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Abstract

The Referring Expression Comprehension (REC) task is to correctly identify an
object in an image that corresponds to a given natural language expression (i.e., referring
expression). In this thesis, we improve a previous REC model by explicitly aligning
relations between mentions in a language expression to pairs of objects placed in
specific relative positions in an image. Evaluation using the Google Refexp dataset [1]
demonstrates that the proposed model outperforms the baseline method. In addition, we
found that in stead of the image features extracted from a pretrained convolution neural
network and popularly used by previous research, one can simply boost performance by
using automatically recognized category labels.
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1 Introduction

We use referring expressions in daily conversation to indicate which person or object we
are identifying, such as “the man on the left” and “the girl dressed in blue”. There are
many objects in the image shown in Figure 1, such as a beer, two desks, and a woman.
The expression the desk with beer on it can unambiguously indicate the referenced
object. We call a phrase that indicates the object bounded by the green box a referring

expression.

Figure 1: Referring expression: the desk with beer on it. There are two desks in the
image.(This image comes from MSCOCO dataset [2].)

The task to identify a region from a given referring expression is called Referring
Expression Comprehension (REC) [1]. In this thesis, we propose an algorithm to solve
the REC task. Making computers understand referring expressions has applications in
human-computer interaction, such as enabling robot-human interactions in the physical
world. Resolving referring expressions requires understanding of natural language and
perceiving the rich visual world around us, which is a long-standing goal of artificial
intelligence. We must develop models and techniques that allow us to connect the visual
data domain and the natural language domain, to perform translations between these
domains.

Referring expressions often contain various information, such as attributes and
relations with other objects that are necessary to identify the target object in the image.

The example in Figure 1 illustrates the need for relation information to resolve the REC



task. Here, suppose we want to localize the object desk referenced by the referring
expression. If we do not consider the relationship between the desk entity and the beer
entity, we cannot ground the referring expression because there are two desks in the
image.

Previous studies have either ignored the relation information between objects or
modeled this relationship in an implicit manner. In these approaches, the referring
expression is embedded as a vector generated from a language model conditioned on
an image representation. Even if more than one entity is mentioned in the phrase, the
relationship is not modeled explicitly because the phrase is represented by a single
vector.

In this thesis, we incorporate relation information explicitly by mapping relationships
between entities in a referring expression to the spatial relations between corresponding
objects in an image. Specifically, we first extract entities from the referring expression
and objects from the image. Then, we learn an alignment between entities and objects.
In this alignment, relationships between entities and the relative positions of objects are
considered explicitly. For example, from the image shown in Figure 1, we can extract
two entities from the referring expression (i.e., desk and beer) and three objects from
the image. The relation “with” between these two entities is paired with the positions of
any two objects in the image to calculate a score, which models the appropriateness of
the alignment.

We evaluated our model using the Google Refexp dataset [1] to demonstrate that
the proposed method outperforms a baseline (Section 5.4). Moreover, our analysis
indicates that taking relationships into account is crucial for the performance gain
(Section 5.4.1,5.4.2). In addition, the analysis leads to a surprising discovery that one
can boost the performance of REC simply by replacing a widely used convolution neural
network feature with automatically recognized category labels for visual representation
(Section 5.5).



2 Related Work

REC is a classic Natural Language Processing (NLP) problem [3]. Before deep learning
methods became widely used in the NLP field, most studies focused on relatively
small datasets of artificial objects, and the text comprehension and vision modules
were separate processes. Traditional approaches understand referring expression by
enumerating attributes (size, color, etc.) or predefined relationships explicitly; thus,
they could not flexibly handle abundant real-world natural expressions. [1] were the
first to apply deep learning methods to REC and they released a large dataset. In this
study, we evaluate on the dataset and compare to [1]’s baseline. The baseline uses a
Convolution Neural Network (CNN) to extract feature vectors from candidate regions,
then feeds the vectors to a Long Short-Term Memory (LSTM) language model and
calculates the generating probabilities as scores. However, [1] do not consider the
target object’s relationships with other objects in the image. Especially when there
are multiple objects of the same type presented in the image, it is often insufficient to
distinguish the target object from other objects of the same type by encoding only the
object’s attribute information but ignoring relations between objects, as shown in the
example in Figure 1.

