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Abstract

Lyrics are an important element in popular music that conveys stories and
expresses emotion. Unlike prose text, writing lyric requires considera-
tion of music-specific properties such as the structure of melody notes and
rests, rhythms, and repetitions. Especially, lyrics also have paragraphs and
sentences corresponding to discourse segments. Thus, the goal of this the-
sis is modeling the discourse nature of lyrics to understand the structure of
lyrics.

Once a reasonably sophisticated computational model of discourse struc-
ture of lyrics is obtained, the model will provide us a better understanding
of the nature and structure of lyrics, which will then allow us to consider
building computer systems which can enhance the creativity of human
lyrics writers. In spite of its importance, however, no prior study has ever
addressed the issue of modeling this discourse-oriented nature of lyrics.

This is the first study that takes a data-driven approach to exploring the
discourse structure of lyrics in relation to various lyrics-specific proper-
ties. In particular, we propose several computational models of discourse
structure from three viewpoints.

• The first viewpoint is modeling discourse segments in lyrics. This
thesis conduct the first large-scale corpus study on discourse seg-
ments in lyrics, where we examine our primary hypothesis that dis-
course segmentations in lyrics strongly correlate with repeated pat-
terns. To test our hypothesis that discourse segmentations in lyrics
strongly correlate with repeated patterns, we conduct the first large-
scale corpus study. Then, we propose the task to automatically iden-
tify segment boundaries in lyrics and train a logistic regression model
for the task with the repeated pattern and textual features. The results



of our experiments illustrate the significance of capturing repeated
patterns in predicting the boundaries of discourse segments in lyrics.

• The second viewpoint is modeling the two common discourse-related
notions: storylines and themes. We assume that a storyline is a chain
of transitions over topics of segments and a song has at least one en-
tire theme. We then hypothesize that transitions over topics can be
captured by a probabilistic topic model which incorporates a distri-
bution over transitions of latent topics and that such a distribution
of topic transitions is affected by the theme of lyrics. To test those
hypotheses, we conduct experiments on the word and segment order
prediction tasks. The experimental results show that our probabilistic
topic model capture storylines effectively and considering the notion
of theme contributes to the modeling of storylines.

• The third viewpoint is modeling relationship between melodies and
discourse segments. To investigate this relationship, we created a
collection of 1,000 lyrics-melody pairs augmented with mora-note
alignments and word/sentence/paragraph boundaries, which is, to
our knowledge, the biggest collection of precisely aligned lyrics-
melody parallel data provided in this field. We report on our quan-
titative analysis of the correlation between word/sentence/segment
boundaries in lyrics and rests in melodies. Our experimental results
show strong tendency that the boundaries of larger segments tend to
coincide more with longer rests.

In addition to the above studies, this thesis presents a novel, purely data-
driven model for lyrics generation by conditioning an language model with
a featurized input constraints such as topics, mora-counts, and melodies.
Our experimental results show that combining a limited-scale collection
of lyrics-melody alignment data and a far larger collection of lyrics-alone
data for training the model boosts the model’s capability of generating a
fluent lyrics and fitting it to the input melody.

We also propose a novel lyric-writing support system using our lyrics lan-
guage model. Previous systems for lyric writing can fully automatically



only generate a single line of lyrics that satisfies given constraints on ac-
cent and syllable (or mora) patterns or an entire lyric. In contrast to such
systems, our system allows users to create and revise their study incre-
mentally in a trial-and-error manner. Through fine-grained interactions
with the system, the user can create the specifications of the discourse
structure, mora-counts, and most importantly, storylines (i.e., the transi-
tion over topics of segments).

This thesis is a basic research of modeling discourse structure of lyrics
and a practical research for computer-assisted or fully-automated creation
of lyrics.
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Chapter 1

Introduction

Lyrics are an important element of popular music. They provide an effective means to
express the message and emotion of music. Unlike prose text, lyrics have their own pe-
culiar properties, such as the structure of melody notes and rests, rhythms, repetitions,
etc. [Austin et al., 2010; Ueda, 2010]. A simple example is the correlation between
word boundaries in lyrics and rests in melody. As in Figure 1.1, one feels it awkward
if a single word spans beyond a (long) melody rest. A lyrics writer needs to consider
such constraints in content and lexical selection, which imposes extra cognitive loads.
The writer may also consider using rhymes, refrains or repetitions to color the entire
story rhetorically as in the example lyrics shown in Figure 1.2, where rhymes can be
seen at night, light and tight in Segment 7. Writing lyrics is thus a complex task.

These properties of lyrics have been motivating a range of research for computer-
based modeling of lyrics [Greene et al., 2010; Mayer et al., 2008; Nichols et al.,
2009; Reddy and Knight, 2011] and computer-assisted or fully-automated creation of
lyrics [Abe and Ito, 2012; Barbieri et al., 2012; Ghazvininejad et al., 2016; Oliveira
et al., 2007; Potash et al., 2015; Ramakrishnan A et al., 2009]. In particular, build-
ing a computational model of lyrics is an important research goal. Once a reasonably
sophisticated computational model of lyrics is obtained, the model will provide us a
better understanding of the nature and structure of lyrics, which will then allow us to
consider building computer systems which can enhance the creativity of human lyrics
writers. In reality, however, while an increasing number of papers have been published
for demonstrating computer systems that automatically generate lyrics or assist human
lyricists [A and Devi, 2010; Abe and Ito, 2012; Barbieri et al., 2012; Ghazvininejad

1
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ma-da
まだ

Rest

Rest

Example of awkward lyrics.

Example of natural lyrics.
(Proceed to an unknown tomorrow)

(I walked alone... This road)

知ら ない 明日 へ 行く
(yet) (know) (not) (tomorrow) (to) (go)

shi- ra na- i a- shi- ・ ta e yu-ku

hi-to-ri
一人
(alone)

de
で

(FUNC)

a- ru- i -ta
歩いた
(walked)

ko-no
この
(this)

mi-chi
道

(road)

Figure 1.1: Examples of awkward and natural lyrics. The translated English lyrics are
given in parentheses. (FUNC) indicates a function word. The song is from the RWC
Music Database (RWC-MDB-P-2001 No.20) [Goto et al., 2002].

et al., 2016; Oliveira et al., 2007; Potash et al., 2015; Wu et al., 2013], research for
modeling lyrics and understanding their properties is still limited [Greene et al., 2010;
Mayer et al., 2008; Nichols et al., 2009; Reddy and Knight, 2011].

One crucial issue we miss in those studies is modeling the nature of lyrics as dis-

course. Similar to prose text, a piece of lyrics typically comprises paragraphs and
sentences corresponding to discourse segments; namely, lyrics of popular music typ-
ically has the verse, bridge, and chorus segments [Mahedero et al., 2005] and such
segments may comprise more fine-grained segments as in Figure 1.2. Each segment
provides part of the entire story and the segments are organized (or sequentially or-
dered) so as to constitute a coherent structure as a whole. Moreover, chorus segments
appear repeatedly (e.g., in Figure 1.2, segments 5, 8 and 9 are identical to segment 1),
which is not typically observed in prose text. In spite of its importance, however, no
prior study has ever addressed the issue of modeling this discourse-oriented nature of
lyrics.

Motivated by this background, in this thesis, we report on our novel study for
building several computational models of the discourse nature of lyrics.

2



If you go back in time
To a place in your mind, like a clear view
I gave you my word that I would never leave you

From the night we first met
Your smile's been the meaning of my life
With just a glance I knew you were mine

Sometimes I just forget
Say things I might regret but believe me
It breaks my heart to see you crying

I don't want to lose yo baby
I could never make it alone
After all these years, oh maybe
A bit of misunderstanding has sneaked into our lives

Don't you never ever say goodbye
Don't tell me that's the thing that's on your mind
We both know we are made for each other
So don't leave me behind

So don't you ever say goodbye
Don't tell me that's the thing that's on your mind
So until I find a way to rid this pain
Don't say goodbye

I was all alone in the night
And it was you who gave me the light
Let me hold you, oh so tight
Don't let a bit of misunderstanding come in between us

Don't you never ever say goodbye
Don't tell me that's the thing that's on your mind
We both know we are made for each other
So don't leave me behind

So don't you ever say goodbye
Don't tell me that's the thing that's on your mind
So until I find a way to rid this pain
Don't say goodbye

Segment 1 (verse)

Segment 2 (verse)

Segment 3 (bridge)

Segment 4 (chorus)

Segment 5 (chorus)

Segment 6  (verse)  “introduces the story”

Segment 7 (bridge)  “describes a past event”

Segment 8 (chorus)  “express an emotion”

Segment 9 (chorus)  “express an emotion”

Figure 1.2: An example of lyrics with a storyline and repeated patterns (title: Don’t
Say Good bye (RWC-MDB-P-2001 No.90 from RWC Music Database [Goto et al.,
2002])).

1.1 Research Issues

In this thesis, we address following four research issues.

Does the discourse segments in lyrics strongly correlate with repeating patterns?
Phrases of lyrics often appear repeatedly, and this repeated pattern may be corre-
lated with discourse segments. For example, if a sequence of lines in lyrics has a
repetition, such as abcdefabc (each letter represents a line, with repeated letters
being repeated lines), we expect the boundaries of the discourse segments tend
to agree with the boundaries of the repeated parts as in |abc|def|abc|, where “|”
indicates a boundary. However, no prior study has ever verified this correlation.

What is the most suitable way to model storylines in lyrics? Each discourse segment
in lyrics provides part of the entire story and the segments are organized (or se-
quentially ordered) so as to constitute a coherent structure as a whole. In Fig-
ure 1.2, for example, Segment 6 introduces the story, Segment 7 retrospects a
past event, and Segment 8 and 9 express an emotion which arises from the retro-
spection. However, no study has ever addressed the issue of modeling storylines

3



in lyrics.

Does the discourse segments in lyrics strongly correlate with melody? Several cor-
relations between melody and lyrics are expected. For example, words, sen-
tences and segments rarely span beyond a long melody rest and the boundaries of
larger components (i.e., discourse segments) tend to coincide more with longer
rests. This direction of research, however, has never been promoted partly be-
cause it requires a large training dataset consisting of aligned pairs of lyrics and
melody but so far no such data has been available for research. We refer to the
data as a melody-lyric alignment data.

Are discourse structure models efficient in automatic lyrics generation task? In ad-
dition to modeling the discourse structure, we are interested in the effectiveness
of discourse model for demonstrating computer systems that automatically gen-
erate lyrics or assist human lyricists.

1.2 Contributions

This thesis makes following contributions.

Modeling and investigating discourse segments in lyrics. To examine our primary
hypothesis that discourse segments in lyrics strongly correlate with repeated

patterns, we consider the task of computationally predicting the boundaries of
discourse segments in lyrics under the assumption that a better prediction model
would allow us to better understand the nature of the discourse structure of lyrics.
This is the first study that takes a data-driven approach to exploring the discourse
structure of lyrics in relation to repeated patterns.

Modeling and investigating storylines in lyrics. To capture the two common discourse-
related notions: storylines and themes, we hypothesize that transitions over top-
ics of lyric segments can be captured by a probabilistic topic model which incor-
porates a distribution over transitions of latent topics and that such a distribution
of topic transitions is affected by the theme of lyrics.

Melody-lyric alignment data. To create a large collection of lyrics-melody align-
ment data, we propose a methodology for creating melody-lyrics alignment data

4



by leveraging lyrics and their corresponding musical score data on the web. To
our knowledge, this dataset is the biggest collection of precisely aligned lyrics-
melody parallel data provided in this field. While this thesis reports on our ex-
periments with Japanese song data, presumably the approach will work for other
languages as well.

Modeling and investigating relationships between lyrics and melodies. We deeply
analyze the correlation between melody and lyrics, and evaluate proposed model
quantitatively. This is the first study that has ever provided such strong empirical
evidence to the hypotheses about the correlations between lyrics segments and
melody rests. In addition to this analysis, we propose a novel, purely lyrics gen-
eration model that output lyrics for an entire input melody. We extend a common
Recurrent Neural Network Language Model (RNNLM) [Mikolov et al., 2010] so
that its output words can be conditioned with a featurized input melody. To our
knowledge, these are the first language models that jointly learn the consistency
between word, line, and segment boundaries and melodies.

Novel interactive support system for writing lyrics. As mentioned in the beginning
of this chapter, for writers of lyrics, considering various lyrics-specific properties
simultaneously is not easy. This is where appropriate human-computer interac-
tion system can reduce human loads. Therefore, this thesis provides an overview
of the design of the system and its user interface and describes how the writing
process is guided by our probabilistic discourse structure model. Our system
can assist a writer in incrementally taking the above factors into account through
an interactive interface by generating candidate pieces of lyrics that satisfy the
specifications provided by the writer. The capability of automatically generat-
ing lyrics and allowing the user to create lyrics incrementally in a trial-and-error
manner can be useful for both novices and experts.

1.3 Thesis Overview

The rest of this thesis is structured as follows.

Chapter 2: Natural Language Processing of Lyrics. In this chapter, we give an overview
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of natural language processing of lyrics. We show that most of the previous stud-
ies focus on modeling lyric-specific properties except discourse structure.

Chapter 3: Modeling Discourse Segments Using Repeated Patterns. This chapter
presents the first quantitative analysis of the distribution of repeated lines and
segments in lyrics and suggests cues that could help to identify the segment
boundaries. Then, we describes our computational model, which predicts the
boundaries of discourse segments in lyrics using repeated patterns.

Chapter 4: Modeling Storylines. To investigate the effects of capturing topic transi-
tions, we describe a probabilistic topic model which incorporates a distribution
over transitions of latent topics. Moreover, to verify that both theme and topic
transition are useful for modeling the storyline, we propose two extended com-
bination models to handle theme and storyline simultaneously.

Chapter 5: Modeling Relationship between Melody and Lyrics. We first propose a
novel method for creating a lyrics-melody aligned parallel dataset. We then
quantitatively analyze the correlations between lyrics segment boundaries and
melody rests. Finally, we build a lyrics language model capable of generating
fluent lyrics whose segment boundaries fit a given input melody.

Chapter 6: Interactive Support System for Writing Lyrics. We describe the func-
tions of the proposed system and then describe the probabilistic generative model
which the system employs to generate candidate lyrics. Moreover, to investigate
the capabilities, limitations, and potential of our interaction design, we asked
human-users to use our system and collected preliminary user feedback.

Chapter 7: Conclusions. We summarize our discussion, and present our future direc-
tion.
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Chapter 2

Natural Language Processing of Lyrics

This chapter briefly summarizes the related work on the natural language processing
for lyrics. We first, describe the overview of modeling lyrics-specific properties such
as rhyme, melody, and so on. We then, introduce overview of application tasks using
lyrics processing.

2.1 Overview of Modeling Lyrics-specific Property

These prior studies share the motivation of modeling lyric-specific properties with
our study. However, no previous study has ever considered capturing the discourse-
oriented nature of lyrics whereas our study aims at modeling (1) discourse segments,
(2) storylines, and (3) relationship between melody and discourse.

2.1.1 Modeling Styles of Lyrics

Several studies for capturing lyric-specific styles have been reported, where a broad
range of music elements including meter, rhythm, rhyme, stressed/unstressed syllables,
and accent are studied. Mayer et al. [2008] trained a support vector machine to classify
music genres using only textual features such as rhyme and part-of-speech patterns.
Greene et al. [2010] employed a finite-state transducer to assign syllable-stress pattern
to all words in each line. Reddy and Knight [2011] developed a language-independent
rhyme model based on a Markov process that finds rhyme schemes.
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2.1.2 Modeling Relationship between Melodies and Lyrics

Oliveira et al. [2007] analyze correlations among melodies, beats, and syllables using
42 Portuguese songs. Nichols et al. [2009] identified several patterns in the relationship
between the lyrics and melody in popular music by measuring the correlation between
textual salience and musical salience.

2.1.3 Modeling Semantic Structure of Lyrics

Several studies aim at modeling semantic structure of lyrics. Kleedorfer et al. [2008]
classified lyrics according to topical clusters calculated using nonnegative matrix fac-
torization [Xu et al., 2003]. Sasaki et al. [2014] visualized lyric clusters calculated
using Latent Dirichlet Allocation (LDA) [Blei et al., 2003].

2.1.4 Modeling Discourse Structure of Lyrics

Previous computational work into lyrics discourse segmentation has focused on iden-
tifying the segment labels of lyrics that are already segmented. For example, the struc-
ture of lyrics can be represented using labels A–B–C–A–B in which each letter refers
to a group of lines; e.g., A might represent a chorus that appears twice. Barate et al.
[2013] proposed a rule-based method to estimating such structure labels of segmented

lyrics.

2.2 Overview of Application Tasks Using Lyrics Pro-
cessing

2.2.1 Automatic Lyrics Generation

The same trend can be seen also in the literature of automatic lyric generation, where
most studies play only with lyrics data alone. Barbieri et al. [2012] proposed a model
for generating a lyrics under a range of constraints provided in terms of rhyme, rhythm,
part-of-speech, etc. Potash et al. [2015] proposed an Recurrent Neural Network lan-
guage model that generates rhymed lyrics under the assumption that rhymes tend to
coincide with the end of lines. In those studies, melody is considered only indirectly;
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namely, input prosodic/linguistic constrains/preferences on lyrics are assumed to be
manually provided by a human user because the proposed models are not capable of
interpreting and transforming a given melody to constrains/preferences.

