context. Information Processing

and Management, 43(6):1506–1520, 2007. 56, 61

Patrick Pantel and Marco Pennacchiotti. Espresso: Leveraging generic patterns for au-
tomatically harvesting semantic relations. In Proceedings of the 21st International

Conference on Computational Linguistics and the 44th Annual Meeting of the Asso-

ciation for Computational Linguistics (ACL 2006), pages 113–120, 2006. 26

73



REFERENCES

Jeffrey Pennington, Richard Socher, and Christopher Manning. Glove: Global vectors
for word representation. In Proceedings of the 2014 Conference on Empirical Meth-

ods in Natural Language Processing (EMNLP 2014), pages 1532–1543, 2014. 2, 9,
27

Nghia The Pham, Germán Kruszewski, Angeliki Lazaridou, and Marco Baroni. Jointly
optimizing word representations for lexical and sentential tasks with the c-phrase
model. In Proceedings of the 53rd Annual Meeting of the Association for Computa-

tional Linguistics and the 7th International Joint Conference on Natural Language

Processing (ACL-IJCNLP 2015), pages 971–981, 2015. 52

Sebastian Riedel, Limin Yao, Andrew McCallum, and Benjamin M. Marlin. Rela-
tion extraction with matrix factorization and universal schemas. In Proceedings of

the 2013 Conference of the North American Chapter of the Association for Com-

putational Linguistics: Human Language Technologies (NAACL-HLT 2013), pages
74–84, 2013. 53

Bryan Rink and Sanda Harabagiu. Utd: Classifying semantic relations by combining
lexical and semantic resources. In Proceedings of the 5th International Workshop

on Semantic Evaluation (SemEval 2010), pages 256–259, 2010. 24, 49

Benjamin Rosenfeld and Ronen Feldman. Using corpus statistics on entities to improve
semi-supervised relation extraction from the web. In Proceedings of the 45th Annual

Meeting of the Association of Computational Linguistics (ACL 2007), pages 600–
607, 2007. 26

Herbert Rubenstein and John B. Goodenough. Contextual correlates of synonymy.
Communications of the ACM, 8(10):627–633, 1965. 20

Alexander M. Rush, Sumit Chopra, and Jason Weston. A neural attention model for
abstractive sentence summarization. In Proceedings of the 2015 Conference on Em-

pirical Methods in Natural Language Processing (EMNLP 2015), pages 379–389,
2015. 55, 56, 57, 60, 61, 62, 63

Richard Socher, Eric H. Huang, Jeffrey Pennington, Andrew Y. Ng, and Christopher D.
Manning. Dynamic Pooling and Unfolding Recursive Autoencoders for Paraphrase

74



REFERENCES

Detection. In Proceedings of the 24th Advances in Neural Information Processing

Systems (NIPS 2011), pages 801–809. 2011a. 27, 52

Richard Socher, Cliff Chiung-Yu Lin, Andrew Y. Ng, and Christopher D. Manning.
Parsing natural scenes and natural language with recursive neural networks. In Pro-

ceedings of the 28th International Conference on Machine learning (ICML 2011),
pages 129–136, 2011b. 4, 5, 13, 16, 24, 27, 35, 52

Richard Socher, Brody Huval, Christopher D. Manning, and Andrew Y. Ng. Semantic
compositionality through recursive matrix-vector spaces. In Proceedings of the 2012

Joint Conference on Empirical Methods in Natural Language Processing and Com-

putational Natural Language Learning (EMNLP 2012), pages 1201–1211, 2012.
12, 13, 14, 18, 24, 27, 49, 52

Richard Socher, John Bauer, Christopher D. Manning, and Ng Andrew Y. Parsing with
compositional vector grammars. In Proceedings of the 51st Annual Meeting of the

Association for Computational Linguistics (ACL 2013), pages 455–465, 2013. 52

Ilya Sutskever, James Martens, and Geoffrey Hinton. Generating text with recurrent
neural networks. In Proceedings of the 28th International Conference on Machine

Learning (ICML 2011), pages 1017–1024, 2011. 52

Ilya Sutskever, Oriol Vinyals, and Quoc V. Le. Sequence to sequence learning with
neural networks. In Advances in Neural Information Processing Systems 27 (NIPS

2014), pages 3104–3112, 2014. 34, 36, 52, 53

Jun Suzuki and Masaaki Nagata. A unified learning framework of skip-grams and
global vectors. In Proceedings of the 53rd Annual Meeting of the Association for

