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Neural Networks for Fine-grained Entity Type
Classification∗

Sonse Shimaoka

Abstract

In this thesis, we investigate several neural network architectures for fine-grained
entity type classification and make four key contributions. First, we incorporate pre-
trained word embeddings to enable our models to use the information of similarities
between word meanings and establish that hand-crafted features and word embeddings
complement each other. Second, we propose a novel attention-based neural network
model for the task that unlike previously proposed models recursively composes repre-
sentations of entity mention contexts. Through both qualitative and quantitative anal-
ysis we establish that the attention mechanism learns to attend over syntactic heads
and the phrase containing the mention, both of which are known to be strong hand-
crafted features for our task. Third, despite using the same evaluation dataset, the
literature frequently compare models trained using different data. We demonstrate that
the choice of training data has a drastic impact on performance, which decreases by as
much as 9.85% loose micro F1 score for a previously proposed method. Despite this
discrepancy, our best model achieves state-of-the-art results with 75.36% loose micro
F1 score on the well-established FIGER (GOLD) dataset and we report the best results
for models trained using publicly available data for the OntoNotes dataset with 64.93%
loose micro F1 score. Fourth, We introduce parameter sharing between labels through
a hierarchical encoding method, that in low-dimensional projections show clear clus-
ters for each type hierarchy.
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1 Introduction

In this section we explain the objective and background of the research and provide the
structure of the thesis.

1.1 Natural Language Processing and Machine Learning

We begin with explaining the general academic field in which the subject of this thesis
belongs, namely natural language processing. By doing so we intend to make readers
understand how our work is positioned in a broader context. Moreover, we briefly
describe machine learning, which currently is the dominant algorithmic approach to
solve natural language processing tasks.

1.1.1 Natural Language Processing

Languages that we use in everyday life such as English and Japanese are our most
important means of communication. These languages are called natural languages, as
opposed to artificial languages such as programing languages. Natural Language Pro-
cessing (NLP) is a sub field in computer science that deals with information processing
of natural language data.

There are many tasks in NLP that are useful at a societal level. Below, we illustrate
some of those tasks that today are widely used for a variety of services. Machine
translation automatically translates text from one human language (like Japanese) to
another (like English). This makes individuals capable of reading and writing text in
many different languages, thus drastically increasing the potential of worldwide com-
munication. Text summarization produces a readable summary of a document such
as newspaper articles. This enables us to shorten the required time to comprehend im-
portant news, which is necessary in today’s world where the society keeps changing at
an unprecedented speed. By performing sentiment analysis, computers can automati-
cally analyze the emotions put in given words. As an example, sentiment analysis can
be used to gather opinions of approval and disapproval on specific issues on products.
Document classification determines the categories of a given document. Thanks to
this technology e-mail service providers can automatically filter emails that are clas-
sified as a spam. Alternatively, document classification can be used to automatically
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organize news paper articles according to their topics (sports, politics, science, econ-
omy and so on). Information extraction aims to extract structured information from
unstructured text. An example is the extraction from news articles about corporate
mergers. Organizing such information in formal knowledge base makes it possible to
process the information in rigid ways using database queries. Information retrieval
concerns finding documents that contain particular information that the user is looking
for. Search engines for finding web pages in the internet is a well-known application.
Question answering is the task of producing human-readable answers to questions
described in the form of text. IBM Watson[Fer+10] is the championing example of
question answering system.

While above examples of NLP tasks are in themselves acknowledged to be useful
for society, in order to perform them effectively, it is necessary to do more basic pro-
cessing beforehand. We explain some of those downstream tasks below. Sentences,
phrases, and words are considered to be important elements of natural language. The
tasks of identifying each of those elements in text are generally called segmentation.
Word segmentation is relatively easy for languages such as English where each word is
separated with the previous and next words by spaces, but difficult for languages such
as Japanese and Chinese, since there are no simple indicator to determine boundaries
between words. Once sentences, phrases, words, and other useful elements are iden-
tified, a typical subsequent processing step is classifying those elements into several
categories. For example, the task of classifying words into parts of speech (POS) such
as noun, verb, adjective, determinant, is called POS tagging. Segmentation and clas-
sification can be executed either separately or jointly, depending on the situation. Seg-
menting phrases and classifying them into syntactic categories such as noun phrase,
verb phrase, and adjective phrase are together called chunking or shallow paring.
Entities are atomic elements in text that belong to particular semantic types including
person, organization, time, and location. Identifying and classifying enti-
ties are respectively called entity segmentation and entity type classification. When
those two tasks are put together, we call it entity recognition. In this thesis we focus
on the advanced variant of entity classification, namely fine-grained entity classifi-
cation. After identifying and classifying various elements in text, we can proceed to
detect relations between them. For example, dependency parsing detects the gram-
matical subordination relation (dependency) between two words. Another example is
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coreference resolution that finds a group of expressions that refer to the same entity
in a text.

1.1.2 Machine Learning Approach

We have explained upstream and downstream tasks of NLP. Next, we discuss machine
learning approach to solve these tasks. Machine learning is a group of algorithmic
methods that automatically detects patterns in data, and then uses the uncovered pat-
terns to predict future data or other outcomes of interest [Mur12].

The field of machine learning is usually divided into several sub fields such as super-
vised learning, unsupervised learning, and reinforcement learning. This thesis mainly
make use of supervised learning, which is the most widely used form of machine learn-
ing in practice. The goal of supervised learning is to learn a mapping from input vari-
able x to output variable t, using training set D = {(xi, ti)|i = 1, ..., N} that contains
pairs of input and output variables where N is the number of pairs. A simple example
is to learn an estimator of the gender given the weight and height of a person. In this
case, input variable x is a 2 dimensional real vector and output variable t is a binary
variable where t = 1 represents the person being female and t = 0 represents the
person being male. In general, the domains of x and t can be arbitrarily complex. For
example, x can be an image, a sentence, an email message, a time series, a molecular
shape, a graph and so on. Similarly, the form of t can be in principal anything, but
most methods assume t is either a categorical variable from some finite set (such as
female or male) or real-valued scalar variable. If t is categorical, the problem is called
classification, which covers most NLP problems. Common examples of classification
problem includes document classification, cancer detection, image classification, and
sentiment analysis. If t is real-valued, the problem is called regression. Well-known
instances of regression problems are stock price prediction and real estate value esti-
mation.

