Reference-based Metrics can be Replaced with Reference-less Metrics in Evaluating Grammatical Error Correction Systems Hiroki Asano¹², Tomoya Mizumoto², Kentaro Inui¹² 'Graduate School of Information Sciences, Tohoku University 'RIKEN Center for Advanced Intelligence Project

Overview

Background

- In grammatical error correction, automatically evaluating GEC systems requires gold-standard references, which tend to be expensive and limited in coverage.
- To address this problem, a reference-less approach has recently emerged [Napoles et al.,2016].
 The metrics, which only consider the criterion of grammaticality, have not worked as well as reference-based metrics.

Summary

- We propose a reference-less metric that combines *fluency* and *meaning preservation* with *grammaticality*.
- The proposed reference-less metric provides a better estimate of manual scores than that

of commonly used reference-based metrics.

Source (written by learners of English) Machine is design to help people .

 Hypothesis (GEC system's output)
 Reference (Gold-standard)

 The machine is designed to help people .
 Machines are designed to help people .

Reference-less GEC assessment

We combined three criteria:

Grammaticality

- For a hypothesis h, grammaticality score $S_G(h)$ determined by a logistic regression with linguistic features:
 - the number of misspellings
 - n-gram language model score
 - PCFG and rink grammar features
- the number of errors detected by Language Tool

Fluency

- The importance of fluency in GEC has been shown by Sakaguchi et al. (2016).
- Fluency can be captured by statistical language modeling [Lau et al., 2015].
- For a hypothesis h, fluency score $S_F(h)$ is calculated as follows:

 $S_{F}(h) = \frac{\log P_{m}(h) - \log P_{u}(h)}{|h|}$

 P_m : the probability of the sentence given by RNNLM P_u : the unigram probability of the sentence

Meaning Preservation

- In GEC, the meaning of original sentences should be preserved.
- Without this criterion, a gaming system would not be penalized.

- We compared the proposed reference-less metric with respect to how closely each metric correlates with human ratings.
- We used the human ratings of the 12 GEC systems submitted to the CoNLL-2014 Shared Task on GEC, collected by Grundkiewicz et al., (2015).

Metric	Spearman's ρ
M ² (reference-based)[Dahlmeier&Ng, 2012]	0.648
GLEU+(reference-based)[Napoles et al., 2015]	0.857
Grammar	0.835
Fluency	0.819
Meaning	-0.192
Grammar+Fluency	0.819
Fluency+Meaning	0.868
Meaning+Grammar	0.813
Combination	0.874

- We adopt METEOR (Denkowski and Lavie, 2014).
- Meaning score $S_M(h, s)$ for a source sentence s and a hypothesis h is calculated as follows.

$$S_{M}(h,s) = \frac{P \cdot R}{t \cdot P + (1-t) \cdot R},$$

where $P = \frac{m(h_{c}, s_{c})}{|h_{c}|}, R = \frac{m(h_{c}, s_{c})}{|s_{c}|},$
 h_{c}, s_{c} : content words in h, s

The above three criteria are combined as follows:

 $Score(h, s) = \alpha S_{G}(h) + \beta S_{F}(h) + \gamma S_{M}(h, s)$

where $\alpha + \beta + \gamma = 1$, S_G, S_F, and S_M are [0, 1]

- Combining the three criteria can boost the correlation with human rating.
- Meaning preservation metric exhibited poor correlation, but played a significant role when balanced with fluency metric.