For generating lyrics from a given melody, we have so far found in the litera-
ture only two studies which propose a method . Oliveira et al. [2007] proposed a
set of heuristic rules for lyrics generation according to their quantitative analysis of
Portuguese music data. Ramakrishnan A et al. [2009] attempted to induce a statisti-
cal model for generating melodic Tamil lyrics from lyrics-melody parallel data using
only ten songs. However, the former captures only extremely limited aspects of lyrics-
melody correlations and can generate a small fragment of lyrics (not an entire lyrics)
for a given piece of melody. The latter suffers from the severe shortage of data and
fails to conduct empirical experiments.

2.2.2 Writing Support Interface

Existing support systems can be classified into two types, systems that can generate
entire lyrics automatically [Abe and Ito, 2012; Oliveira, 2015; Settles, 2010] and tools
designed to assist the user in searching for words that satisfy a query and usage exam-
ples from stored lyrics. 1

We will describe details of these related research in each chapter and clarify the
contribution of our approach.

1MasterWriter. http://masterwriter.com/

9



Chapter 3

Modeling Discourse Segments Using
Repeated Patterns

Our goal is to reveal the discourse structure of lyrics in popular music by quantita-
tively analyzing a large-scale lyrics corpus. As a first but crucial step toward achieving
this goal, this chapter explores the nature of the discourse structure of lyrics with a
focus on the repeated patterns as an indicator of segment boundaries. In particular, we
examine our primary hypothesis that discourse segments in lyrics strongly correlate

with repeated patterns as mentioned in chapter 1. Moreover, we consider the task of
computationally predicting the boundaries of discourse segments in lyrics under the as-
sumption that a better prediction model would allow us to better understand the nature
of the discourse structure of lyrics.

3.1 Overview of Text Segmentation

This section reviews related work into the discourse structure of lyrics, with particular
focus on the segmentation of text using repeated patterns.

Text segmentation is a classic text retrieval problem, and there exists a rich body of
research into text segmentation in natural language processing. Various linguistic cues
have been suggested to identify text boundaries such as expressions that frequently ap-
pear at the end of segments [Beeferman et al., 1999], contextual/topical changes [Choi,
2000; Malioutov and Barzilay, 2006; Riedl and Biemann, 2012], and word/entity rep-
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1: ooo I wanna kiss you
2: loving you is my dream tonight
3: ooo hold me tenderly
4: loving me with all your heart
5: boy you never tell me that you love me
6: I'm going crazy wondering about you baby
7: do you really know boy how much I care
8: could you really show me how deep is your love ?
9: just close you eyes and hear my heart
10: the sweet sweet beat of my love
11: can't you tell I'm hungry baby
12: for only you can make me smile
13: ooo I wanna kiss you
14: loving you is my dream tonight
15: ooo hold me tenderly
16: loving me with all your heart
17: can't you understand me my point of view
18: do you really love me beyond all words
19: I just need to hear now from your sweet lips
20: I'm the only girl you ever want to kiss
21: just close your eyes and hear my heart
22: the sweet sweet beat of my love
23: can ' t you tell I'm hungry baby
24: for only you can make me smile
25: just close your eyes and hear my heart
26: the sweet sweet beat of my love
27: can't you tell I'm hungry baby
28: for only you can make me smile
29: ooo I wanna kiss you
30: loving you is my dream tonight
31: ooo hold me tenderly
32: loving me with all your heart

1

2
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4
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6
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Figure 3.1: An example of lyrics and corresponding self-similarity matrix (title of
lyrics: How Deep Is Your Love? (RWC-MDB-P-2001 No. 81 from RWC Music
Database Goto et al. [2002]))

etition [Kan et al., 1998; Reynar, 1999].
Although we share the same motivation as these studies, these text segmentation

methods do not consider repeated patterns of phrasal segments because this type of
repetition is nearly always absent in prose text. On the other hand, segments in lyrics
often have repetitions [Austin et al., 2010; Ueda, 2010] as shown in Section 3.2.1. We
aim to capture the segment structure of lyrics using repeated patterns.

Previous computational work into lyrics segmentation has focused on identifying
the segment labels of lyrics that are already segmented. For example, the structure
of lyrics can be represented using labels A–B–C–A–B in which each letter refers to a
group of lines; e.g., A might represent a chorus that appears twice. Barate et al. [2013]
proposed a rule-based method to estimating such structure labels of segmented lyrics.
Our task differs from this task in that we aim to estimate the segment boundaries of
unsegmented lyrics using machine learning techniques.

In contrast to the segmentation of lyrics, much previous study has analyzed and es-
timated the segment structure of music audio signals using repeated musical parts such
as verse, bridge, and chorus [Foote, 2000; Goto, 2006; Lu et al., 2004; McFee and El-
lis, 2014; Paulus and Klapuri, 2006]. To automatically identify these repeated musical
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parts in music audio signals, a self-similarity matrix (SSM) as shown in Figure 3.1 is
often used. Repeated segments lead to high-valued lines in the off-diagonals of the
matrix, and these patterns are used to identify the structure. To capture segments in
lyrics using repeated patterns, we apply the SSM to lyrics. Lyrical repetition is known
to be an important property of lyrics [Austin et al., 2010; Ueda, 2010], and we expect
that repetition patterns would also appear in lyrics as they do in audio signals.

In summary, no previous computational work has exactly focused on the segmen-
tation of lyrics using repeated patterns.

3.2 Statistics of Repeated Patterns and Segment Bound-
aries

As an initial step toward modeling the discourse structure of lyrics, we examine the
distribution of segments in lyrics by focusing on repeated patterns. We first show the
basic distributions of lyrics and suggest potential cues to indicate segment boundaries
in lyrics. To examine the distribution of repeated patterns in lyrics and their relation to
segment boundaries, we use a large scale lyrics database that contains 144,891 songs1.

One issue to be addressed before conducting the corpus study is that no exist-
ing corpus has annotated the study is that none of existing corpus has annotation of
discourse structure of lyrics. In this study, we preliminarily assume that discourse seg-
ment boundaries are indicated by empty lines inserted by lyrics writers. We admit that
empty lines may not be “true” discourse segment boundaries and discourse segments
may exhibit a hierarchical structure (e.g., verse–bridge–chorus structure). These issues
could be better addressed by combining the analysis of the discourse structure of lyrics
with the structural analysis of music. We believe this direction of research will open
an intriguing new field for future exploration.

3.2.1 The Basic Distribution of Lyrics

Among the 144,891 songs in the lyrics database, there are 5,666,696 lines and 969,176
segments in total, with segment breaks inferred from empty lines. Per song, there are

1Music Lyrics Database. http://www.odditysoftware.com/page-datasales1.htm
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39.11 lines and 6.69 segments on average. Most songs have at least one repeated line
(84.79% using an exact criterion; 90.34% using a lenient matching criterion of normal-
ized edit distance ≥ 0.8, explained in the next section). A fair number of songs also
have at least one repeated segment (exact match: 37.73%, lenient match: 54.57%).
Per song, 13.73 lines and 0.52 segments (both exact match) are repeated at least once
on average. These distributions show that repetition of lines and segments occurs fre-
quently in lyrics, in line with our expectations. Next, we suggest potential repeated
patterns to help in identifying segment boundaries.

3.2.2 Correlation between Repeated Patterns and Segment Bound-
aries

To examine what kinds of repeated patterns would help identify segments in lyrics, we
use the SSM, similar to previous study into the segmentation of music audio signals
(Section 4.1). Figure 3.1 shows an example SSM. Throughout this study, we repre-
sent the ith line in lyrics as li (1 ≤ i ≤ L), where L is the number of lines of the
lyrics. A degree of similarity between li and lj , i.e., sim(li, lj), is represented as an
intensity at a cell where the ith row and jth column overlap. Using the normalized
edit distance NED(li, lj), we compute the degree of similarity [Yujian and Bo, 2007]:
sim(li, lj) = 1−NED(li, lj). The red diagonal lines in Figure 3.1 are the result of ex-
act line repetitions1. The white horizontal lines in Figure 3.1 indicate the true segment
boundaries.

After manually examining more than 1,000 lyrics and their SSMs, we suggest the
following four types of repeated patterns as indicators of segment boundaries.

(1) The Start and end points of a diagonal line are segment boundaries. Some re-
peated segments correspond to the red diagonal lines. For example, in Figure 3.1,
segment 1⃝ is repeated twice (segments 4⃝ and 8⃝), and each repetition, starting
at l13 and l29, can be observed as a diagonal line from l1 to l4. This suggests that
some segments could be divided at the start and end points of such a diagonal
line.

(2) A segment boundary does not appear within a diagonal line. This is related to

1The diagonal line of sim(li, li) is ignored for analysis because it conveys no information.
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Table 3.1: Correlation between each repeated pattern and segment boundary

Repeated pattern Prior and conditional probabilities Value
Pattern (1) P (Boundary appears) 0.1455 (824286/5666696)

P (Boundary appears | at the starting/ending of a diagonal line) 0.2218 (339020/1530824)
Pattern (2) P (Boundary does not appear) 0.8545 (4842410/5666696)

P (Boundary does not appear | within a diagonal line) 0.9273 (751195/810098)
Pattern (3) P (Adjacent lines appear within a segment) 0.8507 (4697520/5521806)

P (Adjacent lines appear within a segment | adjacent lines are similar) 0.9439 (218524/231518)
P (Boundary appears after li) 0.1455 (824286/5666696)

Pattern (4) P (Boundary appears after li | li is similar to the last line of lyrics) 0.4230 (125659/297069)
P (Boundary appears after li | li+1 is similar to the first line of lyrics) 0.4189 (46531/111079)

(1). A segment boundary does not normally appear within a diagonal line be-
cause each diagonal line often corresponds to a segment.

(3) Similar adjacent lines appear within a segment. Line-level repetitions that are
adjacent, such as rhymes and refrains, tend to occur within a segment. For exam-
ple, line l7 rhymes internally with l8 where these lines appear within a segment
because sim(l7, l8) indicates moderate similarity.

(4) A line similar to the first or last line of a song is an indicator of a segment boundary.
Lines similar to the first or last line of lyrics tend to be repeated at segment
boundaries. For example, in Figure 3.1, the first and last lines of the song, i.e.,
l1 and l32, are exactly the same as the first and last lines of segments 4⃝ and 8⃝.
This is because the first and last lines of lyrics tend to be part of a chorus section
that is often repeated throughout the lyrics.

Figure 3.2: Negative example
against pattern (1).

To examine the extent to which these four patterns
correlate with segment boundaries, we compute the
prior and conditional probabilities of each pattern us-
ing the full lyrics database. Table 3.1 shows that all
conditional probabilities are greater than their corre-
sponding prior probabilities. These results suggest
that the above repeated patterns reasonably capture
segment boundaries, supporting the use of repeated
patterns for modeling the segment structure of lyrics.

Note that pattern (1) does not hold for many
cases. Figure 3.2 illustrates a typical negative exam-
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ple against pattern (1). This figure includes three diagonal lines, but the shorter lines
do not agree with a segment boundary at either end. Similar cases are abundant partly
because even a repetition of a single line is identified as a diagonal line in this exper-
iment. This problem implies that a single occurrence of our local repeated pattern is
not a sufficient clue for identifying a segment boundary. The conflict between patterns
(1) and (2) is also shown in Figure 3.1, where a segment boundary implied by pattern
(1) bisects a diagonal line from (l25, l9) to (l32, l16), which goes against pattern (2).
This motivates us to build a machine learning-based model to capture combinations
of multiple clues. The subsequent section describes how we represent these repeated
patterns as features for predicting segment boundaries.

3.3 Computational Modeling of Segment Patterns in Lyrics

To confirm the validity of our four repeated patterns for segment structures, we ad-
dress the novel task of detecting segment boundaries in lyrics. Given the lyrics of a
song where all segments are concatenated (no empty lines), the task is to identify the
segment boundaries of the lyrics reproducing the empty lines. We formalize this task
as a binary classification problem to predict the end (y = 1) or continuation (y = 0) of
a segment between lines li and li+1. We model the conditional probability p(y|i) using
logistic regression with two different types of features: (1) repeated patterns in lyrics

and (2) textual expressions appearing at the line boundaries.

3.3.1 Repeated Patterns

We propose four subtypes of repeated pattern features (RPF1, RPF2, RPF3, and RPF4)
corresponding to the four hypotheses presented in Section 3.2.2. Here, matrix M de-
notes the SSM of the lyrics. Each element mi,j represents the similarity between lines
li and lj , i.e., mi,j = sim(li, lj).

RPF1 The first repeated pattern (the beginning or end point of a diagonal line in an

SSM is a clue for a segment boundary) is formalized as follows. Given two lines i
and j, we expect that there exists a boundary after both of these lines if the lines are
similar/dissimilar, but i+1 and j+1 are opposite (dissimilar/similar). For a given line
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i, Equation 3.1 enumerates a set of lines j (1 ≤ j ≤ L) where there may be boundaries
after line i and every line j:

gλ(i) = {j | (mi,j − λ)(mi+1,j+1 − λ) < 0} (3.1)

Here, λ is a threshold for detecting similarity and dissimilarity. The left side of Figure
3.3 illustrates four likely boundaries for line i = 24 with the threshold λ = 0.6:
g0.6(24) = {8, 12, 20, 28}.

Using the function gλ(i), we define feature functions f (RPF1#)
λ (i) and f (RPF1v)

λ (i)

that assess how likely it is that line i is located at the beginning or end points of diagonal
lines in the SSM:

f
(RPF1#)
λ (i) = |gλ(i)| (3.2)

f
(RPF1v)
λ (i) =

1

|gλ(i)|
∑

j∈gλ(i)

|mi,j −mi+1,j+1| (3.3)

To sum up, f (RPF1#)
λ (i) counts the number of likely boundaries after line i and other

lines j, and f (RPF1v)
λ (i) computes the mean of the similarity differences at likely bound-

aries after line i and other lines j. We define multiple features with different threshold
values λ.

RPF2 The second repeated pattern (a segment boundary does not appear inside of a

diagonal line of an SSM) is formalized analogously to RPF1. Given two lines i and j,
we expect that lines i and j are points of continuity if lines i and j are similar and i+1

and j + 1 are also similar. For a given line i, Equation 3.4 enumerates a set of lines j
(1 ≤ j ≤ L) where i and j are points of continuity:

cλ(i) = {j | mi,j ≥ λ ∧mi+1,j+1 ≥ λ} (3.4)

The middle of Figure 3.3 shows an example of continuous points (here, c0.6(10) =

{22, 26} in this example).
Similar to RPF1, Equations 3.5 and 3.6 count the number of continuous points and
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Lines 6 and 7 are similar. 
A segment boundary is unlikely 
to appear between lines 6 and 7.

Some diagonal lines end at line 24 and begin at 
line 25. A segment boundary is likely to appear 
between lines 24 and 25.

Two diagonal lines span over 
lines 9 to 12. Lines 9 to 12 are 
not likely to divide.

Figure 3.3: Repeated pattern features: RPF1, RPF2, and RPF3.

6 words between ith line and i+1th line
TF1_Uni-gram(-3) = “oh”
TF1_Uni-gram(-2) = “oh”
TF1_Uni-gram(-1) = “!!”

TF1_Bi-gram(-2) = “oh_oh”
TF1_Bi-gram(-1) = “oh_!!”
TF1_Bi-gram(0) = “!!_I”

TF1_Uni-gram(1) = “I”
TF1_Uni-gram(2) = “love”
TF1_Uni-gram(3) = “you”

TF1_Bi-gram(1) = “I_love”
TF1_Bi-gram(2) = “love_you”

TF1_Tri-gram(-2) = “oh_oh_!!”
TF1_Tri-gram(-1) = “oh_!!_I”
TF1_Tri-gram(1) = “!!_I_love”
TF1_Tri-gram(2) = “I_love_you”

Position            -3        -2       -1        0 (Line Break)        1          2           3
Word                oh       oh       !!                                         I        love      you
POS tag           UH     UH    SYM                                  PRP     VBP      PRP

Textual Feature 1 (TF1): 15 word N-grams
TF2_Uni-gram(-3) = “UH”
TF2_Uni-gram(-2) = “UH”
TF2_Uni-gram(-1) = “SYM”

TF2_Bi-gram(-2) = “UH_UH”
TF2_Bi-gram(-1) = “UH_SYM”
TF2_Bi-gram(0) = “SYM_PRP”

TF2_Uni-gram(1) = “PRP”
TF2_Uni-gram(2) = “VBP”
TF2_Uni-gram(3) = “PRP”

TF2_Bi-gram(1) = “PRP_VBP”
TF2_Bi-gram(2) = “VBP_PRP”

TF2_Tri-gram(-2) = “UH_UH_SYM”
TF2_Tri-gram(-1) = “UH_SYM_PRP”
TF2_Tri-gram(1) = “SYM_PRP_VBP”
TF2_Tri-gram(2) = “PRP_VBP_PRP”

Textual Feature 2 (TF2): 15 Part of speech N-grams

Figure 3.4: Textual features: TF1 and TF2.

the mean of the similarity differences at continuous points, respectively.

f
(RPF2#)
λ (i) = |cλ(i)| (3.5)

f
(RPF2v)
λ (i) =

1

|cλ(i)|
∑

j∈cλ(i)

|mi,j −mi+1,j+1| (3.6)

RPF3 (similarity with a subsequent line) RPF3 encodes the third repeated pattern,
i.e., similar adjacent lines belong to the same segment. For a given line index i, this is
quantified by the similarity sim(li, li+1):

f (RPF3)(i) = mi,i+1 (3.7)
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The right of Figure 3.3 shows an example where RPF3 indicates a continuation be-
tween lines 6 and 7.