Supervised learning is typically done in three steps. The first step is to define a
model that has parameters to be estimated. A model is formalized as a parametric
function y = f(x; θ) with parameter θ. The second step is to define a loss function
L(D; θ) that compares the outputs yi = f(xi; θ) of the model and the actual output
variables ti in the training set D = {(xi, ti)|i = 1, ..., N}. The third step is to conduct
optimization that minimizes the loss function with respect to the parameter.
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Figure 1: Computation of a single neuron.

Recently, a particular family of parametric function called neural network has at-
tracted a great deal of attention. An artificial neural network – commonly referred to
as a neural network – is a network of simple computational units called neurons. The
typical computation taking place in a neuron is as follows. First, it takes real-valued
input vector x and computes an intermediate scalar value a = wTx + b where the
parameter w, called weight is a vector of the same dimension as x and the parameter
b – called bias – is a scalar. a is called preactivation value. The output of the neu-
ron y is computed by applying a nonlinear function g, called activation function, to
the preactivation a: y = g(a). Activation function can be any differentiable nonlinear
function. The overall computation of a neuron that takes three input variables x1, x2, x3
and produce the output y is shown in Fig 1.

What a single neuron can compute is limited to some simple domain, but when
several neurons are connected together, the overall network can perform more complex
computation. Fig 2 illustrates an example of such neural networks. As seen in the
figure, neural networks are mostly designed to have layerwise structure. Starting from
the input layer, each layer takes the output vector of the previous layer, executes the
computation, and then passes the resulting output vector to the next layer. The final
layer produces the overall output of the network. In this particular example, the output
layer consist of a single neuron, and the sigmoid function σ(a) = 1

1+e−a is used as
the activation function. This setting of the output layer is used to perform a binary
classification problem. That is, the output y of the final layer takes value between 0

and 1, so this can be interpreted as the probability of the input classified as t = 1.
When we make the actual classification decision, we can use this probability with a cut
off value of 0.5 such that if y > 0.5, the input is classified as t = 1 and otherwise as
t = 0.
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Figure 2: Computation of a neural network.

A loss function is needed to estimate how good the model output is compared to the
actual output values. The choice of an appropriate loss function depends on the type
of the model. In the case of the neural network that does a binary classification with
the sigmoid activation function, the best choice is the following cross-entropy:

L(D; θ) =
1

N

N∑
i=1

−ti log(yi)− (1− ti) log(1− yi)

Note that above loss function decreases when the values of ti and yi are close and
increases when they are separated. Thus this function measures the performance of the
model appropriately. From a probabilistic perspective, this function can be seen as the
average negative log likelihood NLL(D; θ) = − 1

N
log
∏N

i=1 P (ti = 1|xi; θ).
In order to minimize the loss function in neural networks, variants of the gradient

decent algorithm are usually used. The key insight of the gradient decent is that the
value of the loss function decreases if we adjust the parameters minutely along the
(negative) direction represented by the gradient of the loss function with respect to
the current parameters. In gradient decent, at first the parameters are initialized with
random variables, and then the parameters are iteratively moved toward the direction
of the gradients until the loss function converges to the locally optimal value. This
iteration can be written as follows:

θnew = θold − α
∂L(D; θ)

∂θ

∣∣∣∣
θ=θold

Where α is a small positive scalar called the learning rate.
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The gradients of complex neural networks may seem to be difficult to compute, but
there is an efficient algorithm called backpropagation that does this job mechanically.
Ultimately, backpropagation is just another name for the chain rule used in the basic
calculus. Backpropagation is supported by most of software frameworks for neural
networks such as Tensorflow [Mar+15].

1.2 Entity type classification

Figure 3: Fine-grained Entity Type Classification. Traditional coarse-grained labels
are colored in black. Fine-grained labels are colored in red.

Next, we explain fine-grained entity classification, which is the task we focus in this
thesis.

Entities are atomic elements in text that belong to particular semantic types such as
person, organization, time, and location. Entity type classification aims to
label entity mentions in their context with their respective semantic types. For example,
in the sentence “It was won by the Ottawa Senators, coached by Dave Gill.”, our goal
is to label “Ottawa Senators” as organization and “Dave Gill” as person.

1.3 Applications

Information regarding entity type mentions have proven to be valuable for several nat-
ural language processing tasks.
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Information Extraction

Information extraction (IE) is the task of extracting structured information from un-
structured text [GS96]. One way of using entity type information in IE is constraint
checking of predicate arguments [Car+10]. Consider a hypothetical situation where
we want to extract the relation that a person plays for a sport team. It is reasonable
to assume that the first argument of this relation should be categorized as person and
the second argument should be categorized as organization. Given this assumption,
we can use an entity type classification system to decide whether or not the type of an
entities satisfy the constraints of the relation argument, which in turn would lead to a
performance increase in precision.

Alternatively, entity type information can be directly added to the features of an ex-
isting machine learning based information extraction system. It is shown that those ad-
ditional features significantly increases the performance of a relation extractor [LW12].

Question Answering

Question answering is another important application of entity type classification. Es-
pecially in factoid question answering system in which the form of the answer is re-
stricted to be a noun phrase, knowing the semantic types of entity mentions is crucial
for correctly answering questions [Lee+06; Fer+10]. For example if the question be-
gins with the pronoun “Who”, the answer is very likely to belong to person, which
means that entities mentions classified as person are seen as plausible candidates of
the answer.