[4] and [5] attempted to encode relation information into the visual representation
of objects. Specifically, in the method proposed by [4], the input CNN features are
obtained from a (region, context-region) pair where the whole image together with
other objects in the image is considered a context region. Such a feature vector may
implicitly encode relations between the target object and other objects. [S] employ a
more focused approach to encode context information. In addition to CNN features,
they add object comparison features to the visual representation, which is taken as the
difference between the vectors of the target object and other objects. Both approaches
consider relations in an implicit manner. [6] model relationship explicitly, but only
one relation is considered for each referring expression. Our proposed model has the
ability to handle multiple relations, and we compare our method with the above works
in Section 5.7.

Related to REC, there are other image understanding tasks attempting to ground
natural language expressions to images in a fine-grained manner. For example, [7] and
[8] learn alignments between regions in an image and fragments in a natural language
expression, which is used for the image retrieval task. [9], [10], and [11] are approaches
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for relation extraction from an image. Joint learning with these models will be an

intriguing future direction.



3 Background

In this chapter, we introduce the basic concepts of machine learning and a subfield of
machine learning - neural network, which are necessary to understand the methods

proposed in following chapters,in order to make this thesis relatively self-contained.

3.1 Machine Learning and Neural Network

Self-learning is an important procedure for computers to deal with the problems that
are difficult or time-consuming to approach in a conventional, rule-based manner.
For example, now we want computer to recognize the concept of animal cat. In the
conventional way, we may traverse all the features related to cat in an exhausted manner,
which requires plenty amounts of specific knowledge of cat and careful design of rules.
But in a machine learning way, we can collect large number of cat images and annotate
them with the right tag and let the computer learn the input output relationship implied
by the training data(image-tag pairs).

In machine learning, there are several subfields containing supervised learning,
unsupervised learning and reinforcement learning. In supervised learning, we have
training data and corresponding tags which served as a teaching signal. Contrarily, in
unsupervised learning we only have training data and we have to learn the patterns or
regularities from data without any tag or signal. In reinforcement learning, our goal is
not to discriminate the data or model the generation mechanism o data but to solve a
sequential decision making problem. In this thesis, we only use supervised learning.
There are several key elements in supervised learning. Mapping Function , Loss
Function, Optimization Process, Regularization. We try to give an explanation to these
important concepts.

Actually the machine learning problems can be formulated as trying to find a mapping
f: X — Y where X is an input space and Y is an output space,by taking the advantage
of existing samples. For example, X may be the visual space of images and Y could be
a binary variable. When Y is O, it means the cat appears somewhere in the image, and
is 1 when the input is not a cat image. And this problem can be called a classification
problem since the output Y is a categorical variable from some finite set. Common
classification problems include image classification, document classification, sentiment

analysis. If Y is real-valued scalar, then the problem is called the regression problem.



The regression technique can be used for forecasting, time series modeling.
Suppose we have N samples D={(z;, y;) where i=1,2,.....N} called training set. We

want to find a mapping f that can minimize sum error over D.

Ui = f(0;;2;) (D)
| X
min N ; L(yi, 9i), (2)

where L(y;, y;) is the loss function, and f is the mapping function.For classification
problems, the loss function can be cross entropy loss, and for regression problem, the
loss function can be mean squared error.

Note that our ultimate aim is to develop a model that can make accurate prediction
over unseen data. But equation 1 only minimize the loss over seen data. That is we
hope that optimizing 1 serves as a good proxy for our ultimate goal. But unfortunately
sometimes it may not work. Suppose the extreme occasion that we learn the mapping f
that can perfectly output values y; for each input z; in the training dataset, but output 0
for any other data which are not in the training set. For this problem we say that the
model is over fitted by the training data and have no generalization ability. In order to
alleviate this problem, we can introduce a regularization term in 1. That is, we now
have:

N
min % ; L(yi, 9:) + R(f) 3)
where R is a scalar-valued function that encodes preference for some functions over
others, regardless of their fit to the training data. The regularization term can be
considered as an application of Occam’s razor theory, which is stated as ”Suppose there
exists two solutions for a problem, then the simpler one is usually the better one”. So
the regularization term can also be considered as a measurement of the complexity of
mapping f. We want to find some kinds of mapping f that not only have a reasonable
prediction accuracy over training dataset but also be as simple as possible.
Now we give a brief introduction of neural network. Neural network is a network
composed of many basic elements called neuron. Fig. 3 shows a single neuron. A
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Figure 3: A neuron

neuron receives an input vector x = (x1, 23, x3), and then multiply it with weights
w = (wy,ws,ws). The result is summed with a variable called bias, which can be
represented as z. So we have: z = Z?Zl x; * w; + b. Then z is input to a non-
linearity function g(also known as activation function), so finally we get the output
a = g(2) = g(3>_, x;%w;+b). Note that commonly used activation function is sigmoid
m, tanh function f(z) = % and the rectified linear
unit(ReLU) f(x) = max(0, z). A neural network (shown in Figure 4) is composed of

function f(x) =

many neurons stacked horizontally(next to each other) and vertically(on top of each
other) and is followed by a final output layer. If there are several layers in a network,
for a specific layer i, it receives input from previous layer, x; = a;_1, then compute the
activation a; and pass it to the next layer. For a binary classification problem, the final
neuron output a real-valued scalar p,taking value from O to 1, which can be interpreted
as probability to a specific category, say class 1. If p is larger than 0.5, then model
output prefers to class 1 with respect to input, or if p is smaller than 0.5, the model

chooses class 2.
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Figure 4: Neural Network

Now that we already defined the computation flow of a network, now we have to
teach the supervised signal to the neural network so that it can know how to adjust the
parameter to give better predictions for training data. We use cross entropy loss as the

loss function for classification problem.

|
L(D;0) = N Z —y;log i — (1 — i) log (1 — 4) 4)

i=1
where g; is the output of neural network, g; € (0, 1) and y; is the label for sample z;,
which is either 0 or 1.Since the likelihood of the data D given parameter is

P(y; = 1|z;;0) = @Zyl (1—g)' ¥ (5)

Likelihood(D: 0) HP = 1|z 0) (6)



the negative log likelihood of equation 6 can be written in equation 4. In order to
minimize the equation 4, we can compute the gradient can then adjust parameters along
the gradient direction. We iterate this process until the function converge to a locally

optimum.This is called the gradient descent algorithm.

OL(D: 0)
o0

where « is a small positive scalar called the learning rate. As for computing the gradient

‘gnew - Qold — |9 - Qold

of the neural network, we refer to read papers about back propagation.

3.2 Recurrent Neural Network

The Recurrent Neural Network(RNN) is a variant of the neural network which can
process sequential data by taking the output h;_; of itself at time step ¢ — 1 as input
at time step t. More specifically, we have formula h; = fy(h,_1,x;), where f is the
function depending on the kind of network architecture. and h; is the internal state of
model that encodes the information of the history. Every time the model receives a new
input z;, it updates the internal state h; using the formula above. The parameter 6 is
reused every time step, allowing model to deal with sequences with arbitrary lengths.

For vanilla RNN architecture, we have
ht = tanh(thxt + Whhht—l)

and the tanh nonlinearity can also be replaced with ReLLU. A classical application of
RNN is the recurrent neural network language model as illustrated in Figure 5. A

language model is a probabilistic model of a sequence z1, xo, ...., Tp,.

n

(w1, @2, ) = | [ plilzse) (7)

i=1

The probability p(x;|x;<;) is calculated by linearly transforming the current internal

state into a probability distribution over all words in the vocabulary.
(x| T <;) = softmax(W,hy)

The parameters W,,, Wy, W}, are learned by maximizing the equation 7 using cross

entropy loss.
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Figure 5: A Recurrent Neural Network Language Model. The word predicted in time
step t is calculated from current internal state, which is expected to encode all the

information seen before.