RPF4 (similarity with the first and last lines) The fourth repeated pattern (i.e., a

line similar to the first line of the lyrics is likely to be the first line of a segment, and
a line similar to the last line of the lyrics is likely to be the last line of a segment) is
encoded by two feature functions f (RPF4b)(i) and f (RPF4e)(i):

f (RPF4b)(i) = mi,1 (3.8)

f (RPF4e)(i) = mi,n (3.9)

3.3.2 Textual Expressions

Some textual expressions appear selectively at the beginning or end of a segment. For
example, the phrase “So I” often appears at the beginning of a line but rarely appears
at the beginning of a segment. To exploit such indications of the beginnings/ends of
lines, we propose two textual features (TF1 and TF2).

TF1 (word n-grams at a line boundary) A phrase like “oh oh !!” tends to appear
at the end of a segment. In contrast, a phrase like “I’m sorry” may appear at the
beginning of a segment. Previous study on sentence boundary estimation has often
used n-grams to detect segment boundaries [Beeferman et al., 1999]. Thus, we define
word n-gram features (for n = 1, 2, 3) around a line boundary. More specifically, we
define 15 n-gram features at different positions, listed and illustrated with an example
in Figure 3.4.

TF2 (part of speech n-grams around a line boundary) Parts of speech (POS),
such as particles or determiners do not tend to appear at the end of a sentence, and
conjunctions do not appear at the beginning of a sentence. We exploit these tendencies
by defining features for POS. Similar to TF1, we define POS n-gram features (for
n = 1, 2, 3) around a line boundary. Specifically, we define 15 POS n-gram features at
different positions, as shown in Figure 3.4.
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3.4 Experiment

We sampled 105,833 English songs from the Music Lyrics Database v.1.2.7 so that
each song contains at least five segments. The resulting dataset includes 2,788,079
candidate boundaries and 517,234 actual boundaries. We then split these songs into
training (60%), development (20%), and test (20%) sets. For feature extraction, we
used the Stanford POS Tagger [Toutanova et al., 2003]. To train the segment boundary
classifiers, we used the Classias implementation [Okazaki, 2009] of L2-regularized
logistic regression. By employing multiple threshold values of λ from 0.1 to 0.9 with
a step size of 0.1, we used them all together.

3.4.1 Performance Evaluation Metrics

We used two sets of metrics to evaluate the performance of each model for the task.
One was standardly used in audio music segmentation, i.e., the precision, recall, and
F-measure of identifying segment boundaries. Precision is the ratio of correctly pre-
dicted boundaries over all predicted boundaries, recall is the ratio of correctly pre-
dicted boundaries over all true boundaries, and F-measure is the harmonic mean of
precision and recall. The other set was standardly used in text segmentation literature:
Pk [Beeferman et al., 1999] and WindowDiff (WD) [Pevzner and Hearst, 2002]. Pk is
the probability of segmentation error that evaluates whether two lines li and lj in lyrics
fewer than k lines apart are incorrectly concatenated or divided by a segmentation
model. Pk is considered a more suitable measure than F-measure in text segmentation
because it assigns partial credit to nearly correct estimations. WD is a variant of Pk

that resolves a problem of Pk by penalizing false positives. We set the window size k
of Pk and WD to one-half the average line length of the correct segments for each song
in the test set.

3.4.2 Contributions of Different Features

We investigated the contribution of each feature set by conducting ablation tests over
different combinations of feature sets. The results are shown in Table 3.2. Random

denotes our baseline, a model selecting boundaries with uniform probability P =

0.186, the true frequency of boundaries (P = 517, 234/2, 788, 079). RPF∗ and TF∗
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Table 3.2: Results of ablation tests

Method Pk (%) WD (%) Precision (%) Recall (%) F-measure (%)
Random 49.35 53.67 14.29 12.50 13.33
TF∗ 40.51 44.65 34.95 31.66 33.22
RPF∗ 27.00 32.16 56.05 59.42 57.68
Proposed (ALL) 27.22 32.22 56.58 60.65 58.55
Ablation test
−RPF1 31.38 35.89 51.95 51.32 51.63
−RPF2 30.62 36.73 49.22 57.64 53.10
−RPF3 27.46 32.71 55.59 59.40 57.43
−RPF4 27.64 32.68 55.73 59.94 57.76
−TF1 Uni gram 27.00 31.95 56.90 60.73 58.75
−TF1 Bi gram 26.84 31.88 56.96 61.41 59.10
−TF1 Tri gram 27.32 32.53 55.88 61.42 58.52
−TF2 Uni gram 28.24 31.84 59.40 51.91 55.40
−TF2 Bi gram 26.89 31.25 58.86 58.12 58.49
−TF2 Tri gram 26.67 31.40 57.91 60.23 59.05
−TF1 {Uni,Bi} gram,

TF2 Tri gram 26.58 31.55 57.40 61.21 59.24
(Best Performance)

denote the models with all repeated pattern features and all textual features, respec-
tively. Proposed indicates the performance of the model with all proposed features.
At the top of Table 3.2, the F-measure of the proposed method was 58.44, or 45 points
higher than that of the random baseline.

The results of the ablation tests are shown in the bottom of Table 3.2. For example,
“−RPF1” indicates that we ablated the feature RPF1 from the proposed method, which
uses all of the features. Our best-performing model achieved an F-measure of 59.24
by excluding the TF1 unigram and bigram and TF2 trigram features.

The table shows that each type of our RPF features contributes to performance.
Note that these four types are not redundant, and each of our hypotheses yielded posi-
tive results. Note that removing RPF1 and RPF2, which are intended to capture long-
range repeated patterns, decreased the F-measure by 6.92 and 5.45 points, respectively.
This result supports the hypothesis that sequences of repeated lines (diagonal lines in
the SSM) are important clues for modeling lyrics segmentation.

In contrast to results reported in text segmentation literature [Beeferman et al.,
1999], TF features turned out to be ineffective for lyrics segment boundary estimation,
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1: I think of you
2: in the spring when gentle rains turn to showers
3: I think of you
4: when the summer breezes dance through the flowers

1

2
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5: and they whisper your name to me
6: and they bring back these memories
7: and I wonder how I ever lived before
8: without the love in my life that you bring me

9: you are the world to me
10: you're all I see
11: my love for you is more than a simple song
12: it's a symphony growing strong yes stronger over 

time
13: you are the world to me
14: you're all I see
15: your love means more than all the diamonds or 

gold that shines
16: that man could find in a lifetime

17: I think of you
18: when the autumn leaves are painted in color
19: I think of you
20: on those snowy winter nights made for lovers

21: and it ' s not just the memories
22: you and I have a history
23: and I wonder how I ever made it through
24: without the light in my life that you bring me
25: you are the world to me
26: you're all I see
27: my love for you is more than a simple song
28: it ' s a symphony growing strong yes stronger over 

time
29: you are the world to me
30: you're all I see
31: your love means more than all the diamonds or 

gold that shines
32: that man could find in a lifetime

Figure 3.5: Examples of false positives (title of lyrics: I think of you (RWC-MDB-P-
2001 No.87 from RWC Music Database [Goto et al., 2002])). White horizontal lines
indicate true segment boundaries. Orange horizontal dashed lines indicate predicted
boundaries.

except for TF2 unigram features. One possible reason is that there is a larger variety of
expressions used at the beginning or end of a segment in lyrics compared with prose
texts. Still, the inclusion of some textual features did lift the performance of the RPF*
model by nearly 2 points. Further investigation of TF features is left for our future
work.

3.4.3 Error Analysis

Figures 3.5 and 3.6 give two examples of lyrics and SSMs that illustrate typical errors
of our best model. Horizontal dashed lines depict predicted boundaries. As shown in
Figure 3.5, the model sometimes overly divides a true segment into segments as small
as single lines, false positives that appear to be due to occurrences of repeated single
lines (here, lines 1, 3, 17 and 19). This is not a trivial problem because repetitions of
single lines sometimes serve as an important clue. In fact, when restricting diagonal
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1: I can believe
2: I've seen you here tonight
3: a girl so beautiful
4: hanging from your arm
5: don't kiss me I'm telling you
6: I never wanna see you again
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7: you don't need to say goodbye.
8: I just ask one thing now
9: wipe out all your memories
10: don't you try to change my mind
11: get out of my life
12: don't lie to me! I know your heart is 

untrue
13: don't make me suffer any more!
14: don't try to change to me now
15: I've made up my mind.
16: my last pretence at pride!
17: I really need you to go
18: you told me that you loved me
19: for now and all time
20: you promised me the truth
21: never to lie but I see you aren't what 

you seem
22: I want you to leave me
23: you don't need to say goodbye.
24: I just ask one thing now
25: wipe out all your memories
26: don't you try to change my mind
27: get out of my life
28: don't lie to me! I know your heart is 

untrue
29: don't make me suffer any more!
30: don't try to change to me now
31: I've made up my mind.
32: my last pretence at pride!
33: I really need you to go

Figure 3.6: Examples of false negatives (title of lyrics: Don’t lie to me (RWC-MDB-
P-2001 No.97 from RWC Music Database [Goto et al., 2002])). White horizontal lines
indicate true segment boundaries. Orange horizontal dashed lines indicate predicted
boundaries.

lines to be of the length of two or more lines, we considerably lose recall while gaining
precision. More investigation is needed for further improvement.

In contrast to the case of Figure 3.5, Figure 3.6 shows a typical example of false
negatives. We missed a boundary between, for example, lines 11 and 12. For this
boundary, we cannot find any clear repeated pattern indicator. Such cases suggest a
limitation of repeated pattern features and the need for further refinement of the model.
One direction is to incorporate semantics-oriented state-of-the-art techniques for prose
text segmentation such as topic tiling [Riedl and Biemann, 2012].
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3.5 Conclusion

This chapter has addressed the issue of modeling discourse segments in lyrics in order
to understand and model the discourse-related nature of lyrics. We first conducted a
large-scale corpus study into the discourse segments of lyrics, in which we examined
our primary hypothesis that discourse segmentations strongly correlate with repeated
patterns. To the best of our knowledge, this is the first study that takes a data-driven
approach to explore the discourse structure of lyrics in relation to repeated patterns.
We then proposed a task to automatically identify segment boundaries in lyrics and ex-
plored machine learning-based models for the task with repeated pattern features and
textual features. The results of our empirical experiments show the importance of cap-
turing repeated patterns in predicting the boundaries of discourse segments in lyrics.
We need to refine the model further by incorporating topic/semantic information, to
extend the modeling of lyric discourse by combining it with audio musical structure,
and to embed a resulting model into application systems, such as lyrics generation
systems and lyrics composition support systems.
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Chapter 4

Modeling Storylines

In the previous chapter, we model the discourse structure of lyrics from the view-
point of repeated patterns. However, using repeated patterns is insufficient to model
discourse structures and it is necessary to capture the semantics of lyrics such as story-
lines between segments. This chapter focus on two notions which characterize lyrical
discourse: storyline and theme. Both notions are described in textbooks on lyrics writ-
ing [Austin et al., 2010; Ueda, 2010].

A segment of lyrics is assumed to have its own purpose, which corresponds to a
discourse segment purpose in terms of discourse analysis research [Grosz and Sidner,
1986]. In Figure 1.2, for example, Segment 6 introduces the story, Segment 7 retro-
spects a past event, and Segments 8 and 9 express an emotion which arises from the
retrospection. We model a storyline as such a chain of coherent shifts between dis-
course segment purposes. Specifically, we capture typical types of discourse segment
purposes as latent topics by applying topic modeling techniques [Blei et al., 2003]
to a large collection of lyrical texts, and then model typical storylines of lyrics as a
probability distribution over the transition of latent topics over successive segments
(Figure 4.1). On top of storylines, we additionally consider the notion of theme, which
we assume to be an entire discourse purpose. We assume that each song has at least
one theme and each theme affects the distribution over both topic transitions and word
choices. For the lyrics in Figure 1.2, for example, our model provides a result with
which we can understand its theme as ”Sweet Love” and estimates the theme-sensitive

distributions over topic transitions and word choices.
In order to examine how well our model of lyrics fit real-world data, we experi-
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Figure 4.1: The notion of storylines and themes in lyrics.

ment with two distinct prediction tasks, word prediction and segment order prediction,
and compare four variant models with different settings for considering storylines and
themes. In the experiments, the models were trained with unsupervised learning over a
large-scale corpus of popular music lyrics for both English and Japanese (around 100
thousand songs). The results demonstrate that the consideration of storylines (topic
transitions) and themes contributes to improved prediction performance.

4.1 Overview of Topic Sequence Model

Transition of topics has been intensively studied in the context of topic modeling for se-
quential text data such as newspapers, weblogs, and conversations. Iwata et al. [2009]
proposed a Topic Tracking Model (TTM), an extension of LDA, to models topic se-
quences. In the TTM, the topic distribution changes at each time. The TTM analyzes
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changes in user interest (e.g., interest in weblogs and microblogs). Blei and Lafferty
[2006] proposed the Dynamic Topic Model (DTM), which is similar to the TTM. In
the DTM, the prior distribution of topic distribution changes at each time. The DTM
analyzes changes in topic over time (e.g., topics in news articles and academic papers).
The TTM and DTM have a topic distribution for a specific date (e.g., the DTM can
train the topic distribution in a given period). Although the DTM and TTM can repre-
sent the topic sequence, extending these model to lyrics is difficult because, in lyrics,
a segment’s topic is time-independent.

Barzilay and Lee [2004] proposed Content Model (CM), which is typically used for
discourse analysis, to model topic sequences in documents without date information.
CMs are sentence-level hidden Markov models that capture the sequential topic struc-
ture of a news event, such as earthquakes. Several studies extended Barzilay’s model
to dialog acts (e.g., questions and responses) [Ritter et al., 2010; Zhai and Williams,
2014]. Ritter et al. [2010] assumed that an observed sentence is generated from either a
dialog act-specific language model (e.g., questions and responses) or a dialog-specific
language model (e.g., food and music). Zhai and Williams [2014] assumed that an ob-
served word is generated from either a CM or an LDA and modeled the latent structure
in task-oriented dialog. In their study, the sequential structure of dialog is modeled as
a transition distribution.

We share the core concept as these studies and apply a CM to lyrics to model
storylines (See Section 4.2.2). We then extend the CM to capture theme and investigate
the effects of considering themes on top of storylines in our experiments.

4.2 Model Construction

Our final objective is to model the storyline of lyrics. However, precise modeling and
representation of storylines remain an open issue. As mentioned previously, lyricists
consider the order of topics when creating storylines; if the order changes, the content
of the lyrics also changes. Therefore, we assume that a better storyline model can be
used to predict the order of segments and the words in lyrics.

Based on the above assumption, we explore different topic sequence models to
improve prediction performance. Lyricists often consider the order of topics when
they create storylines; therefore, we assume that topic sequences can be represented as
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Figure 4.2: Plate notation of base models (a, b) and the proposed combination models
(c, d). The shaded nodes are observed variables, dots are hyperparameters, x, y, and z
are latent variables, and ψ, θ, ϕ, and λ are probability distributions.

a probabilistic distribution of transitions over latent states. Since lyricists often assign
a certain role to each segment, we assume that the segment is in one latent variable
for a given lyrical content and words are derived from each latent state. Moreover, we
assume that lyrics in a song are in one latent variable (i.e., a theme) because lyricists
often create storylines according to themes. Based on the above idea, we prepared
four data-driven Bayesian models. By comparing the performance of the models, we
investigate which encoding method can better model the storyline.

In the following, we first describe the notations used in this study and two baseline
methods for modeling the storyline. Finally, we propose two extended combination
models to handle theme and storyline simultaneously.

4.2.1 Preliminaries

We assume that we have a set of M lyrics (songs). The lyric is an index between 1 and
M , where M is the number of songs. The m-th lyric contains Sm segments and has a
single theme denoted as the latent variable ym. The theme is an index between 1 and I ,
where I is the number of themes. The s-th segment contains a bag of words denoted as
{wm,s,1, wm,s,2, ..., wm,s,Nm,s}, where wm,s,n is an index between 1 and V , where V is
the vocabulary size. Nm,s is the number of words in the s-th segment of the m-th lyric.
In addition, each segment has a single topic denoted as the latent variable zm,s. The
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topic is an index between 1 and J , where J is the number of topics. The storyline is
represented as the sequence of a segment’s topic denoted as zm = zm,1, zm,2, ..., zm,Sm .

4.2.2 Base Model 1: Content Model

We use the CM Barzilay and Lee [2004] as a baseline model for the storyline of lyrics
because this model is the simplest topic transition model that satisfies our assump-
tion that the topic sequence can be encoded as probabilistic latent state transition. As
shown in Figure 5.6(a), we assume that the storyline can be generated from a topic
transition distribution θz. For the s-th segment in the m-th lyric, each topic zm,s is gen-
erated from the previous topic zm,s−1 via the transition probability P (zm,s|θzm,s−1).
This probability is calculated by J-dimensional multinomial distribution θz drawn
from Dirichlet distributions with symmetric hyperparameter α. Then the word wm,s,n

in each segment is generated from each topic zm,s via topic-specific generative prob-
ability P (wm,s,n|ϕzm,s). This probability is calculated by V -dimensional multinomial
distribution ϕz drawn from Dirichlet distributions with symmetric hyperparameter β.

4.2.3 Base Model 2: Mixture of Segment Model

To investigate the effects of capturing topic transitions, we also build a model that re-
moves topic transitions from the CM (Figure 5.6(b)). We refer to this model as the
Mixture of Segment Model (MSM). In the MSM, each segment’s topic zm,s is gen-
erated via the probability without transition P (zm,s|θ). This probability is calculated
by J-dimensional multinomial distribution θ drawn from Dirichlet distributions with
symmetric hyperparameter α.