Coreference Resolution

Coreference resolution is the task of linking entity mentions in a document that refer to
the same entity. Entity type information is also useful for this task since the system can
utilize the fact that if mentions are coreferent, they are very likely to share the same
entity type [RMP13].

Entity Linking

Entity linking aims to link entity mentions in text with their corresponding entities in a
knowledge base. Entity types of mentions are used in this task to indicate whether the
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type of the entity mention in text is consistent with the type of the candidate entity in a
knowledge base [SWH15].

Information Retrieval

Finally entity type information enables an advanced form of information retrieval that
supports users in querying documents not only by superficial string-based matching,
but also by more abstract category-based matching [JW14].

1.4 Fine-grained entity type classification

Unfortunately, most entity type classification systems have focused on a limited num-
ber of semantic types. When one of the earliest entity recognition tasks was introduced
in the MUC-7 conference, only types of person, location and organization
were considered [CR97]. Then, since type of miscellaneouswas added in CoNLL03
[TD03], these 4 types have become the mainstream choice of the entity recognition
systems including widely used Stanford Named Entity Recognizer [FGM05] .

In contrast to using a limited number of coarse-grained types, a series of recent work
has investigated entity type classification with a large set of fine-grained types [Lee+06;
LW12; Yos+12; YGL15; Del+15]. For example, fine-grained entity type classification
might assign sport team to “Ottawa Senators” in addition to organization and
coach to “Dave Gill” in addition to person as seen in Figure 3.

Using fine-grained entity types, as compared to using traditional coarse-grained
types, is expected to be beneficial for a wide spectrum of applications [Sek08]. For ex-
ample if we want to perform entity linking to the sentence “Michael Jordan is a leading
researcher in machine learning.”, it would be better to label the mention “Michael Jor-
dan” as scientist in addition to person in order to avoid the mistake of linking
the mention to wrong knowledge base entity such as a basket ball player [SWH15].

1.5 Characteristics of Fine-grained Entity Type Classification

There are several issues that are specific to fine-grained entity type classification.
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Hierarchical structure of entity types

First, fine-grained types are typically subtypes of the standard coarse types. For ex-
ample artist is a subtype of person and author is a subtype of artist. This
means the type space forms a tree-structured is-a hierarchy. Later we introduce a
simple method to exploit this hierarchical nature of the type space that enables the
information sharing among different types.

Collapse of the mutual exclusion assumption

Second, the assumption of the standard entity type classification that the labels of en-
tities are mutually exclusive, does not hold. For example Magic The Gathering is both
game and product. This means that it is more natural to formulate the task as a
multi-class, multi-label classification problem, rather than a multi-class single label
classification as in the case of normal entity type classification.

Context dependent labeling

Third, typically the set of acceptable labels for a mention is constrained to only those
that are relevant to the local context [Gil+14; YGL15]. For example in the sentence
“Madonna starred as Breathless Mahoney in the film Dick Tracy.”, the most appropri-
ate label for the mention “Madonna” is actress, since the sentence talks about her
role in a film. In the majority of other cases, “Madonna” is likely to be labeled as a
musician. The importance of the context gives us the motivation to use complex
machine learning models to effectively process the contextual information.

Difficulty of preparing annotated data

Forth, compared to the traditional coarse grained entity classification, it is much more
difficult to prepare an enough amount of annotated data to train the machine learning
models. To tackle this issue, most works has taken the approach of distant supervision
[Min+09] to automatically generate the training data [LW12; Gil+14]. We also follow
this approach and use freely available public datasets to train our models.
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Figure 4: List of features used in FIGER system [LW12]. The mention “Eto” in the
sentence“CJ Ottaway scored his celebrated 108 to seal victory for Eton ” is taken as a
running example.

1.6 Existing machine learning approaches

Next we consider the existing machine learning approach to fine-grained entity type
classification. Existing systems for the task have mainly used simple linear models
such as logistic regression [Gil+14] and perceptron [LW12], using high dimensional
sparse hand-crafted features as input. For example in the model from Ling and Weld
(2012), to classify the entity mention in a sentence, they firstly extracted features using
the features shown in Fig 4.

Based on those features, a perceptron is used to classify labels.

1.7 Contributions

We address three issues that are limited in the previous works.

Introducing pre-trained word embeddings

First, previous models only used sparse handcrafted features. Models that use sparse
features only cannot exploit similarities between features. For example, the words
“corpolation” and “campany” are semantically similar whereas the words “corpola-
tion” and “avocado” are dissimilar. Since the occurrence of each word is represented
as a binary value in the sparse feature vectors, semantically similar words and dissim-
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ilar words are treated equally. Therefore previous models fail to make use of semantic
similarities between words, which might undermine the performance.

We incorporate pre-trained word embeddings to allow information sharing between
words. Word embeddings aims at quantifying and categorizing semantic similarities
between linguistic items based on their distributional properties in large samples of
language data [TRB10]. Inspite of the recent successes in incorporating pre-trained
word embeddings in NLP systems, there are few works that used those embeddings
to fine-grained entity type classification. We use openly available word embeddings
extensively and show this feature alone can lead to a significant performance improve-
ment to the previous state of the art model without using any hand-crafted features.
Moreover we use both word embeddings and hand-crafted features and observe that
they complement each other, resulting in the best performance compared to using only
one of those.

RNNs and attention mechanism to sequentially process the context

Second, the previous works fail to incorporate the word ordering information. In those
works, the words are represented by a bag-of-words features, thus the information
about the word ordering is missed. For example, one can see that a phrase “got a
degree from” is indicative of the next words being an educational institution, something
which would be helpful for fine-grained entity type classification, but the meaning of
this phrase seems not to be successfully represented if the word ordering information
is not preserved. Especially, we saw that the context plays an important role in fine-
grained entity type classification, but no previously proposed system has attempted to
learn to recursively compose representations of entity context.