Computational Linguistics and the 7th International Joint Conference on Natural

Language Processing (ACL-IJCNLP 2015), pages 186–191, 2015. 10

Kai Sheng Tai, Richard Socher, and Christopher D. Manning. Improved Semantic
Representations From Tree-Structured Long Short-Term Memory Networks. In Pro-

ceedings of the 53rd Annual Meeting of the Association for Computational Linguis-

tics and the 7th International Joint Conference on Natural Language Processing

(ACL-IJCNLP 2015), pages 1556–1566, 2015. 55, 59

75



REFERENCES

Sho Takase, Naoaki Okazaki, and Kentaro Inui. Modeling semantic compositionality
of relational patterns. Engineering Applications of Artificial Intelligence, 50(C):
256–264, 2016a. 52

Sho Takase, Naoaki Okazaki, and Kentaro Inui. Composing distributed representations
of relational patterns. In Proceedings of the 54th Annual Meeting of the Association

for Computational Linguistics (ACL 2016), pages 2276–2286, 2016b. 36, 51, 52

Duyu Tang, Bing Qin, and Ting Liu. Document modeling with gated recurrent neural
network for sentiment classification. In Proceedings of the 2015 Conference on

Empirical Methods in Natural Language Processing (EMNLP 2015), pages 1422–
1432, 2015. 53

Ran Tian, Naoaki Okazaki, and Kentaro Inui. The mechanism of additive composition.
CoRR, abs/1511.08407, 2016. 34, 38, 52

Kristina Toutanova, Danqi Chen, Patrick Pantel, Hoifung Poon, Pallavi Choudhury,
and Michael Gamon. Representing text for joint embedding of text and knowledge
bases. In Proceedings of the 2015 Conference on Empirical Methods in Natural

Language Processing (EMNLP 2015), pages 1499–1509, 2015. 53

Subhashini Venugopalan, Huijuan Xu, Jeff Donahue, Marcus Rohrbach, Raymond
Mooney, and Kate Saenko. Translating Videos to Natural Language Using Deep
Recurrent Neural Networks. In Proceedings of the 2015 Conference of the North

American Chapter of the Association for Computational Linguistics: Human Lan-

guage Technologies (NAACL-HLT 2015), pages 1494–1504, 2015. 55

Oriol Vinyals, Alexander Toshev, Samy Bengio, and Dumitru Erhan. Show and Tell:
A Neural Image Caption Generator. In Proceedings of the Computer Vision and

Pattern Recognition (CVPR 2015), pages 3156–3164, 2015. 55

Chuan Wang, Nianwen Xue, and Sameer Pradhan. A Transition-based Algorithm for
AMR Parsing. In Proceedings of the 2015 Conference of the North American Chap-

ter of the Association for Computational Linguistics: Human Language Technolo-

gies (NAACL-HLT 2015), pages 366–375, 2015. 59

76



REFERENCES

Christian Wartena. Hsh: Estimating semantic similarity of words and short phrases
with frequency normalized distance measures. In Second Joint Conference on Lexi-

cal and Computational Semantics (*SEM), Volume 2: Proceedings of the Seventh In-

ternational Workshop on Semantic Evaluation (SemEval 2013), pages 48–52, 2013.
44

John Wieting, Mohit Bansal, Kevin Gimpel, and Karen Livescu. From paraphrase
database to compositional paraphrase model and back. Transactions of the Associa-

tion for Computational Linguistics (TACL 2015), 3:345–358, 2015. 32, 39, 40, 41,
42, 43, 44

Kun Xu, Yansong Feng, Songfang Huang, and Dongyan Zhao. Semantic relation clas-
sification via convolutional neural networks with simple negative sampling. In Pro-

ceedings of the 2015 Conference on Empirical Methods in Natural Language Pro-

cessing (EMNLP 2015), pages 536–540, 2015. 24, 49, 51, 53

Wen-tau Yih, Xiaodong He, and Christopher Meek. Semantic parsing for single-
relation question answering. In Proceedings of the 52nd Annual Meeting of the

Association for Computational Linguistics (ACL 2014), pages 643–648, 2014. 53

Wenpeng Yin and Hinrich Schütze. Convolutional neural network for paraphrase iden-
tification. In Proceedings of the 2015 Conference of the North American Chapter

of the Association for Computational Linguistics: Human Language Technologies

(NAACL-HLT 2015), pages 901–911, 2015. 39

Wenpeng Yin, Hinrich Schtze, Bing Xiang, and Bowen Zhou. Abcnn: Attention-
based convolutional neural network for modeling sentence pairs. Transactions of

the Association for Computational Linguistics, 4:259–272, 2016. 39

Mo Yu and Mark Dredze. Learning composition models for phrase embeddings. Trans-

actions of the Association for Computational Linguistics (TACL 2015), 3:227–242,
2015. 4, 42, 44, 52

Mo Yu, Matthew R. Gormley, and Mark Dredze. Factor-based compositional embed-
ding models. In Workshop on Learning Semantics at the 2014 Conference on Neural