The vanilla RNN suffers from the problem of exploding gradients and vanishing
gradients which can be alleviated by Long Short Term Memory(LSTM). In LSTM, the
input h;_; and z; are computed in a more complex manner and besides the internal state
ht, LSTM also introduce memory cell ¢, to store the long-period information. Each
time the LSTM can decide to overwrite a memory cell, retrieve the content from it,
or keep its contents for the next time step by using explicit gating mechanisms. The

precise form of the update of h; and ¢; is as follows:

sigm

1
fl_ sigm W( Tt )
0 sigm hi_q
g tanh

a=fOc1+i0g

10



hy = 0 ® tanh(c;)

Recently, the RNN is widely applied in sequence to sequence problems [12] such as
machine translation [13], caption generation [14] and so on. Actually, the RNN can
also be used as a sentence or phrase encoder that compress the semantic meaning into

real-valued vectors.

3.3 Convolutional Neural Network

In fully connected neural network, the node in layer 1 is connected to each node in layer
¢ — 1. But in convolutional neural network, the node in layer i is only connected to
a part of nodes in layer ¢ — 1, which is different from the common linear layer. This
specially designed architecture is convenient in handling data with spatial topology.(e.g,
images, videos, character sequence in text) and is called convolution layer. As the pixels
in image data are only correlated with nearby pixel, a node in the upper layer only need
to connect a part of the node in the lower layer and the connection weight can also be
shared with all other nodes in the same upper layer.

In Figure 6, we can see that a node in upper layer(activation map in the figure) is
computed from a 5*5-sized subregion in original image. By sliding a fixed-size filter
along the horizontal and vertical direction we can get many nodes in the upper layer
as each node is corresponding to a different position for the filter. Weights used to
computed the node in activation map is the same when filter slides in different position.
Intuitively, the filters has capacity to look for certain local features in the input layer.
Local connectivity and parameter sharing property of Convolutional Neural Network
can reduce the parameter in each layer , thus allows us to stack several layer or even
hundreds of layers to build a complex architecture [15].

Besides convolution layer, it is also common to use pooling layer in the convolutional
network architecture. The pooling layer is a kind of down-sampling method that
can reduce the input data by a fixed factor. A widely used pooling layer is 2*2 max
pooling layer with stride 2. That is we have a 2*2 sized filter sliding in the input tensor
horizontally and vertically with a step size of 2. For each position of filter, it receives
4 inputs and returns the maximum value. Then the filter slides to the next position
with step size of 2, making the neighbor positions not overlap with each other. So the
size of input tensor is reduced by a factor of 4, at the cost of losing some local spatial

11
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Figure 6: A illustration of the convolution layer.

information.

A convolutional network is composed of convolution layer, fully connected layer(the
common linear layer),pooling layer and RELU layer. The ConvNet is used in image
classification. We input an image to the network and adjust the parameter of convolution
layer and fully connected layer so that the network can output the right category of the
input.

By analyzing the convolution network trained on large scale image dataset we ob-
serve that the lower layer in convnet captures the local information of input image such
as texture, lines and shapes, while the high layer captures more abstract information
such as the content of input. Therefore, once trained on large-scale image dataset
such as [16] for image classification task , we can say that the network along with the

learned parameters are able to extract useful information from a given image. Extracted

12



information from images are in the form of vectors and are called the representation
of images. More specifically, we have v = C'N Ny(I) , where CNN is a well-designed
ConvNet with pre-trained parameters 6, I is the input image pixels, v can be the vector
of the layer right before the softmax layer. There are some famous network architectures
whose model parameters are public to use such as AlexNet [17] and VGGNet [18].

13



4 The Proposed Model

In this chapter, we will introduce the proposed method in detail. Given an image with
several objects, and a referring expression pointing to a given target object, we first parse
the referring expression to extract all noun phrases (NPs) and the relationships among
them. Then, an alignment between the referring expression and the image is constructed
as a bipartite graph, in which NPs in the referring expression and objects in the image
are considered as nodes, and the correspondences between them are represented as a
configuration of edges in the graph. Given the nodes, we assign a score to each possible
graph to measure how good the alignment is. We use machine learning methods to learn

the parameters of the scoring function.