To address this, we introduce a recurrent neural network to sequentially process the
mention context, thus make it possible to use the word ordering information.

Next, while RNNs can encode sequential data, it still finds it difficult to learn long-
term dependencies. Inspired by recent work using attention mechanisms for natural
language processing [Her+15; Roc+15], we circumvent this problem by introducing
a novel attention mechanism. Additionally, we perform extensive analysis of the at-
tention mechanism of our model and establish that the attention mechanism learns to
attend over syntactic heads and the tokens prior to and after a mention, both which are
known to be highly relevant to successfully classifying a mention.
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Using the same dataset to train and evaluate

Third, despite using the same evaluation dataset, the literature frequently compare
models trained using different dataset.

While research on fine-grained entity type classification has settled on using two
evaluation datasets, a wide variety of training datasets have been used – the impact of
which has not been established. We demonstrate that the choice of training data has a
drastic impact on performance, observing performance decreases by as much as 9.85%
loose Micro F1 score for a previously proposed method.

Hierarchical label encoding

We introduce label parameter sharing using a hierarchical encoding that improves per-
formance on one of our datasets and the low-dimensional projections of the embedded
labels form clear coherent clusters.

1.8 Structure of the thesis

This thesis is organized as follows. In this section, we explained the objective and
background of our research. In section 2, we explain the previous work on fine-grained
entity classification and attentive neural networks. From section 3, we introduce the
machine learning models. In section 4, the settings and results of experiments are
presented. Finally, we conclude our research in section 5.
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2 Related Work

Our work primarily draws upon two strains of research, fine-grained entity classifica-
tion and attention mechanisms for neural models. In this section we introduce both of
these research directions.

By expanding a set of coarse-grained types into a set of 147 fine-grained types, Lee
et al. (2006) were the first to address the task of fine-grained entity classification. Their
end goal was to use the resulting types in a question answering system and they devel-
oped a conditional random field model that they trained and evaluated on a manually
annotated Korean dataset to detect and classify entity mentions. Other early work in-
clude Sekine (2008), that emphasised the need for having access to a large set of entity
types for several NLP applications. The work primarily discussed design issues for
fine-grained set of entity types and served as a basis for much of the future work on
fine-grained entity classification.

The first work to use distant supervision [Min+09] to induce a large – but noisy –
training set and manually label a significantly smaller dataset to evaluate their fine-
grained entity classification system, was Ling and Weld (2012) who introduced both a
training and evaluation dataset FIGER (GOLD). Arguing that fine-grained sets of types
must be organized in a very fine-grained hierarchical taxonomy, Yosef et al. (2012)
introduced such a taxonomy covering 505 distinct types. This new set of types lead
to improvements on FIGER (GOLD), and they also demonstrated that the fine-grained
labels could be used as features to improve coarse-grained entity type classification
performance. More recently, continuing this very fine-grained strategy, Del Corro et
al. (2015) introduced the most fine-grained entity type classification system to date,
covering the more than 16, 000 types contained in the WordNet hierarchy.

While initial work largely assumed that mention assignments could be done in-
dependently of the mention context, Gillick et al. (2014) introduced the concept of
context-dependent fine-grained entity type classification where the types of a men-
tion is constrained to what can be deduced from its context and introduced a new
OntoNotes-derived manually annotated evaluation dataset. In addition, they addressed
the problem of label noise induced by distant supervision and proposed three label
cleaning heuristics. Building upon the noise reduction aspects of this work, Ren et al.
(2016) introduced a method to reduce label noise even further, leading to significant
performance gains on both the evaluation dataset of Ling and Weld (2012) and Gillick
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et al. (2014).
Yogatama, Gillick, and Lazic (2015) proposed to map hand-crafted features and la-

bels to embeddings in order to facilitate information sharing between both related types
and features. A pure feature learning approach was proposed by Dong et al. (2015).
They defined 22 types and used a two-part neural classifier that used a recurrent neural
network to obtain a vector representation of each entity mention and in its second part
used a fixed-size window to capture the context of a mention.

To the best of our knowledge, the first work that utilised an attention architecture
within the context of NLP was Bahdanau, Cho, and Bengio (2014), that allowed a ma-
chine translation decoder to attend over the source sentence. Doing so, they showed
that adding the attention mechanism significantly improved their machine translation
results as the model was capable of learning to align the source and target sentences.
Moreover, in their qualitative analysis, they concluded that the model can correctly
align mutually related words and phrases. For the set of neural models proposed by
Hermann et al. (2015), attention mechanisms are used to focus on the aspects of a
document that help the model answer a question, as well as providing a way to qual-
itatively analyse the inference process. Rocktäschel et al. (2015) demonstrated that
by applying an attention mechanism to a textual entailment model, they could attain
state-of-the-art results, as well as analyse how the entailing sentence would align to the
entailed sentence.

Our work differs from previous work on fine-grained entity classification in that we
use the same publicly available training data when comparing models. We also believe
that we are the first to consider the direct combination of hand-crafted features and an
attentive neural model.
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3 Models

In this section we describe the neural model variants used in this thesis as well as a
strong feature-based baseline from the literature.

3.1 Shared settings across all models

First, we explain general characteristics that are used in all the models used in this
work including the formulation of the task, computation of label probabilities based
on logistic regression, and the inference procedure.

3.1.1 Task Formulation

We pose fine-grained entity classification as a multi-class, multi-label classification
problem [TKV09] given an entity mention and its left and right context. We process
this input to compute a probability yk ∈ R for each of the K types.

3.1.2 Logistic Regression

Across all the models, we compute a probability yk ∈ R for each of the K types using
logistic regression.

In the logistic regression, we only used a weight matrix and did not use a bias vector
to compute the pre-activation since the type distribution in the training and test corpus
could potentially be significantly different due to domain differences. That is, in logis-
tic regression, a bias fits to the empirical distribution of types in the training set, which
would lead to bad performance on a test set that has a different type distribution.