4.2.4 Proposed Model 1: Mixture of Unigram and Content Model

To verify that both theme and topic transition are useful for modeling the storyline,
we propose a model that combines the theme and the topic transition simultaneously,
and we compare this model to the baseline models. The idea behind this combined
modeling is that we can mix a theme-specific model and the topic transition model
(i.e., the CM) using linear interpolation assuming that words in lyrics are dependent
on both the theme and the topic.
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We use the Mixture of Unigram Model (MUM) [Nigam et al., 2000] as the theme-
specific model because it is the simplest model that satisfies our assumption; lyrics in

a song are in a single latent variables (i.e., the theme). The MUM assumes that theme
ym is drawn from an I-dimensional theme distribution ψ and all words in the lyrics are
drawn from V -dimensional multinomial distribution ϕym as shown in Figure 5.6(c).

In the proposed MUM-CM, we define a binary variable xm,s,n that uses either the
MUM or the CM when the word wm,s,n is generated. Here, if xm,s,n = 0, the word
is drawn from the MUM’s word distribution ϕy, and if xm,s,n = 1, the word is drawn
from the CM’s word distribution ϕz. The binary variable x is drawn from a Bernoulli
distribution λm drawn from a beta distribution with symmetric hyperparameter η. In
other words, the words depend on both theme and topic, and the MUM and CM are
defined independently in this model.

Figure 5.6(c) shows the plate notation of the MUM-CM. The generation process in
the MUM-CM is as follows.

1. Draw a theme distribution ψ ∼ Dir(ϵ)

2. For each theme y = 1, 2, ..., I:
• Draw a distribution of theme words ϕy ∼ Dir(ζ)

3. For each topic z = 1, 2, ..., J :
• Draw a topic transition distribution θz ∼ Dir(α)

• Draw a distribution of topic words ϕz ∼ Dir(β)

4. For each lyric m = 1, 2, ...,M :
• Draw a theme ym ∼Multi(ψ)

• Draw a distribution of binary variable
λm ∼ Beta(η)

• For each segment s = 1, 2, ..., Sm:
– Draw a topic zm,s ∼Multi(θzm,s−1)

– For the n-th word wm,s,n in segment s:
∗ Draw a binary variable
xm,s,n ∼ Bernoulli(λm)

∗ If xm,s,n = 0:
· Draw a word wm,s,n ∼Multi(ϕym)

∗ If xm,s,n = 1:
· Draw a word wm,s,n ∼Multi(ϕzm,s)
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Here, α, β, ϵ, and ζ are the symmetric hyperparameters of the Dirichlet distribution and
η is the symmetric hyperparameter of the beta distribution. The generation probability
of the m-th lyric is calculated as follows:

P (m) = P (x = 0|λm)
I∑

y=1

(
P (y|ψ)

Sm∏
s=1

Nm,s∏
n=1

P (wm,s,n|ϕy)
)

+P (x = 1|λm)
∑
zall

Sm∏
s=1

(
P (zs|θzs−1)

Nm,s∏
n=1

P (wm,s,n|ϕzs)
)

(4.1)

where zall denotes all possible topic sequences. If s = 1, θz0 denotes the initial state
probabilities. This equation represents that a word wm,s,n is generated from the MUM
according to P (x = 0|λm) or is generated from the CM according to P (x = 1|λm).

We use collapsed Gibbs sampling for model inference in the MUM-CM. For a lyric
m, we present the conditional probability of theme ym for sampling:

P (ym = i|y¬m,w, ϵ, ζ) ∝ P (ym = i|y¬m, ϵ) · P (wm|w¬m, ym = i, y¬m, ζ) (4.2)

where y¬m denotes the topic set except the m-th lyric, w denotes the word set in the
training corpus, wm denotes the word set in the m-th lyric, and w¬m denotes the word
set in the training corpus except wm.

We sample topic zm,s for a segment s of lyric m according to the following transi-
tion distribution:

P (zm,s = j|z¬(m,s),w, α, β) ∝ P (zm,s = j|z¬(m,s), α)

·P (wm,s|w¬(m,s), zm,s = j, z¬(m,s), β) (4.3)

where z¬(m,s) denotes the topic set except the s-th segment in the m-th lyric, wm,s

denotes the word set in the s-th segment of the m-th lyric, and w¬(m,s) denotes the
word set in the training corpus except wm,s.

For the n-th word in the segment s in the m-th lyric, we present the conditional
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Algorithm 1 Model inference for the MUM-CM
1: Initialize parameters in the MUM-CM
2: for each iteration do
3: for each lyrics m in the corpus do
4: sample ym according to Eq. 4.2
5: for each segment s in m do
6: sample zm,s according to Eq. 4.3
7: for each word w in s do
8: sample x according to Eq. 4.4
9: end for

10: end for
11: end for
12: update hyperparameters by using fixed point iteration
13: end for

probability of its binary variables xm,s,n for sampling:

P (xm,s,n = k|x¬(m,s,n),w, η, ζ, β) ∝ P (xm,s,n = k|x¬(m,s,n), η)

·P (wm,s,n|w¬(m,s,n), xm,s,n = k, x¬(m,s,n), ζ, β) (4.4)

where x¬(m,s,n) denotes the binary variable set except xm,s,n. Note that the value of k
is always 0 or 1.

We estimate hyperparameters α, β, ϵ, ζ , and η using fixed point iteration [Minka,
2000]. For each sampling iteration, the latent variables x, y, and z are sampled.
Then, new hyperparameters are estimated such that the joint probabilities P (w, y|ϵ, ζ),
P (w, z|α, β), and P (w, x|η) are maximized, where y, z, and x denote the latent vari-
able sets in the training corpus.

In summary, the model and parameter inference for the MUM-CM is shown in
Algorithm 1, and the update equations for Gibbs sampling are given in A.1.

4.2.5 Proposed Model 2: Mixture of Content Model

In the MUM-CM, we assume that theme and storyline are generated independently.
On the other hand, as mentioned in the beginning of this chapter, lyricists often create
storylines according to themes. Therefore, here, we propose the Mixture of Content
Model (MCM) to verify this intuition. In the MCM, when a theme y is generated, a
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storyline is generated using the theme-specific topic transition distribution θy,z.
Figure 5.6(d) shows the plate notation of the MCM. The MCM generation process

is as follows.

1. Draw a theme distribution ψ ∼ Dir(ϵ)

2. For each topic z = 1, 2, ..., J :
• Draw a word distribution ϕz ∼ Dir(β)

• For each theme y = 1, 2, ..., I:
– Draw a topic distribution θy,z ∼ Dir(α)

3. For each lyric m = 1, 2, ...,M :
• Draw a theme ym ∼Multi(ψ)

• For each segment s = 1, 2, ..., Sm:
– Draw a topic zm,s ∼Multi(θym,zm,s−1)

– For n-th word wm,s,n in segment s:
∗ Draw a word wm,s,n ∼Multi(ϕzm,s)

The generation probability of lyric m is calculated as follows:

P (m) =
I∑

y=1

(
P (y|ψ)

∑
zall

Sm∏
s=1

(
P (zs|θy,zs−1)

Nm,s,n∏
n=1

P (wm,s,n|ϕzs)
))

(4.5)

where zall denotes all possible topic sequences. If z = 1, θy,z0 denotes the initial state
probabilities. In this model, P (y|ψ) represents the mixture ratio of the CMs.

We use collapsed Gibbs sampling for model inference in the MCM. For the m-th
lyric, we present the conditional probability of theme ym for sampling:

P (ym = i|y¬m, z, α, ϵ) ∝ P (ym = i|y¬m, ϵ) · P (zm|z¬m, ym = i, y¬m, α) (4.6)

where z denotes the topic set in the training corpus, zm denotes the topic sequence of
lyric m (i.e., zm,1, zm,2, ..., zm,Sm), and z¬m denotes the topic set in the training corpus
except zm.

In the MCM, topic sequence zm depends on theme ym, as shown in Figure 5.6(d).
Therefore, when a new theme y is sampled, the MCM must resample all topic se-
quences in lyric m simultaneously. To sample topic sequence zm, we present the fol-
lowing conditional probability:

P (zm|z¬m, y,w, α, β) ∝ P (zm|z¬m, y, α) · P (wm|w¬m, zm, z¬m, β) (4.7)
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Algorithm 2 Model inference for the MCM
1: Initialize parameters in the MCM
2: for each iteration do
3: for each lyrics m in the corpus do
4: sample ym according to Eq. 4.6
5: sample zm according to Eq. 4.7 by Forward Filtering-Backward Sampling
6: end for
7: update hyperparameters by using fixed point iteration
8: end for

However, enumerating all possible topic sequences is infeasible; thus, we use a For-
ward Filtering-Backward Sampling (FFBS) method [Scott, 2002] that can sample all
latent states in a first-order Markov sequence using dynamic programming. In the
FFBS method, the marginal probabilities of a topic sequence are calculated in the for-
ward filtering step. Then, topics are sampled from the obtained probabilities in the
backward sampling step. The hyperparameters α, β, and ϵ are estimated using fixed
point iteration [Minka, 2000].

In summary, the model and parameter inference for the MCM is shown in Algo-
rithm 2, and the update equations for Gibbs sampling are given in A.2.

4.3 Experiments

Here, we examine the effectiveness of the proposed models. First, we verify that topic
transitions are useful for modeling storyline by evaluating the word prediction perfor-
mance among different models. We then verify that the storyline correlates with the
theme performing a segment order prediction task. Finally, we evaluate the proposed
models qualitatively by exploring the trained topic transition diagrams.

In our experiments, we used two datasets that contain popular English and Japanese.
In this study, we use an English lyrics database1 and a corpus of Japanese lyrics col-
lected from the Web. One issue that needed to be addressed prior to conducting the
experiments was that no existing lyric corpora annotate verse-bridge-chorus tags. In
this thesis, we assume that segment boundaries are indicated by empty lines inserted
by lyricists. In addition, we assume that lyrics with storylines are divided into 6 to 18

1Music Lyrics Database. http://www.odditysoftware.com/page-datasales1.htm
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Figure 4.4: Log-likelihood on Japanese test
data under different segment topic settings
(the number of themes I is fixed at 30).

segments. The resulting dataset includes 80777 lyrics in the English dataset and 16563
lyrics in the Japanese dataset. We randomly split each collection into 60-20-20% divi-
sions to construct the training, development, and test datasets.

We trained English-only and Japanese-only models. The collapsed Gibbs sampling
ran for 1000 iterations, and the hyperparameters were updated for each Gibbs iteration.
For training, we only used content words (nouns, verbs, and adjectives) because we
assume that the theme and storyline can be represented using content words.

To extract content words, we use Stanford CoreNLP for English words [Manning
et al., 2014] and the MeCab part-of-speech parser for Japanese words [Kudo et al.,
2004].

4.3.1 Word Prediction Task

To verify that the topic transition and theme are useful properties for storyline mod-
eling, we performed a word prediction task, which measures the test set generation
probability. We assume that a better prediction model can capture the storyline of
lyrics more effectively. In this experiment, we fixed the number of themes to 30 and
computed the test set log-likelihood over the number of segment topics to compare
different models.

Figure 4.3 and 4.4 show the English and Japanese test set log-likelihood under dif-
ferent segment topic settings. As can be seen, the CM outperforms the MSM, which
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Table 4.1: Parameter tuning results with the development set.

Data Model I: # of themes J : # of topics
English Base Model 1: CM none 30
lyrics Proposed Model 1: MUM-CM 120 4

Proposed Model 2: MCM 70 11
Japanese Base Model 1: CM none 15

lyrics Proposed Model 1: MUM-CM 30 8
Proposed Model 2: MCM 50 7

indicates that typical storylines were effectively captured as the probabilistic distribu-
tion of transition over latent topics of segments. Note that the proposed MUM-CM
achieves the best performance, which indicates that a better storyline model can be
constructed by assuming that the words in lyrics are generated from both theme and
topic. The MCM, however, demonstrates only comparable performance to the CM
despite that the MCM has a richer parameter space of topic transition distributions.

4.3.2 Segment Order Prediction Task

In this section, we verify that storyline correlates with theme. Here, we use the order
test metric [Lapata, 2006], which is used to measure the predictive power of the se-
quential structure [Ritter et al., 2010; Zhai and Williams, 2014]. With the test order
metric, the model predicts a reference segment order from all possible segment orders.
However, enumerating all possible orders is infeasible; thus, we use the approximation
method proposed by Zhai and Williams [2014]:

1. Select N permutations randomly from test data except reference order A.

2. Calculate the N + 1 document generative probabilities P (m) whose order is A
or N permutations.

3. Choose the hypothesis order A′ whose generative probability is the best value in
the N + 1 orders.

4. Compare the hypothesis orderA′ with the reference orderA to calculate Kendall’s
tau:
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τ =
c+(A,A′)− c−(A,A′)

T (T − 1)/2
(4.8)

where c+(A,A′) denotes the number of correct pairwise orders, c−(A,A′) denotes the
number of incorrect pairwise orders, and T denotes the number of segments in a lyric.
Here, N = 50. This metric ranges from +1 to −1, where +1 indicates that the model
selects the reference order and −1 indicates that model selects the reverse order. In
other words, a higher value indicates that the sequential structure has been modeled
successfully.

To tune the best parameters (i.e., the number of themes I and number of topics J),
we use a grid search on the development set. Table 4.1 shows the parameters for each
model that achieve the best segment order prediction task performance.

As a lower bound baseline, we use a model that randomly selects a hypothesis
order A′ (i.e., this lower bound is equivalent to the performance of Base Model 2 that
does not handle topic transition). To obtain an upper bound for this task, nine Japanese
evaluators selected the most plausible order from six orders that include a reference
order. Here, N = 5 for the human assessments due to cognitive limitations relative
to the number of orders. In this manual evaluation, each evaluator randomly selected
unknown lyrics. As a result, we obtained 93 orders.

Figure 4.5 and 4.6 show Kendall’s tau averaged over all English and Japanese
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test data, respectively. The vertical range shows 95% confidence intervals for the
human assessment results. The experimental results indicate that, compared to the
lower bound, the proposed models that handle topic transition and theme (i.e., the
MUM-CM and MCM) have the predictive power of the sequential structure. This re-
sult shows that topic transition and theme are useful properties for storyline modeling.
The proposed MCM outperformed all other models on both test sets, while the MUM-
CM only demonstrated performance comparable to that of the CM. We also conducted
analysis of variance (ANOVA) followed by post-hoc Tukey tests to investigate the dif-
ferences among these models (p < 0.05), drawing the conclusion that the difference
between the MCM and the other models is statistically significant. These results show
that storyline in lyrics correlates to theme. In contrast to the word prediction task, the
MUM-CM has a similar predictive performance as the CM because the MUM-CM has
only one topic transition distribution to model the order of segments, which is also the
case for the CM.

For Japanese lyrics with N = 5, Figure 4.6 shows that Kendall’s tau for the human
evaluation was 0.58 ± 0.11, while the best performance of the model was 0.35. To
investigate the cause of this difference, we asked the evaluators to write comments on
this task. We found that most evaluators selected a single order by considering the
following tendencies.

• Chorus segments tend to be the most representative, uplifting, and thematic seg-
ments. For example, the chorus often contains interlude words, such as “hey”
and “yo”, and frequently includes the lyrical message, such as “I love you”.
Moreover, the chorus is often the first or last segment; therefore, evaluators tend
to first guess which segment is the chorus.

• Verse segments tend to repeat less frequently than choruses.