4.1 Constructing the Bipartite Graph

For each input pair of referring expression and candidate objects, we construct a graph
and assign a scalar score Score(z, y) to the bipartite graph. We want the model to learn
parameters automatically so that it can assign a high score to the correct graph and a
low score to incorrect graphs. A correct graph means that all NP nodes are correctly
connected to the object nodes they refer to. There are many possible graphs given an

input pair; thus, the task is to search for a graph with the maximum score.

y = arg max Score(x, y) (8)

yeG(x)
Here, G(x) is the set of all possible graphs given an input pair x of a referring expression
and candidate objects. For example, as shown in Figure 2, x comprises three nodes of
object regions on one side of the graph and two NP nodes on the other side. Here, 9
represents the correct graph and y is an arbitrary graph in G(z). Score(x, y) comprises

both a local score score; and a global score score,, which are defined as follows.

Score(z,y) = Z score;(z, e) +

e€E(y)
Z scorey(, €;, €;) )
(€irej)€Lpair(y)
score(z,e) = 0 - ¢y, e) (10)
scorey(x, e;,e;) = 04 - Pg(x, €, €)) (11)

14



Here, E(y) is the set of edges in graph y, and E,;.(y) is the set of pairs of edges whose
NP nodes form a relationship. score; is the local score which captures how well the
entity mentioned in referring expression is matched to an object in the image. score,
is the global score, which measures the fitness of the textual representation between
entities in the referring expression and the spatial relationship of objects in the image. 6,
and 6, are the model parameters to be learned, and ¢;(z, €) and ¢,4(z, e;, €;) represent
local and global features, respectively.

For example, in Figure 2, the score of the graph is the sum of the local scores for
(region 1, the desk) and (region 2, beer), together with the global score for (with,
region 1, region 2).

The score for an edge (local score) or a pair of edges (global score) is calculated
using the dot product of a feature vector (local or global features) with the model
parameters. To compute the local score of an edge, we first extract representations
for both an entity node from an NP and an object node from the bounding box in the
image. Specifically, the representation of the entity node denoted as w, is calculated by
averaging the embeddings of words in the NP. Here, word embeddings are initialized
using the pretrained word2vec [19], which is a 300-dimensional vector representation.
For an object node denoted as v, the representation includes the visual feature extracted
from object image using a pretrained VGG-16 CNN model [18]. We also incorporate
the spatial information of the bounding box, denoted as s, into object representation.
Specifically, s := [, 2, 2 22 ‘;m—i‘;‘;], where W and H are the width and height
of the image from which the candidate object is obtained, and (s,1, S,1) and (sz2, Sy2)
are the top-left and bottom-right coordinates of the bounding box, respectively. Simage
is the area of the entire image and S;egion 1S the area of the region. This results in a
1005-dimensional vector u := [v, s].

After the representations for both the object node and the NP nodes are obtained, a
local feature that incorporates both textual and visual information is calculated. Note
that the dimensions for u and w differ; thus, we perform linear transformation on u
to make the dimensions of the two vectors the same. Here, we adopt the element-

multiplication method to combine representations from language and vision, following

15
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Figure 7: Local score calculated for an edge (region 1, the desk). Here, 6;, W, b are the
model parameters, w is the average of the word vectors in the NP, and w is the visual

representation of the object in the image.

previous research [20]. Thus, we obtain the following formulas:

0=Wu+b (12)
z=u®Gw (13)
&1 =z /|2l (14)

where © is the elementwise multiplication between two vectors. Once the local feature
¢i(x, e) is calculated using Equation (7), it can be used to calculate the local score
using Equation (3). Figure 7 illustrates the local score computation.

For global scores, we calculate the global feature ¢,4(x,€;, €;) using the spatial
information of two bounding boxes, denoted as s, and the average embeddings of words

in the relationship phrase, denoted as w. Thus, we have:

s=Ws+b (15)
2g=50w (16)
bg = 2/ ||| (17)

16



Finally, the global score is calculated from the global feature and model parameter

using Equation (4). Figure 8 illustrates the above computation.