The loss L for a prediction y when the true labels are encoded in a binary vector
t ∈ {0, 1}K×1 is the following cross entropy loss function:

L(y, t) =
K∑
k=1

−tk log(yk)− (1− tk) log(1− yk) (1)

3.1.3 Inference Procedure

At inference time, we enforce the assumption that at least one type is assigned to each
mention by first assigning the type with the largest probability. We then assign any

15



additional types based on the condition that their corresponding probabilities must be
greater than a threshold of 0.5. The motivation of the former is that it enforces the con-
straint that each mention is assigned at least one type, while the latter acts as a cut-off.

Variations of the models stem from the ways of computing the input to the logistic
regression. We introduce three variants: sparse feature models, neural models, and
hybrid models. Each models are explained below.

3.2 Sparse Feature Model

Most previous works in fine-grained entity type classification used high dimensional
sparse features as input to the machine learning model. Sparse Feature Model pre-
sented here is designed to be similar to those previous models, so that the comparison
across different models appropriately fits to the research context.

In this model, we create a binary feature indicator vector f(m) ∈ {0, 1}Df for an
entity mention m, and feed it to the logistic regression layer. The features used are
described in Table 1, which are comparable to those used by Gillick et al. (2014) and
Yogatama, Gillick, and Lazic (2015). It is worth noting that we aimed for this model to
resemble the independent classifier model in Gillick et al. (2014) so that it constitutes
as a meaningful well-established baseline; however, there are two noteworthy differ-
ences. Firstly, we use the more commonly used clustering method of Brown et al.
(1992), as opposed to Uszkoreit and Brants (2008), as Gillick et al. (2014) did not
make the data used for their clusters publicly available. Secondly, we learned a set of
15 topics from the OntoNotes dataset using the LDA [BNJ03] implementation from
the popular gensim software package,1 in contrast to Gillick et al. (2014) that used a
supervised topic model trained using an unspecified dataset. Despite these differences,
we argue that our set of features is comparable.

3.3 Neural Models

The neural models processes embeddings of the words of the mention and its con-
text. While both mentions and contexts play important roles in determining the types,
the complexity of learning to represent them are different. During initial experiments,

1http://radimrehurek.com/gensim/
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Feature Description Example

Head Syntactic head of the mention Obama
Non-head Non-head words of the mention Barack, H.
Cluster Brown cluster for the head token 1110, . . .
Characters Character trigrams for the mention head :ob, oba, . . .
Shape Word shape of the mention phrase Aa A. Aa
Role Dependency label on the mention head subj
Context Words before and after the mention B:who, A:first
Parent The head’s lexical parent picked
Topic The LDA topic of the document LDA:13

Table 1: Hand-crafted features, based on those of Gillick et al. (2014), used by the
sparse feature and hybrid model variants in our experiments. The features are extracted
for each entity mention and the example mention used to extract the example features
in this table is “. . . who [Barack H. Obama] first picked . . . ”.

we observed that our model could learn from mentions significantly easier than from
the context, leading to poor model generalization. This motivated us to use different
models for modeling mentions and contexts. Specifically, all of our models described
below firstly compute a mention representation vm ∈ RDm×1 and context representa-
tion vc ∈ RDc×1 separately, and then concatenate them to be passed to the final logistic
regression layer with weight matrix Wy ∈ RK×(Dm+Dc):

y =
1

1 + exp

(
−Wy

[
vm

vc

]) (2)

3.3.1 Mention Representation

Let the words in the mention be m1,m2, ...,m|m|. Then the representation of the men-
tion is computed as follows:

vm =
1

|m|

|m|∑
i=1

u(mi) (3)

Where u is a mapping from a word to an embedding. During our experiments we
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were surprised by the fact that unlike the observations made by Dong et al. (2015),
complex neural models did not work well for learning mention representations com-
pared to the simpler model described above. One possible explanation for this would
be labeling discrepancies between the training and test set. For example, the label
time is assigned to days of the week (e.g. “Friday”, “Monday”, and “Sunday”) in the
test set, but not in the training set, whereas explicit dates (e.g. “Feb. 24” and “June
4th”) are assigned the time label in both the training and test set. This may be harmful
for complex models due to their tendency to overfit on the training data.

Next, we describe the three methods for computing the context representations; namely,
Averaging, LSTM, and Attentive Encoder.

3.3.2 Averaging Encoder

Similarly to the method of computing the mention representation, the Averaging en-
coder computes the averages of the words in the left and right context. Formally, let
l1, ..., lC and r1, ..., rC be the words in the left and right contexts respectively, where C
is the window size. Then, for each sequence of words, we compute the average of the
corresponding word embeddings. Those two vectors are then concatenated to form the
representation of the context vc.

3.3.3 LSTM Encoder

Long short-term memory (LSTM) networks have recently applied to various sequential
tasks including machine translation and language modeling and showed remarkable
successes. In order to handle expressions that have long term dependencies to the
category membership of the entity mention, we employ LSTM networks.

For the LSTM Encoder, the left and right contexts are encoded by an LSTM [HS97].
The high-level formulation of an LSTM can be written as:

hi, si = lstm(ui, hi−1, si−1) (4)

Where ui ∈ RDm×1 is an input embedding, hi−1 ∈ RDh×1 is the previous output,
and si−1 ∈ RDh×1 is the previous cell state.
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For the left context, the LSTM is applied to the sequence l1, ..., lC from left to right
and produces the outputs

−→
hl1, ...,

−→
hlC . For the right context, the sequence rC , ..., r1 is

processed from right to left to produce the outputs
←−
hr1, ...,

←−
hrC . The concatenation of

−→
hlC

and
←−
hr1 then serves as the context representation vc:

vc =

[ −→
hlC←−
hr1

]
(5)

A complete definition of the LSTM variant used in this work can be found in Sak,
Senior, and Beaufays (2014).