The human annotators were able to take these factors into account whereas the pro-
posed models cannot consider verse-bridge-chorus structure. This issue could be ad-
dressed by combining the storyline of lyrics with the musical structure. We believe
this direction will open an intriguing new field for future exploration.
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Table 4.2: Representative words of each topic for English lyrics in MCM@I =
70, J = 11. The topic label indicates our arbitrary interpretation of the representa-
tive words.

z Label Representative words in each topic (top 40 words from P (w|ϕs))
1 Abbreviation ah, mi, dem, di, yuh, man, nah, nuh, gal, fus, work, inna, woman, pon, gim, fi, dat, seh, big, mek,

weh, u, jump, wah, deh, yah, wid, tek, jah, waan, wine, red, !!!, youth, Babylon, ghetto, neva,
hurry, l, nuff

2 Spanish que, de, tu, el, te, lo, se, yo, un, e, si, por, con, como, amor, una, ti, le, quiero, para, sin, mas, esta,
pa, pero, todo, al, solo, las, cuando, hay, voy, corazon, che, soy, je, los, del, vida, tengo

3 Exciting like, hey, dance, uh, ya, right, body, party, put, shake, move, hand, hot, everybody, boy, beat, floor,
c’mon, play, show, ’em, club, bang, drop, huh, lady, bounce, clap, sexy, freak, check, pop, push,
low, top, shawty, boom, step, hip, dj

4 Religious come, day, sing, god, song, lord, hear, Christmas, call, bring, child, new, heaven, beautiful, well,
king, name, Jesus, pray, soul, angel, wish, yes, help, year, bear, happy, people, joy, old, son, Mary,
bell, peace, father, mother, ring, holy, praise, voice

5 Love love, feel, need, heart, hold, give, fall, night, dream, world, eye, light, tonight, shine, little, rain,
fly, sun, touch, inside, fire, sky, kiss, free, sweet, star, cry, burn, true, close, mine, arm, alive, set,
tear, somebody, open, higher, deep, blue

6 Explicit nigga, shit, fuck, bitch, cause, money, niggaz, ass, hit, real, y’, wit, hoe, game, street, em, bout,
fuckin, gettin, rap, gun, blow, hood, kid, pay, damn, catch, block, tryin, aint, thug, motherfucker,
dick, smoke, straight, house, g, talkin, dog, buy

7 Locomotion go, get, let, back, ta, take, keep, home, round, turn, run, rock, ride, long, stop, roll, ready, got,
road, high, slow, far, music, train, start, town, goin, please, drive, control, radio, fight, fast, car,
city, ground, rollin, foot, comin, outta

8 Interlude oh, la, yeah, ooh, da, whoa, ba, ha, doo, woah, yea, ay, ho, ohh, oooh, mmm, ooo, woo, hoo, oo,
dum, ohhh, oh-oh, ahh, ooooh, oooo, wee, la., ohhhh, click, dee, fa, bop, shame, l.a., hmmm, ahhh,
drip, trouble, mm

9 Feeling know, say, time, never, see, make, one, way, think, life, thing, try, find, leave, look, nothing, always,
everything, believe, change, lose, live, mind, much, something, wait, better, ’cause, break, wrong,
lie, hard, end, word, stay, mean, seem, friend, someone, care

10 Love na, wan, gon, baby, girl, want, tell, good, bad, alright, talk, crazy, nobody, cuz, im, ai, babe, bye,
dont, lovin, fine, feelin, worry, pretty, phone, nothin, fun, thinkin, guy, cos, kind, spend, doin, next,
number, sex, treat, cool, honey, cant

11 Life head, walk, face, stand, watch, die, dead, black, sleep, blood, door, wake, line, wall, kill, water,
wind, room, white, sit, hide, grow, bed, fear, lay, rise, hell, sea, meet, scream, pull, death, cut,
window, begin, pass, fill, wear, skin, full

4.3.3 Analysis of Trained Topic Transitions

Our experimental results indicate that topic transition and theme are useful proper-
ties for modeling a storyline. Thus, we are interested in understanding what kinds
of themes and topic transitions our model can acquire. Here, to interpret the pro-
posed MCM, we examine word probabilities P (w|ϕz) and topic transition probability
P (s|θy,z′) and then visualize topic transition diagrams. To clarify our topic transition
analysis, we manually assigned labels to each topic by observing the word list whose
generative probability P (w|ϕz) is a large value. Table 4.2 and 4.3 show the assigned
labels and representative words for the topics in the English and Japanese models,
respectively. For each topic, we list the top 40 words in decreasing order of word
probability P (w|ϕz). Figure 4.7 and 4.8 show the transition diagrams for some themes
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Figure 4.7: Examples of English MCM(I = 70, J = 11) transitions between topics
for each theme (see Table 4.2 for word lists). The theme label indicates our arbitrary
interpretation of the topic transitions.

in the English and Japanese models, respectively. Here, each arrow indicates higher
transition probabilities (P (s|θy,z′) > 0.20), and each square node indicates the topic z.
Note that the initial node ⟨START⟩ indicates the initial state z = 0.

We found the following reasonable storylines with the English model (Figure 4.7).

• In theme y = 10, we see the transition ⟨Life⟩ → ⟨Interlude⟩ → ⟨Feeling⟩. The
topic ⟨Interlude⟩ comprises words such as oh, la, and yeah and acts as a bridge
between the verse and the chorus.

• In theme y = 24, we see that the ⟨ Explicit ⟩ topic tends to shift to ⟨Exciting⟩,
which contains words such as dance, sexy, and pop. This topic sequence appears
frequently in hip hop/rap songs.

• In theme y = 32, we see the transition ⟨Life⟩ → ⟨Feeling⟩ → ⟨Love⟩. We
arbitrarily decided the theme label of this topic transition as “Sweet Love”. Here,
the last topic ⟨Love⟩ tends to shift to the first topic ⟨Life⟩. This indicates that the
model captures the repetition structure (e.g., A-B-C-A-B-C, where each letter
represents a segment).

We also found the following reasonable storylines with the Japanese model (Fig.4.8).

• In theme y = 6, we observe the transition ⟨Scene⟩ → ⟨Lyrical⟩ → ⟨Love⟩, which
is common in love songs.

• In theme y = 12, we see a transition among ⟨Life⟩, ⟨English⟩, and ⟨Exciting⟩,
which often appears in Japanese hip hop/rap songs.
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• In theme y = 14, we see a transition between ⟨Clean⟩ and ⟨Lyrical⟩, which is
commonly seen in hopeful songs.

Although we selected these arbitrary diagrams to represent a reasonable storyline, in
fact, the self-transition diagrams were trained using other themes. Note that the MCM
learns different topic transition distributions according to different themes in an unsu-
pervised manner. This shows that many lyricists consider the topic order and theme as
described in textbooks [Austin et al., 2010; Ueda, 2010].

4.4 Conclusion

This chapter has addressed the issue of modeling the discourse nature of lyrics and
presented the first study aiming at capturing the two common discourse-related no-
tions: storylines and themes. We assumed that a storyline is a chain of transitions over
topics of segments and a song has at least one entire theme. We then hypothesized
that transitions over topics of lyric segments can be captured by a probabilistic topic
model which incorporates a distribution over transitions of latent topics and that such
a distribution of topic transitions is affected by the theme of lyrics.

Aiming to test those hypotheses, this study conducted experiments on the word pre-
diction and segment order prediction tasks exploiting a large-scale corpus of popular
music lyrics for both English and Japanese. The findings we gained from these exper-
iments can be summarized into two respects. First, the models with topic transitions
significantly outperformed the model without topic transitions in word prediction. This
result indicates that typical storylines included in our lyrics datasets were effectively
captured as a probabilistic distribution of transitions over latent topics of segments.
Second, the model incorporating a latent theme variable on top of topic transitions
outperformed the models without such variables in both word prediction and segment
order prediction. From this result, we can conclude that considering the notion of
theme does contribute to the modeling of storylines of lyrics.

This study has also shaped several future directions. First, we believe that our
model can be naturally extended by incorporate more linguistically rich features such
as tense/aspect, semantic classes of content words, sentiment polarity, etc. Second, it is
also an intriguing direction to adopt recently developed word/phrase embeddings [Mikolov
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Table 4.3: Representative words of each topic for Japanese lyrics in MCM@I =
50, J = 7. The topic label indicates our arbitrary interpretation of the representa-
tive words. English words are translated by the authors and original Japanese words
are given in parentheses.

z Label Representative words in each topic: top 40 words from P (w|ϕs)
1 English go, get, let, know, say, night, baby, time, good, way, feel, heart, take, day, dance, make, life, need, party,

come, see, tell, dream, everybody, rock, stop, keep, happy, have, give, tonight, please, world, mind, hand,
shake, rain, jump, try, your

2 Scene town (machi), night (yoru), rain (ame), summer (natsu), come (kuru), window (mado), white (shiroi), snow
(yuki), wait (matsu), room (heya), morning (asa), get back (kaeru), season (kisetsu), fall (huru), spring
(haru), winter (huyu), blow (huku), wave (nami), cold (tumetai), hair (kami), shoulder (kata) , memory
(omoide), back (senaka), run (hashiru), long (nagai), last (saigo), shadow (kage), sleep (nemuru), close
(tojiru), finger (yubi), get wet (nureru), remember (omoidasu), quiet (shizuka), pass (sugiru), cheek (ho),
fall (otiru), breath (iki), open (akeru), car (kuruma)

3 Exciting go (iku), front (mae), no, sound (oto), dance (odoru), nothing (nai), fly (tobu), life (jinsei), can run
(hashireru), begin (hajimaru), proceed (susumu), stand up (tatu), raise (ageru), freedom (jiyu), era (jidai),
serious (maji), head (atama), body (karada), ahead (saki), power (chikara), throw (suteru), fire (hi), carry
(motu), high (hai), take out (dasu), decide (kimeru), ride (noru), speed up (tobasu), Venus, Japan (ni-
hon), maximum (saikou), rhythm (rizumu), non, up, rise (agaru), party (patatii), wall (kabe), companion
(nakama), girl (gaaru), battle (shobu)

4 Love love, love (ai), hug (dakishimeru, daku), kiss, feel (kanjiru), girl, pupil (hitomi), ardent (atsui), look on
(mitsumeru), sweet, hold, lonely, sweet (amai), kiss (kisu), pair (futari), smile, stop (tomeru), miss, sorrow-
ful (setsunai), moon, stop (tomaru), heart (haato), detach (hanasu), overflow (afureru), moment (shunkan),
tempestuous (hagesii), moonlight, shine, lovin, touch (fureru), little, arm (ude), break (kowareru), angel
(tenshi), beating (kodo), mystery (fushgi), destiny, miracle (kiseki), shinin

5 Clean sky (sora), dream (yume), wind (kaze), light (hikari), flower (hana), star (hoshi), disappear (kieru), world
(sekai), sea (umi), future (mirai), far (toi), voice (koe), moon (tsuki), shine (kagayaku), bloom (saku), flow
(nagareru), sun (taiyo), place (basho), blue (aoi), reach (todoku), dark (yami), illuminate (terasu), cloud
(kumo), destiny (eien), unstable (yureru), wing (tsubasa), deep (fukai), song (uta), continue (tuduku), sing
(utau), pass over (koeru), shine (hikaru), look up (miageru), bird (tori), finish (owaru), color (iro), distance
(toku), high (takai), rainbow (niji), be born (umareru)

6 Lyrical now (ima), mind (kokoro), human (hito), heart (mune), believe (shinjiru), word (kotoba), oneself (jibun),
live (ikiru), tear (namida), forget (wasureru), love (aisuru), know (siru), hand (te), cry (naku), tomorrow
(ashita), walk (aruku), change (kawaru), strong (tsuyoi), feeling (kimochi), someday (itsuka), kind (yasasii),
everything (subete), look (mieru), understand (wakaru), can be (nareru), smile (egao), happy (siawase), can
do (dekiru), every day (hibi), outside (soba), crucial (taisetsu), road (michi), eye (me), look for (sagasu),
convey (tutaeru), time (jikan), take leave (hanareru), guard (mamoru), be able to say (ieru)

7 Life good (yoi), say (iu), like (suki), love (koi, daisuki), woman (onna), look (miru), man (otoko), laugh (warau),
do (yaru), today (kyo), think (omou), spirit (ki), face (kao), no good (dame), listen (kiku), phone (denwa),
tonight (konya), friend (tomodachi), reach (tuku), daughter (musume), bad (warui), meet (au), go (iku),
appear (deru), adult (otona), together (issyo), good (umai), consider (kangaeru), die (sinu), stop (yameru),
everyday (mainichi), story (hanashi), talk (hanasu), cheerful (genki), drink (nomu), human (ningen), job
(shigoto), early (hayai)

et al., 2013; Pennington et al., 2014] to capture the semantics of lyrical phrases in a
further sophisticated manner. Third, verse-bridge-chorus structure of a song is also
worth exploring. Our error analysis revealed that the human annotators seemed to be
able to identify verse-bridge-chorus structures and use them to predict segment orders.
Modeling such lyrics-specific global structure of discourse is an intriguing direction of
our future work. Finally, it is also important to direct our attention toward the integra-
tion of linguistic discourse structure of lyrics and music structure of audio signals. In
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Figure 4.8: Examples of Japanese MCM(I = 50, J = 7) transitions between topics
for each theme (see Table 4.3 for word lists). The theme label indicates our arbitrary
interpretation of the topic transitions.

this direction, we believe that recent advances in music structure analysis [Goto, 2006,
etc.] can be an essential enabler.

42



Chapter 5

Modeling Relationship between
Melody and Lyrics

In this chapter, We deeply analyze the correlation between melody and discourse
structure of lyrics, and evaluate proposed model quantitatively, while prior explo-
ration [Nichols et al., 2009] covers only correlations at the prosody level but not struc-
tural correlations of lyrics and melody. This direction of research, however, has never
been promoted partly because it requires a large training dataset consisting of aligned
pairs of lyrics and melody but so far no such data has been available for research.
Therefore, we propose a methodology for creating melody-lyrics alignment data by
leveraging lyrics and their corresponding musical score data on the web. We demon-
strate that we can construct a relatively large-scale alignment data of 1,000 Japanese
songs using this method.

Moreover, we propose novel lyrics generation models that generate lyrics for an en-
tire input melody. We extend a common Recurrent Neural Network Language Model
(RNNLM) Mikolov et al. [2010] so that its output can be conditioned on a featur-
ized input melody. We also demonstrate how the efficiency of the model training can
improve by training the model simultaneously for a mora count prediction subtask.
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Figure 5.1: Automatic melody-lyric alignment using the Needleman-Wunsch algo-
rithm. ⟨BOL⟩ indicates a line boundary.

5.1 Melody-Lyric Alignment Data

Our goal is to create a melody-conditioned language model that captures the correla-
tions between melody patterns and discourse segments of lyrics. The data we need
in this study is a collection of melody-lyric pairs where the melody and lyrics are
aligned at the level not only of note-mora alignment but also of linguistic components
(i.e., word/sentence/paragraph boundaries) of lyrics, as illustrated in the bottom of
Figure 5.1. We create such a dataset by automatically combining two types of data
available from many forum sites: digital music score data for vocal synthesizers (the
top of Figure 5.1) and raw lyric text data (the middle). A digital music score for a
vocal synthesizer specifies a melody score augmented with mora information for each
melody note (See the top of Figure 5.1). Recently, it is becoming increasingly popular
for amateur music composers to upload their songs on Web forum sites, where visitors
can freely play uploaded songs with a vocal synthesizer. Those forum sites can thus
be considered as a useful, yet unexplored source of digital music score data that can
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be used for research purposes. Score data augmented this way is sufficient for a vo-
cal synthesizer to “sing” but is insufficient for our research goal. A lyrics is not just
a sequence of moras but a meaningful sequence of words, which then further consti-
tute a coherent sequence of sentences and paragraphs as discourse. This study aims
for analyzing and modeling the correlations between patterns of melody and such lin-
guistic structure of lyrics. For this purpose, we augment music score data further with
boundaries of lyrics words, lines, and segments, where we assume that sentences and
paragraphs of a lyrics are approximately captured by lines and segments,1 respectively,
of the lyrics in the raw text format.

The integration of digital music scores and raw lyric texts is achieved by (i) ap-
plying a morphological analyzer2 to lyric texts for word segmentation and Chinese
character pronunciation and (ii) aligning music score and lyric text at the moras level
as illustrated in Figure 5.1. For this alignment, We employ the Needleman-Wunsch
algorithm [Needleman and Wunsch, 1970]. This alignment process is reasonably ac-
curate because it fails in principle only in case where the morphological analysis fails
in Chinese character pronunciation, which occurs for only less than 1% of given words.

With this procedure, we obtained 54,181 Japanese raw lyrics texts and 1,000 digital
musical scores from online forum sites; we thus created 1,000 melody-lyrics pairs.
In this data, ⟨BOL⟩ and ⟨BOS⟩ are special symbols denoting a line and a segment
boundary, respectively. For selecting the 1,000 songs, we chose only songs with a high
view count. We refer to these 1,000 melody-lyrics pairs as a melody-lyrics alignment

data 3 and refer to the remaining 53,181 lyrics without melody as a raw lyrics text data.
We split 1,000 melody-lyrics alignments 900:100 into train and test sets. We use

53,181 raw lyrics texts as the train set. In those, we use 20,000 of the most frequent
words whose mora counts are equal to or less than 10, and converted others to a special
symbol ⟨unknown⟩. All the digital music score data we collected are distributed in
the UST format, a common file format designed specifically for recently emerging
computer vocal synthesizers. While we focus on Japanese music in this study, our

1We assume that segment boundaries are indicated by empty lines inserted.
2In order to extract word boundaries and mora information for Japanese lyrics, we apply MeCab

part-of-speech parser [Kudo et al., 2004].
3Due to copyright protection for the music score and raw lyric text data, we cannot release our

melody-lyric alignment data to the public. However, we will publicly release all source URLs (mostly
taken from sites such as http://utaforum.net) of the 1,000 songs.

45



⁄@@
Flute
1

⁄
Fl
5

⁄
Fl
9

⁄
Fl
13

⁄
Fl
17

⁄
Fl
21

⁄
Fl
25

⁄
Fl
29

⁄
Fl
33

⁄
Fl
37

⁄
Fl
41

⁄
Fl
45

) ) ) , ) ) ) ) , ) ) ) ) (

⁄
Fl
49

ひ と り

ho- si wa ka- na- ta      de                 ki- ra- me- ku yo
L                                   L    L      L                L

H     H                H                                       H   H   H   H

星 は 彼方 で 煌めく よ

Figure 5.2: Melody and intonation. “H” indicates high intonation and “L” indicates
low intonation.
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Figure 5.3: Relationship between pit changes and intonation changes.

method for data creation is general enough to be applied to other language formats such
as MusicXML and ABC, because transferring a data format to UST is straightforward.

5.2 Correlations between Melody and Lyrics

In this section, we analyze the correlations between melody and lyrics using Melody-
Lyrics alignment data of 1000 songs created in the previous section. First, we analyze
the correlation between melodic pitch and intonation of lyrics and then analyze the
correlation between notes/rests of melody and lines/segments of lyrics.
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Figure 5.4: Example of boundaries appearing immediately after a rest. ⟨BOS⟩ indi-
cates a segment boundary.