Information Processing Systems (NIPS 2014), December 2014. 24, 25

77



REFERENCES

Naomi Zeichner, Jonathan Berant, and Ido Dagan. Crowdsourcing inference-rule eval-
uation. In Proceedings of the 50th Annual Meeting of the Association for Computa-

tional Linguistics (Volume 2: Short Papers) (ACL 2012), pages 156–160, 2012. 5,
19, 29, 30, 32, 43

Daojian Zeng, Kang Liu, Siwei Lai, Guangyou Zhou, and Jun Zhao. Relation clas-
sification via convolutional deep neural network. In Proceedings of the 25th Inter-

national Conference on Computational Linguistics (COLING 2014), pages 2335–
2344, 2014. 24

78



List of Publications

Journal Papers (Refereed)

1. Sho Takase, Naoaki Okazaki, Kentaro Inui. Modeling semantic compositionality
of relational patterns. Engineering Applications of Artificial Intelligence, vol.
50, pp.256-264, April 2016.

2. Sho Takase, Naoaki Okazaki, Kentaro Inui. Set Expansion Using Sibling Re-
lationships Between Semantic Categories (in Japanese). In Journal of Natural
Language Processing, vol. 20, No. 2, June 2013.

International Conference/Workshop Papers (Refereed)

1. Sho Takase, Jun Suzuki, Naoaki Okazaki, Tsutomu Hirao and Masaaki Nagata.
Neural Headline Generation on Abstractive Meaning Representation. In pro-
ceedings of the Conference on Empirical Methods in Natural Language Process-
ing (EMNLP 2016), pp. 1054-1059, November 2016.

2. Sho Takase, Naoaki Okazaki and Kentaro Inui. Composing Distributed Repre-
sentations of Relational Patterns. In Proceedings of the 54th Annual Meeting
of the Association for Computational Linguistics (ACL 2016), pp.2276-2286,
August 2016.

3. Sho Takase, Naoaki Okazaki and Kentaro Inui. Fast and Large-scale Unsuper-
vised Relation Extraction. In Proceedings of the 29th Pacific Asia Conference on
Language Information and Computing (PACLIC29), pp.96-105, October 2015.

4. Sho Takase, Akiko Murakami, Miki Enoki, Naoaki Okazaki and Kentaro Inui.
Detecting Chronic Critics Based on Sentiment Polarity and User’s Behavior in
Social Media. In Proceedings of the ACL student research workshop 2013.

79



5. Sho Takase, Naoaki Okazaki and Kentaro Inui. Set Expansion using Sibling
Relations between Semantic Categories. In Proceedings of the 26th Pacific Asia
Conference on Language Information and Computing (PACLIC26), November
2012.

Awards

1. The 21th Annual Meeting of the Association for Natural Language Processing
Excellent Paper Award (2015)

2. The 29th Annual Meeting of the JSAI Conference Student Incentive Award
(2015)

Other Publications (Not refereed)

1. Sho Takase, Naoaki Okazaki and Kentaro Inui. Meaning Representation Learn-
ing for Relation Knowledge Acquisition (in Japanese). In Proceedings of the
29th Annual Conference of the Japanese Society for Artificial Intelligence, May
2015.

2. Sho Takase, Naoaki Okazaki and Kentaro Inui. Computing the Meanings of
Relational Patterns based on Compositionality (in Japanese). In Proceedings of
the 21th Annual Meeting of the Association for Natural Language Processing,
pp. 640–643, March 2015.

3. Sho Takase, Naoaki Okazaki and Kentaro Inui. Relation Acquisition from Large
Corpus by usin Approximate Counting (in Japanese). In IPSJ SIG Technical
Reports, Vol.2014-NL-217, July 2014.

4. Sho Takase, Naoaki Okazaki and Kentaro Inui. Unsupervised Relation Extrac-
tion with Fast Similarity Calculation (in Japanese). In Proceedings of the 20th
Annual Meeting of the Association for Natural Language Processing, pp.47–50,
March 2014.

5. Sho Takase, Akiko Murakami, Miki Enoki, Naoaki Okazaki and Kentaro Inui.
Detecting Chronic Critics Based on Sentiment Polarity and User’s Behavior in

80



Social Media (in Japanese). In Proceedings of the 19th Annual Meeting of the
Association for Natural Language Processing, pp.260–263, March 2013.

6. Sho Takase, Naoaki Okazaki, Kentaro Inui. For Relation Knowledge Acquisi-
tion from Noun Categories (in Japanese). The 7th NLP Symposium for Young
Researchers, September 2012.

7. Sho Takase, Naoaki Okazaki and kentaro Inui. Set Expansion by using Hierar-
chical Relationship between Semantic Categories (in Japanese). In Proceedings
of the 18th Annual Meeting of the Association for Natural Language Processing,
pp.475-478, March 2012.

81