3.3.4 Attentive Encoder

a	  	  	  match	  	  	  series	  	  	  	  against	  	  	  New	  	  	  	  Zealand	  	  	  	  	  	  is	  	  	  	  	  	  	  	  held	  	  	  	  	  on	  	  	  	  	  Monday	

Output	

Word	  
Embeddings	

LSTM	  
Layers	  

A9en:ons	  

Context	  Representa:on	  Men:on	  Representa:on	  

/organiza)on,	  	  /organiza)on/sports_team	

Figure 5: An illustration of the attentive encoder neural model predicting fine-grained
semantic types for the mention “New Zealand” in the expression “a match series
against New Zealand is held on Monday”.

While LSTM networks can handle sequential data, it is still difficult to learn long
term dependencies. We concur this problem by introducing a novel attention mecha-
nism. We also hypothesize that by incorporating an attention mechanism, the model
can recognize salient local information that is relevant for the classification decision.

The attention mechanism variant used in this work is defined as follows. First, bi-
directional LSTMs [Gra12] are applied for both the right and left context. We denote
the output layers of the bi-directional LSTMs as

−→
hl1,
←−
hl1, ...,

−→
hlC ,
←−
hlC and

−→
hr1,
←−
hr1, ...,

−→
hrC ,
←−
hrC .
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For each output layer, a scalar value ãi ∈ R is computed using a feed forward neural
network with the hidden layer ei ∈ RDa×1 and weight matrices We ∈ RDa×2Dh and
Wa ∈ R1×Da:

eli = tanh

(
We

[ −→
hli←−
hli

])
(6)

ãli = exp(Wae
l
i) (7)

Next, the scalar values are normalized such that they sum to 1:

ali =
ãli∑C

i=1 ã
l
i + ãri

(8)

These normalized scalar values ai ∈ R are referred to as attentions. Finally, we
compute the sum of the output layers of the bidirectional LSTMs, weighted by the
attentions ai as the representation of the context:

vc =
C∑
i=1

ali

[ −→
hli←−
hli

]
+ ari

[ −→
hri←−
hri

]
(9)

An illustration of the attentive encoder model variant can be found in Figure 5.

3.4 Hybrid Models

To allow model variants to use both human background knowledge through hand-
crafted features as well as features learnt from data, we extended the neural models
to create new hybrid model variants as follows. Let vf ∈ RDl×1 be a low-dimensional
projection of the sparse feature f(m):

vf = Wff(m) (10)

Where Wf ∈ RDl×Df is a projection matrix. The hybrid model variants are then
defined as follows:

y =
1

1 + exp

−Wy

 vm

vc

vf




(11)
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These models can thus draw upon learnt features through vm and vc as well as hand-
crafted features using vf when making classification decisions. While existing work on
fine-grained entity type classification have used either sparse, manually designed fea-
tures or dense, automatically learnt embedding vectors, our work is the first to propose
and evaluate a model using the combination of both features.

3.5 Hierarchical Label Encoding

Since the fine-grained types tend to form a forest of type hierarchies (e.g. musician
is a subtype of artist, which in turn is a subtype of person), we investigated
whether the encoding of each label could utilise this structure to enable parameter
sharing. Concretely, we compose the weight matrix Wy for the logistic regression
layer as the product of a learnt weight matrix Vy and a constant sparse binary matrix
S:

W T
y = VyS (12)

We encode the type hierarchy formed by the set of types in the binary matrix S

as follows. Each type is mapped to a unique column in S, where membership at
each level of its type hierarchy is marked by a 1. For example, if we use the set of
types defined by Gillick et al. (2014), the column for /person could be encoded as
[1, 0, . . .], /person/artist as [1, 1, 0, . . .], and /person/artist/actor as
[1, 1, 1, 0, . . .]. This encoding scheme is illustrated in Figure 6.

This enables us to share parameters between labels in the same hierarchy, potentially
making learning easier for infrequent types that can now draw upon annotations of
other types in the same hierarchy.
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Figure 6: Hierarchical label encoding illustration.

Work W2M W2M+D GN1 GN2

[LW12] X

[Gil+14] ×
[YGL15] ×
[Ren+16] X ×
This work X

Table 2: Training datasets used and its availability. W2M is Wikipedia-based, +D
indicates denoising, and GN1/GN2 are two company-internal Google News datasets.
The symbols Xand × indicates publicly available and unavailable data.

4 Experiments

4.1 Datasets

Despite the research community having largely settled on using the manually anno-
tated datasets FIGER (GOLD) [LW12] and OntoNotes [Gil+14] for evaluation, there
is still a remarkable difference in the data used to train models (Table 2) that are then
evaluated on the same manually annotated datasets. Also worth noting is that some
data is not even publicly available, making a fair comparison between methods even
more difficult. For evaluation, in our experiments we use the two well-established
manually annotated datasets FIGER (GOLD) and OntoNotes, where like Gillick et al.
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(2014), we discarded pronominal mentions, resulting in a total of 8, 963 mentions. For
training, we use the automatically induced publicly available datasets provided by Ren
et al. (2016). Ren et al. (2016) aimed to eliminate label noise generated in the process
of distant supervision and we use the “raw” noisy data2 provided by them for training
our models.

4.2 Pre-trained Word Embeddings

We use pre-trained word embeddings that were not updated during training to help
the model generalize for words not appearing in the training set [Roc+15]. For this
purpose, we used the freely available 300-dimensional cased word embeddings trained
on 840 billion tokens from the Common Crawl supplied by Pennington, Socher, and
Manning (2014). For words not present in the pre-trained word embeddings, we use
the embedding of the “unk” token.