5.2.1 Melody and Intonation

In writing lyrics, it is said that the writer matches the intonation of the lyrics to the pitch
of the melody [Ueda, 2010]. For example in Figure 5.2, the word’s intonation also rises
from “Low” to “High” when the pitch goes up. In this section, we divide the change
of pitch and intonation into three states of “UP”, “DOWN”, and “NO CHANGE”, and
calculate the distribution of change of intonation when the pitch changes. Figure 5.3
shows that the intonation tends to rise when the pitch increases, while the intonation
tends to fall when the pitch decreases. However, these distributions are only about
20%, and the difference between the rate of which intonation rise and the rate of which
intonation fall is only about 5%. Here, we judge that there is no strong restriction on
the correlation between pitch and intonation. Therefore, in this study, this correlation
is ignored in the automatic lyrics generation task.

5.2.2 Melody and Line/Segment Boundaries

We examine two phenomena related to lyric boundaries: (1) the positions of lyric seg-
ment boundaries are biased to melody rest positions, and (2) the probability of bound-
ary occurrence depends on the duration of a rest, i.e., a shorter rest tends to be a word
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boundary and a longer rest tends to be a segment boundary, as shown in Figure 5.4.
All analyses were performed on the training split of the melody-lyric alignment data,
which is described in the dataset section.

For the first phenomenon, we first calculated the distribution of boundary appear-
ances at the positions of melody notes and rests. Here, by the boundary of a line (or
segment), we refer to the position of the beginning of the line (or segment).1 In Fig-
ure 5.4, we say, for example, that the boundary of the first segment beginning “te-ra-shi

te” coincides with Rest#1. The result, shown at the top of Figure 5.5, indicates that line
and segment boundaries are strongly biased to rest positions and are far less likely to
appear at note positions. Words, sentences and paragraphs rarely span beyond a long
melody rest.

The bottom of Figure 5.5 shows the detailed distributions of boundary occurrences
for different durations of melody rests, where durations of 480 and 1920 correspond
to a quarter rest and a whole rest, respectively. The results exhibit a clear, strong
tendency that the boundaries of larger segments tend to coincide more with longer
rests. Whereas this correlation may seem rather trivial, we would like to emphasize
that no prior study provides any quantitative analysis of this phenomenon with this size
of data. It is also important to note that the choice of segment boundaries looks like a
probabilistic process (i.e., not all boundaries are determined by rests of a melody). This
observation suggests the difficulty of describing the correlations of lyrics and melody
in a rule-based fashion and motivates our probabilistic approach as we present below.

5.3 Melody-Conditioned Generation of Lyrics

Our goal is to build a language model that generates fluent lyrics whose discourse
segment fit a given melody in the sense that generated segment boundaries follow the
distribution observed in Section 5.2. We propose to pursue this goal by conditioning
a standard RNNLM with a featurized input melody. We call this model a Melody-

conditioned RNNLM.
The network structure of the model is illustrated in Figure 5.6. Formally, we are

given a melody m = m1,...,mi,...,mI that is a sequence of notes and rests, where

1The beginning of the line/segment and the end of the line/segment are equivalent since there is no
melody between the end and beginning of line/segment.
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(MIDI Tick)

Figure 5.5: Distribution of the number of boundaries in the melody-lyric alignment
data.

m includes a pitch and a duration information. Our model generates lyrics w =

w1,...,wt,...,wT that is a sequence of words and segment boundary symbols: ⟨BOL⟩
and ⟨BOS⟩, special symbols denoting a line and a segment boundary, respectively. For
each time step t, the model outputs a single word or boundary symbol taking a pair of
the previously generated word wt−1 and the musical feature vector nt for the current
word position which includes context window-based features that we describe in the
following section, as input. In this model, we assume that the moras of the generated
words and the notes in the input melody have a one-to-one correspondence. Therefore,
the position of the incoming note/rest for a word position t (referred to as a target note
for t) is uniquely determined by the mora counts of the previously generated words.1

The target note for t is denoted as mi(t) by defining a function i(·) which maps time
step t to the index of the next note in t.

Here, the challenging issue with this model is training. Generally, language models
require a large amount of text data to learn well. Moreover, this is also the case for
learning correlation between rest positions and mora counts. As shown in Figure 5.5,

1Note that our melody-lyrics alignment data used in training does not make this assumption, but we
can still uniquely identify the positions of target notes based on the obtained melody-word alignment.
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Figure 5.6: Melody-conditioned RNNLM.

most words are supposed to not overlap a long rest. This means, for example, that when
the incoming melody sequence for a next word position is note, note, (long) rest, note,

note, as the sequence following to mi(t−1) in Figure 5.6, it is desirable to select a word
whose mora count is two or less so that the generated word does not overlap the long
rest. If there is sufficient data available, this tendency may be learned directly from the
correlation between rests and words without explicitly considering the mora count of
a word. However, our melody-lyric alignments for 1,000 songs are insufficient for this
purpose.

We take two approaches to address this data sparsity problem. First, we propose
two training strategies that increase the number of training examples using raw lyric
texts that can be obtained in greater quantities. Second, we construct a model that
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predicts the number of moras in each word, as well as words themselves, to explicitly
supervise the correspondence between rest positions and mora counts.

In the following sections, we first describe the details of the proposed model and
then present the training strategies used to obtain better models with our melody-lyric
alignment data.

5.3.1 Model construction

The proposed model is based on a standard RNNLM Mikolov et al. [2010]:

P (w) =
T∏
t=1

P (wt|w0, ..., wt−1), (5.1)

where context words are encoded using LSTM [Hochreiter and Schmidhuber, 1997]
and the probabilities over words are calculated by a softmax function. w0 = ⟨B⟩ is
a symbol denoting a begin of lyrics. We extend this model such that each output is
conditioned by the context melody vectors n1, ..., nt, as well as previous words:

P (w|m) =
T∏
t=1

P (wt|w0, ..., wt−1,n1, ..., nt). (5.2)

The model simultaneously predicts the mora counts of words by sharing the pa-
rameters of LSTM with the above word prediction model in order to learn the corre-
spondence between the melody segments and mora counts:

P (s|m) =
T∏
t=1

P (st|w0, ..., wt−1,n1, ..., nt), (5.3)

where s = s1, ..., sT is a sequence of mora counts, which corresponds to w.
For each time step t, the model outputs a word distribution yt

w ∈ RV and a distri-
bution of mora count yt

s ∈ RS using a softmax function:

yt
w = softmax(BN(Wwzt)), (5.4)

yt
s = softmax(BN(Wszt)), (5.5)
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where zt is the output of the LSTM for each time step. V is the vocabulary size and
S is the mora count threshold.1 Ww and Ws are weight matrices. BN denotes batch
normalization Ioffe and Szegedy [2015].

The input to the LSTM in each time step t is a concatenation of the embedding
vector of the previous word v(wt−1) and the context melody representation xt

n, which
is a nonlinear transformation of the context melody vector nt:

xt = [v(wt−1), xt
n], (5.6)

xt
n = ReLU(Wnnt + bn), (5.7)

where Wn is a weight matrix and bn is a bias.
To generate lyrics, the model searches for the word sequence with the greatest

probability (Eq. 5.2) using beam search. The model stops generating lyrics when the
mora count of the lyrics reaches the number of notes in the input melody.

Note that our model is not specific to the language of lyrics, while we experiment
on Japanese lyrics data in this thesis. The model only requires the sequences of melody
and words as input and does not use any language-specific features.

5.3.2 Context melody vector

In Section 5.2, we indicated that the positions of rests and their durations are important
factors for modeling lyric boundaries. Thus, we collect a sequence of notes and rests
around the current word position (i.e., time step t) and encode their information into
context melody vector nt (see the bottom of Figure 5.6).

The context melody vector nt is a binary feature vector that includes a musical
notation type (i.e., note or rest), a duration2, and a pitch for each note/rest in the context
window. We collect notes and rests around the target note mi(t) for the current word
position t with a window size of 10 (i.e., mi(t)−10, ...,mi(t), ...,mi(t)+10).

For pitch information, we use a gap between a target note mi(t) and its previous
note mi(t−1). Here, the pitch is represented by a MIDI note number in the range 0 to

1We exclude the words with mora count greater than 10 from the output vocabulary and replace
these words with a symbol ⟨unknown⟩ in the training data. Additionally, we define the mora counts of
the ⟨BOL⟩ and ⟨BOS⟩ as zero.

2We rounded each duration to one of the values 60,120,240,360,480,720,960,1200,1440,1680,1920,
and 3840 and use 1-hot encoding for each rounded durations.
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Algorithm 3 Automatic pseudo melody generation
1: for each mora in the input-lyrics do
2: b← get boundary type next to the mora
3: sample note pitch p ∼ P (pi|pi−2, pi−1)
4: sample note duration dnote ∼ P (dnote|b)
5: assign note with (p, dnote) to the mora
6: sample binary variable r ∼ P (r|b)
7: if r = 1 then
8: insert rest with duration drest ∼ P (drest|b)
9: end if

10: end for

127. For example, the target and its previous notes are 68 and 65, respectively, and the
gap is +3.

5.3.3 Training Strategies

We propose two training strategies (i.e., pretraining and learning with a pseudo-melody)
to obtain a robust lyrics language model with a limited amount of melody-lyric align-
ment data.

5.3.3.1 Pretraining

The size of our melody-lyric alignment data is limited. However, we can obtain a large
amount of raw lyric texts. We therefore pretrain the model with the raw lyric texts,
and then fine-tune it with the melody-lyric alignment data. In pretraining, all context
melody vectors nt are zero vectors. We refer to these pretrained and fine-tuned models
as Lyrics-only and Fine-tuned models, respectively.

5.3.3.2 Learning with Pseudo-Melody

We propose a method to increase the melody-lyric alignment data by attaching pseudo

melodies to the obtained raw lyric texts. We generate this pseudo melody by using
simple probability distributions. We refer to the model that uses these data as the
Pseudo-melody model.
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(MIDI Tick)

Figure 5.7: Distribution of the number of boundaries in the pseudo data.

Algorithm 3 shows the details of pseudo-melody generation. For each mora in the
lyrics, we first assign a note to the mora. Then, we determine whether to generate a rest
next to it. Since we already knew the correlations between rests and lyric boundaries,
the probability for a rest and its duration is conditioned by a boundary type next to the
target mora. The pitch of each note is generated based on the trigram probability. All
probabilities are calculated using the training split of the melody-lyric alignment data.

Figure 5.7 shows the distributions of the boundaries in generated pseudo melodies.
The distributions closely resembles those of our melody-lyric alignments in Figure 5.5.

5.4 Quantitative Evaluation

We performed experiments to evaluate the quality of the generated lyrics based on
evaluation metrics for word fluency and consistency in the lyric segment boundaries.
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5.4.1 Experimental Setup

5.4.1.1 Hyperparameters

In our model, we chose the dimensions of the word embedding vectors and context
melody representation vectors to 512 and 256, respectively, and the dimension of the
LSTM hidden state was 768. We used a categorical cross-entropy loss for outputs
yt
w and yt

s, Adam [Kingma and Ba, 2014] with an initial learning rate of 0.001 for
parameter optimization, and a mini-batch size of 32. We applied an early-stopping
strategy with a maximum epoch number of 100, and training was terminated after five
epochs of unimproved loss on the validation set. For lyric generation, we used a beam
search with a width of 10. An example of the generated lyrics is shown in Figure 5.10.

5.4.2 Evaluation Metrics

5.4.2.1 Perplexity

Test-set perplexity (PPL) is a standard evaluation measure for language models. PPL
measures the predictability of wording in original lyrics, where a lower PPL value
indicates that the model can generate fluent lyrics. We used PPL and its variant PPL-
W, which excludes line and segment boundaries, to investigate the predictability of
words.

5.4.2.2 Accuracy of Boundary Replication

Under the assumption that the line and segment boundaries of the original lyrics are
placed at appropriate positions in the melody, we evaluated consistency between the
melody and boundaries in the generated lyrics by measuring the reproducibility of the
boundaries in the original lyrics. Here performance was measured in terms of the
precision, recall, and F1-measures of the boundary positions.

We also asked a person to manually place line and segment boundaries at plausible
positions for randomly selected 10 input melodies that the evaluator have never heard.
This individual is not a professional musician but an experienced performer educated
on musicology. The bottom part of Table ?? represents the human performance. The
last line of Table 5.2 shows the result.
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Table 5.1: Performance of Fine-tuned models with different fixed parameters (F1-UB
denotes the score for unlabeled matching of line/segment boundaries.).

Model Input-Word Emb LSTM Output Layers PPL PPL-W F1-⟨BOS⟩ F1-⟨BOL⟩ F1-UB
Setting 1 Fixed Fine-tuned Fixed 138.8 247.3 0.177 0.211 0.327
Setting 2 Fixed Fine-tuned Fine-tuned 152.2 275.5 0.252 0.325 0.512
Setting 3 Fine-tuned Fine-tuned Fine-tuned 172.1 315.4 0.266 0.299 0.470

Table 5.2: Effect of pretraining and learning with pseudo-melody (UB evaluates unla-
beled matching of line/segment boundaries.).

PPL PPL-W ⟨BOS⟩ ⟨BOL⟩ UB
Model Precision Recall F1 Precision Recall F1 Precision Recall F1

Lyrics-only 138.0 225.0 0.127 0.111 0.119 0.055 0.063 0.059 0.103 0.110 0.106
Full-data 135.9 222.1 0.082 0.139 0.103 0.055 0.040 0.047 0.099 0.102 0.101
Over-sample 133.9 219.4 0.097 0.106 0.101 0.047 0.053 0.050 0.085 0.095 0.090
Alignment-only 173.3 314.8 0.281 0.343 0.309 0.246 0.330 0.282 0.417 0.545 0.473
Fine-tuned 152.2 275.5 0.225 0.287 0.252 0.290 0.370 0.325 0.456 0.582 0.512
Pseudo-melody 115.7 197.5 0.348 0.275 0.307 0.263 0.272 0.267 0.436 0.419 0.428
Heuristic 175.8 284.7 0.379 0.367 0.373 0.244 0.234 0.239 0.409 0.384 0.402
Human - - 0.814 0.640 0.717 0.676 0.666 0.671 0.780 0.724 0.751

5.4.3 Comparison of Pretraining Settings

In the pretraining strategy, we have multiple options to select parameters for fine-
tuning. To explore optimal settings, we evaluated the performance of the Fine-tuned

models, where some of the pretrained parameters are fixed or fine-tuned. Table 5.1
summarizes the result.

Compared with Setting 2, the performance of Setting 3 in PPL and PPL-W is re-
duced significantly when the word embedding layer is fine-tuned. This result indicates
that fine-tuning word vectors with a small quantity of data corrupts the language model.
On the other hand, fixing mora-count and word output layers somewhat limits the ben-
efit from the melody data. Here, the performance of Setting 1 relative to boundary
replication is less than that of Settings 2 and 3. For these reasons, we selected Setting

2 as the optimal setting for the Fine-tuned model.

5.4.4 Effect of Melody-conditioned RNNLM

To investigate the effect of our language models, we compared the following seven
models. The first one is (1) a Lyrics-only model, a standard RNNLM trained with
54,081 song lyrics without melody information. The second and third ones are baseline
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Melody-conditioned RNNLMs where the proposed training strategies are not applied:
(2) a Full-data model trained with mixed data (54,081 song lyrics and 900 melody-
lyric alignments of those), (3) a Over-sample model trained with 54,081 song lyrics
and 54,081 melody-lyric alignment (By copying the training instance, we increased the
number of melody-lyric alignments to 54,081 and balanced the amount of lyrics data
and melody-lyric alignments), and (4) an Alignment-only model trained with only 900
melody-lyric alignment data. The remaining two are Melody-conditioned RNNLMs
with the proposed learning strategies: (5) Fine-tuned and (6) Pseudo-melody models.
The remaining one is (6) Heuristic model that: (i) assigns a line/segment boundary to
a rest based on its duration with the same probability as reported in Figure 5.5, and (ii)
fills the space between any two boundaries with lyrics of the appropriate mora counts.
This Heuristic model computes the following word probability:

P (wt|w0, ..., wt−1,m) =



Q(⟨BOS⟩|mi(t+1)) (if wt = ⟨BOS⟩)

Q(⟨BOL⟩|mi(t+1)) (if wt = ⟨BOL⟩)

(1−Q(⟨BOS⟩|mi(t+1))−Q(⟨BOL⟩|mi(t+1)))×
PLSTM(wt|w0,...,wt−1)

1−PLSTM(⟨BOL⟩|w0,...,wt−1)−PLSTM(⟨BOS⟩|w0,...,wt−1)
(otherwise)

(5.8)

where Q is the same probability as reported in Figure 5.5. PLSTM is the word proba-
bility calculated by a standard LSTM language model.

Table 5.2 summarizes the performance of these models. Regarding the bound-
ary replication, the Heuristic, Alignment-only, Fine-tuned, and Pseudo-melody models
achieved higher performance than the Lyrics-only model for unlabeled matching of
line/segment boundaries (i.e., UB). This result indicates that our Melody-conditioned
RNNLMs and the heuristic approach successfully capture the consistency between
melody and lyric boundaries. The results of the Full-data model is low (as expected)
because the size of the melody-lyrics alignment data is far smaller than that of the raw
lyrics text data and this harms the learning process of the dependency between melody
and lyrics. For the segment boundary, the Heuristic model achieved the best perfor-
mances. For the line boundary, on the other hand, the Fine-tuned model achieved the
best performances.

Regarding PPL and PPL-W, the Lyrics-only, Full-data, and Pseudo-melody mod-
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Table 5.3: Effect of mora-count output layer ((w/o ys) denotes exclusion of the mora-
count output layer.).