Region 1
@ @Is

Ws + b),
@7 @3
0 .
\_T Zg/”Zg”ﬂ g ¢gscoreg
SOw
ng b4
o

Figure 8: Global score calculated for (with, region 1, region 2). Here, 0,, W, b are the
model parameters, w is the average of the word vectors in the relationship phrase, and s

is the spatial information of the bounding boxes of two objects.

4.2 Learning

In the proposed model, the parameters to be learned come from the word embeddings
and the weight matrices in local and global scores. Our objective is to minimize the

following function:

N
J(6) = min ) " 1x(6) (18)
k=1

where

l(0) = max (Score(xk,gk;O)

9kEG(2)

—Score(xy, gk 0) + ||gr — 9%”1) (19)

Note that g, represents the correct graph and gy, is a candidate graph. ||gr — gk||1

denotes the Hamming distance between the candidate and correct graphs. /N is the

17



total number of instances in the training set and [;(8) is the loss for the k-th instance.
This formula makes the score for the correct graph larger than the candidate graph by a
certain margin. After training, we simply choose a graph with the largest score during
inference. According to this graph, the output is the object connected to the head NP of
the referring expression.

In this problem setting, only the object corresponding to the head NP can be obtained
as gold annotation from the training data; this means that the “correct” objects referenced
by other NPs are unspecified. For example, in Figure 2 the correspondence between
the head NP the desk and Region I can be obtained from training data, but the correct
correspondence between beer and Region 2 is not given. We expect the model to learn
such latent alignments automatically.

In order to achieve this, we sample alignments between objects and non-head NPs
during training, with probabilities proportional to their local scores. Then, a “correct”
graph is obtained by adding the gold annotation as an edge connecting the head NP to
one object, and an incorrect graph is obtained by connecting the head NP to another
object. We maximize the margin between scores of the two graphs, which include

global scores.

18



5 Experiment

In this chapter, we evaluate the proposed model on the Google Refexp dataset [1] and

analyze the results.

5.1 Dataset

Google Refexp is constructed on top of the MSCOCO dataset [2], which comprises
images of complex everyday scenes containing common objects in natural contexts.
[1] selected images from the MSCOCO dataset that contain at least two instances of
the same object type and the bounding boxes of the objects occupy at least 5% of the
image. Then, they constructed an Amazon Mechanical Turk task in which each object
is presented and the worker is asked to generate a unique text description for the given
object. They also constructed a second task in which a different worker is asked to click
the object given the referring expression generated in the first task. If the clicked object
overlaps the true object, then the referring expression is considered valid and is added to
the Google Refexp dataset. This resulted in a dataset of 54822 objects in 26711 images
and 104560 expressions. The dataset was split into a validation set with 5000 objects, a
test set with 5000 objects and a training set with the remaining objects. The the author
of the Google Refexp dataset has only published training and validation sets; therefore,

we report the accuracy of models on the validation set.

5.2 Evaluation Metrics

For evaluation, one calculates the Intersection over Union (IoU) ratio [1] between the
bounding box of the true object and the the bounding box of the object predicted by the
model. If IoU is larger than 0.5, the output is regarded as true. Accuracy is computed as

the percentage of true predictions in the validation set.

5.3 Implementation Details

We used Stanford CoreNLP [21] to parse referring expressions. We use constituency
parsing to extract NPs and relation expressions are taken as dependency paths between
NPs. We used word2vec [19] to initialize embedding of all words in NPs and rela-

tion expressions. For the visual representation, we extracted CNN features from the
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Methods Accuracy

[1] 42.50
Re-implementation (baseline) 40.01
Proposed model 44.01

Proposed model w/o global score 34.67

Table 1: Performance of baseline and proposed models on the validation set.

bounding box region of the object using the 16-layer VGGNet [18] pretrained using the
ImageNet database [16]. We used 1000 dimensional vectors from the last layer (fc8) of
VGG and fine tuned the last layer. Note that the visual feature of an object is this CNN
feature concatenated with the spatial information of the bounding box (Section 3).