4.3 Evaluation Criteria

Following Ling and Weld ([LW12]), we evaluate the model performances by strict,
loose macro, and loose micro measures. For the i-th instance, let the set of the predicted
types be T̂i, and the set of the true types be Ti. Then the precisions and recall for each
measure are computed as follows.

• strict

Precision = Recall =
1

N

N∑
i=1

δ(T̂i = Ti) (13)

• loose macro

Precision =
1

N

N∑
i=1

|T̂i ∩ Ti|
|T̂i|

(14)

Recall =
1

N

N∑
i=1

|T̂i ∩ Ti|
|Ti|

(15)

2 Although Ren et al. (2016) provided both “raw” data and code to “denoise” the data, we were
unable to replicate the performance benefits reported in their work after running their pipeline. We have
contacted them regarding this as we would be interested in comparing the benefit of their denoising
algorithm for each model, but at the time of writing we have not yet received a response.
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• loose micro

Precision =

∑N
i=1 |T̂i ∩ Ti|∑N

i=1 |T̂i|
(16)

Recall =

∑N
i=1 |T̂i ∩ Ti|∑N

i=1 |Ti|
(17)

Where N is the total number of instances.

4.4 Hyperparameter Settings

Values for the hyperparameters were obtained from preliminary experiments by eval-
uating the model performance on the development sets. Concretely, all neural and
hybrid models used the same Dm = 300-dimensional word embeddings, the hidden-
size of the LSTM was set to Dh = 100, the hidden-layer size of the attention module
was set to Da = 100, and the size of the low-dimensional projection of the sparse fea-
tures was set to Dl = 50. We used Adam [KB14] as our optimisation method with a
learning rate of 0.001, a mini-batch size of 1, 000, and iterated over the training data for
five epochs. As a regularizer we used dropout [Hin+12] with probability 0.5 applied
to the mention representation and sparse feature representation. The context window
size was set to C = 10 and if the length of a context extends beyond the sentence
length, we used a padding symbol in-place of a word. After training, we picked the
best model on the development set as our final model and report their performance on
the test sets. Our model implementation was done in Python using the TensorFlow
[Mar+15] machine learning library.

4.5 Results

When presenting our results, it should be noted that we aim to make a clear separation
between results from models trained using different datasets.

4.5.1 FIGER (GOLD)

We first analyse the results on FIGER (GOLD) (Tables 3 and 4). The performance of
the baseline model that uses the sparse hand-crafted features is relatively close to that
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Model Acc. Macro Micro

Hand-crafted 51.33 71.91 68.78

Averaging 46.36 71.03 65.31
Averaging + Hand-crafted 52.58 72.33 70.04

LSTM 55.60 75.15 71.73
LSTM + Hand-crafted 57.02 76.98 73.94

Attentive 54.53 74.76 71.58
Attentive + Hand-crafted 59.68 78.97 75.36

FIGER [LW12] 52.30 69.90 69.30
FIGER [Ren+16] 47.4 69.2 65.5

Table 3: Performance on FIGER (GOLD) for models using the same W2M training
data.

Model Data Acc. Macro Micro

Attentive + Hand-crafted W2M 59.68 78.97 75.36

FIGER + PLE [Ren+16] W2M+D 59.9 76.3 74.9
HYENA + PLE [Ren+16] W2M+D 54.2 69.5 68.1

K-WASABIE [YGL15] GN2 n/a n/a 72.25

Table 4: Performance on FIGER (GOLD) for models using different training data.
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of the FIGER system of Ling and Weld (2012). This is consistent with the fact that both
systems use linear classifiers, similar sets of features, and training data of the same size
and domain.

Looking at the results of neural models, we observe a consistent pattern that adding
hand-crafted features boosts performance significantly, indicating that the learnt and
hand-crafted features complement each other. Among the neural models, we see that
the averaging encoder perform considerably worse than the others. Both the LSTM
and attentive encoder show strong results and the attentive encoder with hand-crafted
features achieves the best performance among all the models we investigated.

When comparing our best model to previously introduced models trained using
different training data, we find that we achieve state-of-the-art results both in terms
of loose macro and micro scores. The closest competitor, FIGER + PLE [Ren+16],
achieves higher accuracy at the expense of lower F1 scores, we suspect that this is due
to an accuracy focus in their label pruning strategy. It is worth noting that we achieve
state-of-the-art results without the need for any noise reduction strategies.

4.5.2 OntoNotes

Secondly, we discuss the results on OntoNotes (Tables 5, and 6). Again, we see consis-
tent performance improvements when the sparse hand-crafted features are added to the
neural models. In the absence of hand-crafted features, the averaging encoder suffer
relatively poor performance and the attentive encoder achieves the best performance.
However, when the hand-crafted features are added, a significant improvement occurs
for the averaging encoder, making the performance of the three neural models much
alike. As a reason for these results, we speculate that some of the hand-crafted features
such as the dependency role and parent word of the head noun, provide crucial infor-
mation for the task that cannot be captured by the plain averaging model, but can be
learnt if an attention mechanism is present. Another speculative reason is that because
the training dataset is noisy compared to FIGER (GOLD) (since FIGER (GOLD) uses
anchors to detect entities whereas OntoNotes uses an external tool to detect entities),
and the size of the dataset is small, the robustness of the simpler averaging model
becomes clearer when combined with the hand-crafted features.