Model PPL PPL-W F1-UB
Fine-tuned 152.2 275.5 0.512
Fine-tuned (w/o ys) 155.1 278.1 0.323
Pseudo-melody 115.7 197.5 0.428
Pseudo-melody (w/o ys) 118.0 201.5 0.397

els show better results than the other models. The Fine-tuned model shows reduced
performance compared with the Lyrics-only model because fine-tuning with a small
amount of data causes overfitting in the language model. Also, the training size of the
Alignment-only model is insufficient for learning a language model of lyrics. Inter-
estingly, Pseudo-melody model achieved even better performance than the Full-data

model and achieved the best score. This result indicates that the Pseudo-melody model
uses the information of a given melody to make a better prediction of its lyrics word
sequence. On the other hand, Heuristic model has the worst performance, despite train-
ing a large amount of raw lyrics text. The reason why the Heuristic model generates
non-fluent lyrics is analyzed in Section 5.4.6.

It is not necessarily clear which to choose, either the Fine-tuned or Pseudo-melody

model, which may depend also on the size and diversity of the training and test data.
However, one can conclude at least that combining a limited-scale collection of melody-
lyric alignment data with a far larger collection of lyrics-alone data boosts the model’s
capability of generating a fluent lyrics which structurally fits well the input melody.

5.4.5 Effect of Predicting Mora-Counts

To investigate the effect of predicting mora-counts, we compared the performance of
the proposed models to models that exclude the mora-count output layer ys. Table 5.3
summarizes the results. For the pretraining strategy, the use of ys significantly alle-
viates data sparsity when learning the correlation between mora counts and melodies
from only words themselves. As can be seen, the model without ys shows reduced
performance relative to both PPLs and the boundary replication. On the other hand,
for the pseudo-melody strategy, the two models are relatively competitive in both mea-
sures. This means that the Pseudo-melody model obtained a sufficient amount of word-
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Lyrics in test set Lyrics generated by Pseudo-melody modelLyrics generated by Heuristic model

Figure 5.8: Distribution of the number of boundaries in the test data and lyrics gener-
ated by the Pseudo-melody model.

melody input pairs to learn the correlation.

5.4.6 Analysis of Input Melody and Generated Lyrics

To examine whether the models can capture correlations between rests and lyrics
boundaries, we calculate the proportion of the word, line, and segment boundaries
in the original lyrics and in the lyrics generated by the Heuristic and Pseudo-melody

model for the test set (Figure 5.8). The proportion of ⟨BOL⟩ and ⟨BOS⟩ generated
by the Heuristic model are almost equivalent to those of the original lyrics. On the
other hand, for the Pseudo-melody model, when rests are longer, the proportion of
line/segment boundary types are smaller than that for the original lyrics, and there is
still room for improvement.

Although the Heuristic model reproduces the proportion of the original lyrics bound-
aries, the model has the low performance for fluent lyrics generation as shown in Sec-
tion 5.4.4. To investigate this phenomenon, we observe the lyrics generated by the
Heuristic and find that the model tends to generates line/segment boundaries after the
melody rest, even if two rests are placed very close. Figure 5.9 shows that the dis-
tributions of the mora count of the lines and segments and the Jensen-Shannon diver-
gence Lin [1991] of the distributions. This figure indicates the distributions of lyrics
of the test set are more similar to the distributions of lyrics generated by the proposed
Pseudo-melody model rather than the Heuristic model. This result supports that the
heuristic approach, which simply generates line/segment boundaries based on the dis-
tribution in Figure 5.5, cannot generate fluent lyrics with well-formed line/segment
lengths.
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Figure 5.9: Distribution of the mora count of the generated lines/segments.

5.5 Qualitative Evaluation

In order to evaluate how humans feel the lyrics generated by the proposed model,
inspired by [Oliveira, 2015], we asked crowdsourcing workers to listen to melody and
lyrics, and rate for the following five questions using a five-point Likert scale:

1. Listenability (L): when listening to melody and lyrics, are the positions of words,
lines, and segments natural? (1=Poorly to 5=Perfectly)

2. Grammaticality (G): is the lyric grammatically correct? (1=Poorly to 5=Perfectly)
3. Sentence-level meaning (SM): is each line of lyrics meaningful? (1=No sense to

5=Clear)
4. Document-level meaning (DM): is the entire lyrics meaningful? (1=No sense to

5=Clear)
5. Overall quality (OQ): what is the overall quality of lyrics when listening to music?

(1=Terrible to 5=Great)

5.5.1 Experimental Setup

For the evaluation sets, we randomly selected four melody from the RWC music
database [Goto et al., 2002]. For each melody, we prepared five patterns of lyrics
to investigate the effect of our language models: lyrics generated by Heuristic, Lyrics-

only, Fine-tuned, and Pseudo-melody models. The remaining one is lyrics created by
amateur human writers: to obtain an upper bound for this evaluation, we asked four
Japanese to write lyrics on the evaluation melody. One user was a junior high school
teacher of music who had experience in music composition and lyric writing. Three
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Table 5.4: Results of the qualitative evaluation.

Metric Heuristic Lyrics-only Fine-tuned Pseudo-melody Human (Upper-bound)
Means ± SD Median Means ± SD Median Means ± SD Median Means ± SD Median Means ± SD Median

L 2.06±1.08 2 2.33±1.23 2 2.85±1.20 3 2.93±1.14 3 3.56±1.33 4
G 2.28±1.07 2 2.81±1.16 3 2.79±1.06 3 2.97±1.08 3 3.50±1.25 4
SM 2.34±1.07 2 2.91±1.15 3 2.70±1.13 3 2.96±1.09 3 3.49±1.35 4
DM 2.33±1.10 2 2.80±1.06 3 2.59±1.11 3 2.89±1.07 3 3.49±1.30 4
OQ 2.01±1.01 2 2.59±1.15 3 2.42±1.08 2 2.65±1.01 3 3.32±1.19 4

users were graduate students with different levels of musical expertise. Two of them
had experience with novel composition, and two had experience with music compo-
sition, but none of them had experience with lyric writing.1 We asked 50 workers to
evaluate lyrics for each evaluation song, and obtained 1,000 samples in total. Note that
workers did not know whether lyrics was created by human, or generated by computer.

5.5.2 Results

Table 5.4 shows the average scores, standard deviations, and medians each metric
assigned to each model for the lyrics used in qualitative evaluation. Regarding the
“Listenability” evaluation, workers rated highly the lyrics generated by the Fine-tuned

model and the Pseudo-melody model that are trained on the melody and lyrics. On the
other hand, regarding the “Grammar” and “Meaning” evaluation, workers rated highly
the lyrics generated by the Lyrics-only model and the Pseudo-melody model that are
well-trained on a large amount of text data. These results are entirely consistent with
those of the quantitative evaluations. Regarding “Overall quality” evaluation, Pseudo-
melody model outperformed the other models. These results indicates our pseudo data
learning strategy contributes to high-quality lyrics generation. However, the quality
of lyrics generated automatically is still worse than the quality of humans production,
and it remains a challenge for future research to develop computational models that
generate more high-quality lyrics.

1We publish lyrics and audio files used in qualitative evaluation on the Web
http://www.cl.ecei.tohoku.ac.jp/lyrics.
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5.6 Conclusion

This chapter has presented a novel data-driven approach for building a melody-conditioned
lyrics language model. We created a 1,000-song melody-lyric alignment dataset and
conducted a quantitative investigation into the correlations between melodies and seg-
ment boundaries of lyrics. No prior work has ever conducted such a quantitative
analysis of melody-lyric correlations with this size of data. We have also proposed
a RNN-based, melody-conditioned language model that generates fluent lyrics whose
word/line/segment boundaries fit a given input melody. Our experimental results have
shown that: (1) our Melody-conditioned RNNLMs capture the consistency between
melody and lyric boundaries while maintaining word fluency; (2) combining a limited-
scale collection of melody-lyric alignment data with a far larger collection of lyrics-
alone data for training the model boosts the model’s competence; and (3) we have also
produced positive empirical evidence for the effect of applying a multi-task learning
schema where the model is trained for mora count prediction as well as for word pre-
diction. (4) the lyrics generated by the model that learned the pseudo melody-lyrics
alignments were highly evaluated in the human assessment.

We need to extend the proposed model for capturing other aspects of lyrics/melody
discourse structure such as repetitions, verse-bridge-chorus structure, and topical co-
herence of discourse segment. The proposed method for creating melody-lyric align-
ment data enables us to explore such a broad range of aspects of melody-lyric correla-
tions.
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[ho-shi][ni]   [na- te]       [bo- ku]  [no]                         [ko- ko- ro] [wo]

[a-na- ta]     [no]              [ta- me]     [ni] [ki- me] [ta] [ka- na]

[na-ni] [ga]   [a- te]     [mo]    [na- ni]                          [wo][shi- te][mo]

〈BOB〉

〈BOL〉

〈BOB〉

〈BOL〉[su-be-te]      [wo]             [yu- ru- shi] [te]                           [ku- re]  [na-i]

〈BOL〉[shi-n-ji]       [te]                  [i]        [ta- i]   [yo]                   [ko- no][he-ya][de]〈BOB〉

[ki- mi]   [no] [ko- to-ba]  [wo]      [mu- ne]          [ni] [i- da- ka]       [re]

〈BOL〉 [bo-ku]     [no] [ui- me] [wo]   [ko- e]        [te] [mi- ta] [n]       [da-yo]        [ki-mi]

〈
BO

B〉

[no] [ko- to]  [ga]  [su- ki]  [ni]      [na-te]     [yu-ku]     [no] [da- ro] [u]              [ko-no]   [he- ya][no]       [na-〈BOL〉

ka] [ni]      [fu-re]                 [ra- re]     [ta]                                      [ki- mi]        [da- ke]        [no]             [yu-me]

[ni]  [te]     [wo]                              [ha- na-sa]           [zu][ni]   [i] [te]

〈BOL〉

ho-shi ni na-te bo-ku no ko-ko-ro wo
星になって 僕の心を
a-na-ta no ta-me ni ki-me ta ka-na
あなたの為に 決めたかな

na-ni ga a-te mo na-ni wo shi-te mo
何があっても 何をしても
su-be-te wo yu-ru-shi te ku-re na-i
全てを許してくれない
shi-n-ji te i ta-i yo
信じていたいよ

ko-no he-ya de  ki-mi no ko-to-ba wo mu-ne ni i-da-ka re
この部屋で 君の言葉を胸に抱かれ
bo-ku no yu-me wo ko-e te mi-ta n da-yo
僕の夢を越えてみたんだよ

ki-mi no ko-to ga su-ki ni na-te yu-ku no da-to u
君の事が好きになってゆくのだろう
ko-no he-ya no na-ka ni fu-re ra-re ta
この部屋の中に触れられた
ki-mi da-ke no yu-me ni te-wo ha-na-sa zu ni i te
君だけの夢に 手を離さずにいて

I became a star. My heart...
I guess I decided it was for you

Whatever happens. Whatever I do...
You will not forgive everything
I want to believe

In this room...I hold your words in my heart.
I tried to surpass my own dreams

I will continue to love you
I was touched inside of this room
Never let go of your dreams

Generated Lyrics Translated Lyrics

Figure 5.10: An example Japanese lyric generated by the Pseudo-melody model. The
Japanese lyric is translated into English (the right side). The red and blue lines denote
segment and line boundaries, respectively. The song is from the RWC Music Database
(RWC-MDB-P-2001 No.20). The generated words and line/segment boundaries are
consistent with the melody segments as one can observe that every line/segment bound-
ary is placed immediately after a melody rest. Each line of the lyric is sufficiently flu-
ent as a piece of Japanese lyric. However, there is still room for improvement on the
coherence of the entire lyric.
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Chapter 6

Interactive Support System for
Writing Lyrics

In the previous chapters, we modeled the discourse structure from the viewpoints of
repeated patterns, storylines and melodies. This chapter presents our novel Japanese
and English lyric-writing support system, “LyriSys” (Figure 6.1) using the discourse
structure model. LyriSys can assist a writer in incrementally taking the above factors
into account through an interactive interface by generating candidate pieces of lyrics
that satisfy the specifications provided by the writer. The capability of automatically
generating lyrics and allowing the user to create lyrics incrementally in a trial-and-error
manner can be useful for both novices and experts.

6.1 Overview of Writing Support

How a computer system can support writing is an intriguing question. Existing sup-
port systems can be classified into two types, systems that can generate entire lyrics
automatically [Abe and Ito, 2012; Oliveira, 2015; Settles, 2010] and tools designed to
assist the user in searching for words that satisfy a query and usage examples from
stored lyrics.1 However, we believe that neither type of system is appropriate for lyric-
writing support. The former type allows users highly limited interaction, whereas the
latter requires users to do everything but word search.

1MasterWriter. http://masterwriter.com/
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Edit Panel
Setting Panel

Generation Button

Step1): Set musical structure (The number of lines/blocks/syllables)

Step2): Set topic transition

Step3): Generate lyrics

Generated lyrics Selected topic

Figure 6.1: An example LyriSys screen.

GarageBand1 is a system commonly used by beginners as a support tool for song
composition. In this interface, the user selects abstract conditions such as ⟨cheerful⟩
and ⟨dark⟩, and then the interface searches for melody patterns that satisfy the specified
conditions, thereby enabling novice users to compose a song incrementally by only
selecting and setting out the melody pattern with a time line. However, there is no lyric-
writing interface for the user to input abstract conditions. In LyriSys, it is relatively
easy to create lyrics that represent a storyline by selecting a topic, such as ⟨scene⟩ or
⟨sweet love⟩.

1GarageBand. http://www.apple.com/mac/garageband/
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New block is added

Before

Click the button

Click the button

New Line is added

Before generating the lyrics After generating the lyrics

Directly edit

After

The lyrics that specify the changed syllable

LyriSys does not regenerate lyrics at the unchecked areaunchecked

a b

c

d

e

Directly edit mode

LyriSys generates lyrics at the checked area

Set the number of lines/blocks

Set the topic of each block

Set the number of syllables

Overview of the edit panel

Change the number of lines/blocks

Uncheck the check box               Change the number of syllablesa b

e

Figure 6.2: The edit panel in LyriSys; the user can set the musical structure, the number
of lines/segments/syllables ( b⃝ and e⃝), and the user is allowed to directly edit the
current draft using the keyboard ( c⃝).

6.2 LyriSys: An Interactive Writing Interface based on
Discourse Structure

This section provides an overview of how a user of LyriSys writes lyrics by interact-
ing with the system. Figure 6.1 shows a screen shot of LyriSys’s user interface which
consists of the Edit Panel and the Setting Panel. The Edit Panel displays the current
specifications of the musical structure and the current candidate lyrics the user is edit-
ing. The Setting Panel is used to choose topics. The basic process is as follows:

66



Step 1) Input the parameters for specifying the musical structure (the number of seg-
ments, the number of lines in each segment, and the number of syllables in each
line) manually on the edit panel.

Step 2) For each segment, choose a topic from the predefined set of topics manually.
LyriSys can also estimate the topics of a given lyrics automatically. This function
enables users to learn the concept of storyline and how it works from examples
for, say, their favorite existing lyrics. With this function, the user can use the
system also to fill only a small number of lines of a given mostly completed
lyric.

Step 3) Click the Generation button, LyriSys then generates the lyrics that correspond
to the input syllables and the topic. For example, LyriSys automatically gener-
ates “I believe in love” when the user inputs the syllable set “1-2-1-1” and the
topic ⟨sweet love⟩. This function assists the user in searching the huge space
of word sequences. Moreover, users can revise some lines, if they desire, by
selecting a line to revise and then choosing an alternative candidate from the
candidates displayed on the Setting Panel.

Along with this process, LyriSys generates candidate lyrics that satisfy the topic and
the number of syllables. A crucial property of the design of LyriSys is that it allows
the user to specify the constraints incrementally and explore the candidate phrases
interactively in a trial-and-error manner.

6.2.1 Step 1): Set the Musical Structure

By clicking on the edit panel (Figure 6.2 e⃝), the user sets the musical structure, the
number of lines and the number of segments. The user can also always change the
number of syllables for each line (Figure 6.2 b⃝). Changing these parameters is allowed
at any time; therefore the user can flexibly revise the musical structure. For example,
the user might want to change the musical structure of the second verse slightly, while
maintaining the musical structure of the first verse.

Moreover, the user can also disable the regeneration of a particular line by uncheck-
ing the check box (Figure 6.2 a⃝). This function allows users to specify the lines they
are already satisfied with and seek alternative candidates only for the remaining lines.
By gradually disabling the regeneration, the user can complete the writing process
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Topic

A

B

C D

Select a topic of each block

Example words strongly associated with the topic
The candidate lyrics are displayed

ScoreGenerated lyrics

Figure 6.3: The setting panel in LyriSys; the user can set the topic of each segment that
displayed in the edit panel ( A⃝). LyriSys searches for candidate lyrics that satisfy the
input parameters, and the user can select a favorite candidate lyrics ( D⃝).

incrementally.

6.2.2 Step 2): Set/estimate the Story

The process of specifying the topics is as follows: (1) the topic setting panel is dis-
played (Figure 6.3) by clicking the topic (e.g., ⟨scene⟩) on the edit panel (Figure 6.2 d⃝),
and (2) the user selects one topic from the predefined set of topics (Figure 6.3 A⃝). The
setting panel displays example words strongly associated with the topic in question,
where the size of each word depicts how likely it is to be chosen for the specified topic
(Figure 6.3 C⃝). This way of displaying the word set is expected to help the user select
topics. LyriSys generates a line of lyrics containing as many of these words as pos-
sible. For example, when the topic ⟨sweet love⟩ is chosen, words such as “want” are
likely to be chosen as in “I want you”. It is possible to change the topics at any time,
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and the user can revise the generated lyrics. How our probabilistic language model
deals with topics is described below in the implementation section.