We implemented the proposed model using Chainer [22]. We used Adam [23] for
optimization, with a learning rate of 0.01. The batch size was set to 16. We did not

employ a regularizer.

5.4 Results and Analysis

Accuracy of the proposed model on the validation set is shown in Table 1. For com-
parison, we re-implemented the baseline method of [1], and show its result together
with the originally reported accuracy. In order to determine whether the global score
component is acturally required for this task, we removed the global score from the
model and evaluated the resulting model. As Table 1 demonstrates, the accuracy of
our reimplementation is nearly equal to that reported by [1], and the proposed model
outperforms the baseline. On the other hand, when trained without a global score, the
result of the model decreases significantly, which indicates that the global score is a

crucial component in the proposed model.

5.4.1 Analysis on Subsets of Validation Data

To illustrate the capability of the proposed method to model relationships between NPs
in a referring expression, we randomly sampled 200 instances from the training and
validation sets and manually selected instances that require relationship recognition to

obtain the correct answer. This resulted in 37 instances in the train set (Set A) and 42
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Methods Set A SetB
Baseline 67.80 32.69
Proposed model 86.48 50.0

w/o global score 40.47 27.02

Table 2: Accuracies on subsets of training (Set A) and validation (Set B) data.

instances in the validation set (Set B). We compare our baseline re-implementation with
the proposed model on these sets. We also investigated the proposed model without
global score.

The results are shown in Table 2. As can be seen, the accuracies improvement
obtained with Sets A and B between baseline and the proposed method (about 19%) is
greater than that obtained with the full validation set shown in Table 1 (about 4%). The
decrease in accuracies between the proposed model with and without global score is
also greater than that obtained with the full validation set. Furthermore, with Set B the
baseline (32.69%) performs worse than its average (40.10%) on the full validation set,
whereas the proposed model performs better (50.0% compared to 44.01%). Therefore,
the results strongly indicate that the proposed model is better than the baseline at
processing relationships between objects, which is largely due to the global score.

5.4.2 Instance Analysis

Figure 9 shows examples where the proposed model improves the baseline. As can be
seen, the proposed method can select the correct object by matching the NP wooden
chair to the green box and the NP lady to the red box (Figure 9, first row). On the
other hand, the baseline model failed to select the correct object. In the second row of
Figure 9, the proposed model correctly matched the NP a giraffe to the green bounding
box and the NP a zebra to the red bounding box, whereas the baseline failed to capture
the relationship and selected the wrong object, which is a zebra.

However, the proposed model also introduced some new errors. For example, in
Figure 10 the Stanford CoreNLP incorrectly parsed the noun “woman’ as a verb. As a
result, only the NP “cake” was extracted from the referring expression and the incorrect
object was identified.

Another error is shown in Figure 11. In which, both the baseline and proposed models
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Input Baseline Proposed Model
Wooden chair to left ~ Wooden chair to left to left

AR

A giraffe, standing to A giraffe, standing to
the right of a zebra. the right,of a zebra.

Figure 9: Examples where the proposed model improves the baseline.

Input Proposed Model
‘Woman in a cream colored ‘Woman in a cream colored
wedding dress cutting cake wedding dress cutting cake

Figure 10: An error made by the proposed model.

failed to match the NP “a human hand” to the correct object in the image. Instead,
they matched the NP to some completely unrelated object (a pillow and a hamburger,
respectively). In our analysis, we found a significant portion of this type of errors, which
led us to reconsider the efficiency of the visual features being used. To this point, we
have used features extracted from the VGG model [18], which is considered to contain
abundant information about an object. However, as shown in Figure 11, it seems that
the visual features sometimes event fail to restore fundamental information such as

object category.
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Input Baseline Proposed Model

a human hand a human hand

>3

a human hand

Figure 11: An error made by both the baseline and proposed models.

Baseline Proposed Model
CNN vector(vgg)  40.10 44.01
Category label 57.69 61.77

Table 3: Accuracies with different visual representations on the validation set.