Another interesting observation can be seen for models with the hierarchical label
encoding, where it is clear that consistent performance increases occur. This can be
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Model Acc. Macro Micro

Hand-crafted 48.16 66.33 60.16

Averaging 46.17 65.26 58.25
Averaging + Hier 47.15 65.53 58.25
Averaging + Hand-crafted 51.57 70.61 64.24
Averaging + Hand-crafted + Hier 51.74 70.98 64.91

LSTM 49.20 66.72 60.52
LSTM + Hier 48.96 66.51 60.70
LSTM + Hand-crafted 48.58 68.54 62.89
LSTM + Hand-crafted + Hier 50.42 69.99 64.57

Attentive 50.32 67.95 61.65
Attentive + Hier 51.10 68.19 61.57
Attentive + Hand-crafted 49.54 69.04 63.55
Attentive + Hand-crafted + Hier 50.89 70.80 64.93

FIGER [Ren+16] 36.90 57.80 51.60

Table 5: Performance on OntoNotes for models using the same W2M training data.
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Model Data Acc. Macro Micro

Averaging + Hand-crafted + Hier W2M 51.74 70.98 64.91
Attentive + Hand-crafted + Hier W2M 50.89 70.80 64.93

FIGER + PLE [Ren+16] W2M+D 57.2 71.5 66.1
HYENA + PLE [Ren+16] W2M+D 54.6 69.2 62.5

Hand-crafted [Gil+14] GN1 n/a n/a 70.01
K-WASABIE [YGL15] GN2 n/a n/a 72.98

Table 6: Performance on OntoNotes for models using different training data.

explained by the fact that the type ontology used in OntoNotes is more well-formed
than its FIGER counterpart. While we do not attain state-of-the-art performance when
considering models using different training data. We do note that in terms of F1-scores
we perform within 1 point of the state of the art, despite having trained our models on
different non-proprietary noisy data.

Once again we have an opportunity to study the impact of the choice of training
data by comparing the results of the hand-crafted features of Gillick et al. (2014) to
our own set of corresponding features. What we find is that the performance drop
is very dramatic, 9.85 points of loose micro score. Given that the training data for
the previously introduced model is not publicly available, we hesitate to speculate as
to exactly why this drop is so dramatic, but similar observations have been made for
entity linking [LSW15]. This clearly underlines how essential it is to compare models
on an equal footing using the same training data.

4.6 PCA visualisation of label embeddings

By visualising the learnt label embeddings (Figure 7) and comparing the non-hierarchical
and hierarchical label encodings, we can observe that the hierarchical encoding forms
clear distinct clusters.
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(a)	

(b)	

Figure 7: PCA projections of the label embeddings learnt from the OntoNotes dataset
where subtypes share the same color as their parent type. Sub-figure (a) uses the non-
hierarchical encoding, while sub-figure (b) uses the hierarchical encoding.

4.7 Attention Analysis

4.7.1 Qualitative Analysis

We visualise the values of attentions over the words in the contexts of mentions in Fig-
ure 8. Here, all the examples are selected from the development set of FIGER (GOLD).
Firstly, we observe the model is able to find out informative words that are located far
from the mention, namely, “species” in example 3, and “starring” in example 5. Sec-
ondly, it is clear that the model can handle not only a single word but also a group of
multipul words that together form relevant expression. Some of the examples of this
type is “is a term meaning” in example 1 and “live DVD titled” in example 6. Thirdly,
in example 4 we see the model’s successful finding of “five-match” that would have
served as a crucial information for appropriately classifying the mention “Australlia”,
which might usually classified as for example “/location/country”, into the types “/or-
ganization” and “/organization/sports team”. Finally, we point out that the expressions
that are treated seriously by the model have a wide syntactic variety such as nouns,
verbs, determinants, and propositions.
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Figure 8: Visualisation of the attention over several mentions in their context.

4.7.2 Quantitative Analysis

While visualising the attention weights for specific examples have become common-
place, it is still not clear exactly what syntactic and semantic patterns that are learnt
by the attention mechanism. To better understand this, we first qualitatively analysed
a large set of attention visualisations and observed that head words and the words con-
tained in the phrase forming the mention tended to receive the highest level of atten-
tion. In order to quantify this notion, we calculated how frequently the word strongest
attended over for all mentions of a specific type was the syntactic head or the words
before and after the mention in its phrase. What we found through our analysis (Ta-
ble 7) was that our attentive model without hand-crafted features does indeed learn
that head words and the phrase surrounding the mention are highly indicative of the
mention type, without any explicit supervision. Furthermore, we believe that this in
part might explain why the performance benefit of adding hand-crafted features was
smaller for the attentive model compared to our other two neural variants.
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Type Parent Before After Frequent Words

/location 0.319 0.228 0.070 in, at, born
/location/body of water 0.420 0.057 0.057 on, east, along
/organization 0.324 0.178 0.119 at, the, by
/organization/sports team 0.199 0.089 0.02 league, footballer, against
/person 0.246 0.248 0.045 by, president, band
/person/musician 0.213 0.224 0.043 band, group, bands
/person/athlete 0.207 0.197 0.034 coach, champion, match
/person/politician 0.259 0.423 0.032 president, governor, minister
/art/film 0.207 0.429 0.021 film, films, in
/music 0.259 0.116 0.018 album, song, single
/award 0.583 0.292 0.083 won, a, received
/event 0.310 0.188 0.089 in, during, at

Table 7: Quantitative attention analysis.

5 Conclusions and Future Work

In this thesis, we investigated several model variants for the task of fine-grained entity
type classification. The experiments clearly demonstrated that the choice of training
data – which until now been ignored for our task – has a significant impact on per-
formance. Our best model achieved state-of-the-art results with 75.36% loose micro
F1 score on FIGER (GOLD) despite being compared to models trained using larger
datasets and we were able to report the best results for any model trained using pub-
licly available data for OntoNotes with 64.93% loose micro F1 score. The analysis of
the behaviour of the attention mechanism demonstrated that it can successfully learn to
attend over expressions that are important for the classification of fine-grained types.
It is our hope that our observations can inspire further research into the limitations of
what linguistic phenomena attentive models can learn and how they can be improved.

As future work, we see the re-implementation of more methods from the literature
as a desirable target, so that they can be evaluated after utilising the same training
data. Additionally, we would like to explore alternative hierarchical label encodings
that may lead to more consistent performance benefits.

To ease the reproducability of our work, we publish our code used in the experiments
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at https://github.com/shimaokasonse/NFGEC.
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