5.5 CNN Vector or Category Label as Visual Features?

In comparison to the visual features extracted from VGG, we experimented with
the object category labels available in the Google Refexp dataset. These labels are
automatically annotated by a classifier trained on the MSCOCO dataset [1]. They
categorize objects into 80 classes, so we used a one-hot vector of dimension 80 to
represent the label, and replaced the VGG vector with this one-hot vector as the visual
features in our experiments.

The results are shown in Table 3. As can be seen, significant improvement was
obtained by adopting the category information for both the baseline and proposed
models. This indicates that (automatically recognized) category labels can represent the
visual content of the object candidates more effectively. This may be due to the fact
that the pretrained CNN model does not completely match the domain of objects in the
Google Refexp dataset.

An example is shown in Figure 12. Here, the second column shows the output of
the proposed model using the VGG vector for the visual representation and the third
column shows the output using the one-hot category vector. As can be seen, with the
VGG vector, the NP “a man and a motorcycle” were matched to incorrect objects. In
contrast, with the one-hot category vector, the two NPs in the referring expression were
both matched to the correct objects.
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Input CNN feature Category label

a man on
a motorcycle
g e T

Figure 12: An example showing that the one-hot category vector is more helpful than
the VGG vector.

To confirm the assumption that the visual feature extracted from the CNN rarely
contains category information, we attempted to train a classifier for the 80 category
labels from VGG vector extracted from object image. There are a total of 210775
objects in the Google Refexp dataset, and we randomly chose 200775 instances as
training set and the remaining 10000 instances as test set. A two-layer fully connected
neural network was adopted as the classifier. The results are 38.4% on the training set
and 33.4% on the test set; quite low regarding the current literature of object category

recognition.

5.6 Faster RCNN Vector as Visual Features

From section 5.5 we know that the visual feature extracted from the CNN rarely contains
category information, we assume the reason is that the CNN vectors are extracted from
VGG model which is trained on ImageNet dataset with classification loss function.
So we compare the CNN feature extracted from faster rcnn [24] model trained on
MSCOCO dataset [2], the same dataset used in this thesis. The faster rcnn is designed
for object detection and we use the output from Rol pooling layer. The results is shown
in Table 4

Proposed Model
CNN vector(vgg) 44.01
CNN vectror(faster rcnn) 56.20

Table 4: Accuracies with different visual representations on the validation set.
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5.7 Comparison with Related Work

In this section, we compare the proposed model with several previous works. First, we
note that there are two different settings for evaluation; this is because most works on
REC have used a large number of automatically detected objects to augment training,
which is also the case in our study. We have used the automatic object detection results
coming together with the Google Refexp dataset. The question is whether to include
the automatically detected objects in test.

To this point, we have shown evaluation results with automatically detected objects
included. This is because the proposed model heavily relies on recognizing relations
with other objects, and this is the “multibox” setting in [1]. However, the more popular
setting is to exclude automatically detected objects, and only test on the “ground
truth” bounding boxes. Thus, we adopt the “ground truth” setting in this section for
comparison.

To achieve this, we still use automatically detected objects during test, but only
consider those bipartite graphs which align the head NP to a ground truth bounding
box. Thus, the final output is always a ground truth object (though the model may
additionally recognize its relationships with automatically detected objects).

The experimental results are shown in Table 5. Though the performance is a bit low
when we use CNN vectors as visual features, we have achieved results comparable to
the state-of-the-art by using category labels.

Accuracy
CNN vector 50.3
Category label 64.0
[5] 64.0
[4] 68.4
[6] 69.3

Table 5: Accuracies evaluated on ground truth bounding boxes in the validation set.
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6 Conclusion and Future Work

In this thesis, we have proposed a model for REC which considers relationships between
entities in a referring expression and align them to spatial relations between objects in
an image explicitly. The proposed model outperforms a baseline and we have shown
that modeling relationships is crucial for the performance gain. Furthermore, the
discovery that replacing a CNN feature vector with a one-hot category vector improves
performance is quite surprising. It raises concerns about the generalization ability of
deep neural representations — sometimes, human designed category labels can be more

generalizable.
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