Some writers might have difficulty in selecting topics. We thus additionally im-
plemented the function of automatically estimating the topics of a given lyric (Fig-
ure 6.3 B⃝). This function is crucially important for users who are not familiar with the
notion of topics. First, by applying this function to existing popular lyrics (say, their
favorite song lyrics) and seeing the results (i.e., the estimated topics), users can learn
what sorts of phrases tend to be generated for each different topic and what transitions
over topics can be seen in popular lyrics. Second, users can also begin the writing
process by partially rewriting their favorite lyrics, while keeping the original overall
structure and topic transitions. Third, modeling topic transitions enables the system to
propose a smooth transition of topics for given partly completed draft lyrics.

6.2.3 Step 3): Generate/edit the Candidate Lines of Lyrics

LyriSys searches for candidate lyrics that satisfy the input parameters, when triggered
by the generation button, and displays the most probable lyrics in the edit panel (Fig-
ure 6.2 c⃝). The user can replace the generated lyrics with other candidates line by line.
The candidate lyrics are displayed in the setting panel (Figure 6.3 D⃝) when selecting a
line of the lyrics in the edit panel. The user can select a favorite candidate and click it,
resulting in the candidate being displayed in the edit panel. By setting the parameters
and selecting candidates repeatedly, the user can gradually compose an entire lyric in a
trial-and-error manner. The user is also allowed to edit the current draft directly using
the keyboard (Figure 6.2 c⃝).

6.3 Implementation

In this study, to generate lyrics that satisfy the topic and the number of syllables, we
calculated tri-gram probabilities and added the number of syllables s and the topic z in
the conditions of tri-gram:

P (wi|wi−2, wi−1, si, z) =

0 (si ̸= |wi|)
count(z,wi−2,wi−1,wi)
count(z,wi−2,wi−1)

(si = |wi|)
(6.1)
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where |wi| denotes the number of syllable in a word wi. This probability is calculated
from count(z, wi−2, wi−1, wi), which returns the number of occurrences of the word
stringwi−2, wi−1, wi and the topic z. This value is calculated by counting the number of
topics assigned to each segment in Content Model (CM) as mentioned in Chapter 4.2.2.

The enhanced HMM captures the topic transition, which appears in the segment
structure. For example ⟨scene⟩ → ⟨dark⟩ → ⟨sweet love⟩ represents the transition of
the topic in three segments. In particular, each zt is generated from the previous topic
zt−1 via the transition probability P (zt|zt−1). The word w in each segment is generated
from zt via generative probability P (w|zt). In addition, it is possible to estimate the
topic when uncompleted or unknown lyrics are inputted by using the Viterbi algorithm.
Note that the topic z is not labeled as ⟨sweet love⟩ or ⟨scene⟩, because z is a latent
variable. Therefore, we manually assign labels to each topic by observing the word
list whose generative probability P (w|z) is large. Note that the number of topics is
changeable before learning; however we set it to ten in this study.

We train the tri-gram and enhanced HMM using unsupervised learning from two
datasets that contain Japanese and English lyrics.1 We used 19,290 Japanese lyrics
and 96,475 English lyrics and applied the MeCab part-of-speech parser for Japanese
words [Kudo et al., 2004] and Stanford CoreNLP for English words [Manning et al.,
2014]. To count the number of syllables, we used a hyphenation algorithm [Liang,
1983]. In lyrics generation, LyriSys searches the word strings so that the lyrics prob-
ability

∏n
i=1 P (wi|wi−2, wi−1, si, z) is large according to the beam search algorithm,

where n denotes the number of words in a line.

6.4 User Feedback

To investigate the capabilities, limitations, and potential of our interaction design, we
asked five Japanese users to use LyriSys and collected preliminary user feedback. One
user was a junior high school teacher of music who had experience in music com-
position and lyric writing. Four users were graduate students with different levels of
musical expertise. Two of them had experience with novel composition, and two had
experience with music composition, but none of them had experience with lyric writ-

1http://www.odditysoftware.com/page-datasales1.htm
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Table 6.1: Results of user feedback: User’s positive and negative comments.

Method Positive Comments Negative Comments
Baseline
Method

In comparison to other tasks, it was com-
fortable in not specifying the number of
syllable.

1) It was difficult to come up with the words
that satisfy the melody of song, because of
lacking in vocabulary. 2) It was difficult to
conceive the storyline.

Previous
Method
1

1) It was easy to write the lyrics because
I didn’t need to determine which words to
use. 2) The system sometimes generated
cool lyrics pieces without editing manu-
ally.

I sometimes felt boring because users
couldn’t edit the generated lyrics.

Previous
Method
2

1) It was easier to write than the baseline
method because the system generated pro-
totype lyrics. 2) It was useful to select the
candidate of lyrics when the generated re-
sult was partially good.

It was difficult to write the lyrics that rep-
resent the storyline, because only a limited
variety of words are generated.

Proposed
Method

1) It was easy to associate the words re-
lated to a topic by viewing the generated
candidates of lyrics and the word cloud in
the setting panel. 2) In comparison to the
previous method 2, selecting topics made
it easy to write the lyrics that specifies my
intention. 3) The generated lyrics are more
expressive than the result of other interface
because of the consideration of topic.

1) The list of the 10 topics was too re-
stricted and coarse-grained. 2) Although
the system generates an abstract storyline,
I thought that it would be interesting if the
system could generate a concrete storyline.

Overall
Com-
ments

The support interface was helpful to com-
plete the lyrics particularly when I couldn’t
come up with any nice words at all.

1) The speed of automatic generation was
slow. 2) I sometimes felt boring because
the generated lyrics were same when input
parameters were fixed. 3) I had a hard time
inputting the number of syllable manually.

ing.

6.4.1 Experimental Setup

We randomly selected five Japanese songs from the RWC music database [Goto et al.,
2002] and gave each user one song. Then, we asked the subjects to write lyrics on the
melody of the song with the following four tasks.

Baseline method (without interface) In this task, we restricted the use of LyriSys.
We gave the subjects a topic transition, e.g., ⟨scene⟩→ ⟨sweet love⟩→ ⟨positive⟩,
and asked the subjects to write the lyrics that satisfy the given topic transition.
The purpose of this task is to investigate the difficulty of writing lyrics that sat-
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isfy the storyline and the musical melody without the writing support interface.
Previous method 1 (automatic lyrics generation) We asked the subjects to write lyrics

with LyriSys, but restricted the use of the selecting/editing of the candidate lines
of lyrics. The purpose of this task is to compare the proposed interaction with
previous methods that generate an entire piece of lyrics fully automatically [Bar-
bieri et al., 2012; Ramakrishnan A et al., 2009].

Previous method 2 (interaction without topic transition) We implemented another
type of LyriSys that has a restricted topic transition function. This LyriSys cal-
culates the simple tri-gram probability P (wi|wi−2, wi−1, si). The purpose of this
task is to compare LyriSys with the previous interface, which cannot handle topic
transitions [Abe and Ito, 2012].

Proposed method (LyriSys) In this task, we permitted the subjects to use all of the
functions of LyriSys.

6.4.2 Results

After the trial usage, we asked the subjects to write comments on each task. Positive
and negative comments regarding the capabilities and potential of each task are listed
in Table 6.1. These comments suggest that the proposed interface is effective, but that
the generation algorithm must be improved to enable the user to write more expressive
lyrics.

Figure 6.4 shows an example of lyrics that were created when a user used LyriSys
(i.e., the user set the musical structure and the storyline, and selected or edited the
recommended lyrics). Moreover, a fully automatically generated lyric is also shown in
Figure 6.4. This result shows that the created lyrics correspond to the input parameters
(i.e., syllables and topics); for example, we can see the sentimental phrases “ (not show
my tears)” and “あなたのそばに (with you)” were created when the topic was ⟨sweet
love⟩. Note that these phrases are recommended by LyriSys.

6.5 Conclusion

In this chapter, we proposed a novel lyric-writing interface, LyriSys, that allows users
to create and revise their work incrementally in a trial-and-error manner. Through fine-
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思い出の坂道は久しぶりの昼下がりへ.恋人の足跡はアスファルトの雨に濡れる.
o-mo-i- de  no    sa-ka-mi-chi wa hi- sa-si-bu-ri no  hi- ru sa-ga-ri e       ko- i- bi-to  no     a- shi-a- to ha  a- su-fa-ru-to no  a- me ni nu-re-ru

世界中でこんなにすれ違い.涙を見せず独り振る舞うだけで.あなたのそばに.

永遠の光に包まれることをいつか満たす.

ありったけの叫び声 夢の始まりを この日 抱きゆく.
a- ri- ta-ke no sa-ke-bi-go- e  yu- me  no  ha-ji- ma-ri wo   ko- no    hi  i- da- ki- yu- ku

(Afternoon came to the way of memories after a long time. Lovers' footprint get wet in the rain on asphalt.)

(We could not understand each other in this world. I didn’t show my tears, I was lonely. I just wanna be with you.)

(Someday I will be filled with eternal light.)

(Today, I embrace all the screams and the beginning of dream.)

Block 1, Topic: <情景 (scene)>

Block 3, Topic: <明るい (positive)>

Block 4, Topic: <切ない恋愛 (sweet love)>

e- i- e- n  no hi-ka-ri ni tsu- tsu-ma-re-ru ko-to   wo      i- tsu- ka mi-ta- su

思い出の坂道を.雨上がりの交差点で.	思い出の坂道を.心にない雨に濡れて.
(The way of memories. At the intersection of the rain. The way of memories. I got wet in the rain without heart.)

世界中でこんなにたくさんの.心に決めて思い出した思い出に.あなたのそばに.
(So many things in the world. Memories that I remembered in my mind. I just wanna be with you.)

悲しみの涙を忘れれぬように.自分を知る.
(Don’t forget the tears of sorrow. I know myself.)

世界中の恋人が.きっと永遠に.この日.ずっとこの.
(Lovers around the world. Surely forever. Today. Forever.)

Example outcome of 
an user’s interactions 
with the system.
Fully automatically 
generated lyrics.

Block 2, Topic: <切ない恋愛 (sweet love)>
se- ka- i- ju- u      de ko-n- na- ni su-re-chi-ga- i na-mi- da wo mi-se-zu hi-to-ri hu-ru-ma-u da-ke de   a- na- ta     no so- ba ni

Figure 6.4: Example of Japanese lyrics when the user uses LyriSys. The Japanese
lyrics are translated, and the English are given in parentheses. The song is from the
RWC Music Database (RWC-MDB-P-2001 No.47).

grained interactions with the system, the user can create the specifications of the music
structure (the verse-bridge-chorus structure and the number of lines/syllables) and the
transition over topics such as ⟨scene⟩, ⟨dark⟩ and ⟨sweet love⟩.

LyriSys still leaves much room for improvement. It might be too much of a burden
for the user to specify the musical structure at the level of syllable counts. This must
be relaxed possibly by taking the melody’s rhythm directly into account. The present
probabilistic language model models semantic topics and topic transitions, but not the
verse-bridge-chorus structure, neglecting, for example, the role of choruses. We plan
to fix these problems and improve the system by introducing extended functions on the
Web.
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Chapter 7

Conclusions

This thesis has addressed the issue of modeling discourse structure of lyrics in order to
understand and model the discourse-related nature of lyrics. To compute the discourse
structure of lyrics, we have addressed four issues:

Does the discourse segments in lyrics strongly correlate with repeating patterns?
Phrases of lyrics often appear repeatedly, and this repeated pattern may be cor-
related with discourse segments. However, no prior study has ever verified this
correlation.

What is the most suitable way to model storylines in lyrics? Each discourse segment
in lyrics provides part of the entire story and the segments are organized (or se-
quentially ordered) so as to constitute a coherent structure as a whole. However,
no study has ever addressed the issue of modeling storylines in lyrics.

Does the discourse segments in lyrics strongly correlate with melody? Several cor-
relations between melody and lyrics are expected. This direction of research,
however, has never been promoted partly because it requires a large training
dataset consisting of aligned pairs of lyrics and melody but so far no such data
has been available for research.

Are discourse structure models efficient in automatic lyrics generation task? In ad-
dition to modeling the discourse structure, we are interested in the effectiveness
of discourse model for demonstrating computer systems that automatically gen-
erate lyrics or assist human lyricists.
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The key contribution of this thesis can be summarized as follows:

1. We proposed a computational model of the discourse segments in lyrics. To
test our hypothesis that discourse segmentations in lyrics strongly correlate with
repeated patterns, we conduct the first large-scale corpus study on discourse seg-
ments in lyrics. This is the first study that takes a data-driven approach to ex-
ploring the discourse structure of lyrics in relation to repeated patterns.

2. We proposed computational models to capture the two common discourse-related
notions: storylines and themes under the assumption that a storyline is a chain
of transitions over topics of segments and a song has at least one entire theme.
We tested the hypothesis that considering the notion of theme does contribute to
the modeling of storylines of lyrics.

3. We proposed a novel, melody-conditioned lyrics language model and deeply
analyzed the correlation between melody and lyrics, This is the first study that
has ever provided such strong empirical evidence to the hypotheses about the
correlations between lyrics segments and melody rests.

4. We developed a novel interactive support system for writing lyrics. We provides
an overview of the design of the system and its user interface and describes how
the writing process is guided by our probabilistic discourse structure model.

In Chapter 3, we conducted a large-scale corpus study into the discourse segments
of lyrics, in which we examined our primary hypothesis that discourse segmentations
strongly correlate with repeated patterns. This is the first study that takes a data-driven
approach to explore the discourse structure of lyrics in relation to repeated patterns.
We then proposed a task to automatically identify segment boundaries in lyrics and
explored machine learning-based models for the task with repeated pattern features
and textual features. The results of our empirical experiments show the importance
of capturing repeated patterns in predicting the boundaries of discourse segments in
lyrics.

In Chapter 4, we presented the first study aiming at capturing the two common
discourse-related notions: storylines and themes. We assumed that a storyline is a
chain of transitions over topics of segments and a song has at least one entire theme.
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We then hypothesized that transitions over topics of lyric segments can be captured
by a probabilistic topic model which incorporates a distribution over transitions of
latent topics and that such a distribution of topic transitions is affected by the theme
of lyrics. Aiming to test those hypotheses, this thesis conducted experiments on the
word prediction and segment order prediction tasks exploiting a large-scale corpus of
popular music lyrics for both English and Japanese. Our experimental result indicates
that typical storylines included in our lyrics datasets were effectively captured as a
probabilistic distribution of transitions over latent topics of segments. We can conclude
that considering the notion of theme does contribute to the modeling of storylines of
lyrics.

In Chapter 5, we presented a novel, data-driven approach for building a melody-
conditioned lyrics language model. The model is conditioned with a featurized input
melody and trained simultaneously with a mora-count prediction subtask. To build our
model and conduct a quantitative investigation into the correlations between melody
and lyrics, we actually created a 1,000-song alignment dataset. No prior study has ever
conducted such a quantitative analysis of lyrics-melody correlations with this size of
data. Our experimental results have shown that combining a limited-scale collection of
lyrics-melody alignment data and a far larger collection of lyrics-alone data for training
the model boosts the model’s competence.

In Chapter 6, we proposed a novel lyric-writing interface, LyriSys, that allows users
to create and revise their study incrementally in a trial-and-error manner. Through fine-
grained interactions with the system, the user can create the specifications of the music
structure (the verse-bridge-chorus structure and the number of lines/moras) and the
transition over topics such as ⟨scene⟩, ⟨dark⟩ and ⟨sweet love⟩.
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Appendix A

Proof of Theorem in Chapter 4.2

A.1 Equation for Mixture of Unigram and Content Model
Inference

P (ym = i|y¬m,w, ϵ, ζ) ∝ (Mi,¬m + ϵ) · Γ(Ni,¬m + ζV )

Γ(Ni,¬m +Nm + ζV )

·
∏

v:Nm,v>0

Γ(Ni,v,¬m +Nm,v + ζ)

Γ(Ni,v,¬m + ζ)
(A.1)

P (zm,s = j|z¬(m,s),w, α, β) ∝
Szm,s−1→j,¬(m,s) + α

Szm,s−1→∗,¬(m,s) + αJ

·
Sj→zm,s+1,¬(m,s) + 1(zm,s−1 = j = zm,s+1) + α

Sj→∗,¬(m,s) + 1(zm,s−1 = j) + αJ

·
Γ(Nj,¬(m,s) + βV )

Γ(Nj,¬(m,s) +N(m,s) + βV )
·

∏
v:N(m,s),v>0

Γ(Nj,v,¬(m,s) +N(m,s),v + β)

Γ(Nj,v,¬(m,s) + β)
(A.2)

P (xm,s,n = k|x¬(m,s,n),w, η, ζ, β) ∝
Nm,k,¬(m,s,n) + η

Nm,¬(m,s,n) + 2η
·
(Nym,wm,s,n,¬(m,s,n) + ζ

Nym,¬(m,s,n) + ζV

)1−k

·
(Nzm,s,wm,s,n,¬(m,s,n) + β

Nzm,s,¬(m,s,n) + βV

)k
(A.3)

The update equations in Algorithm 1 can be rewritten as Eq. A.1, A.2 and A.3.
Table A.1 shows the notations in Eq. A.1 for collapsed Gibbs sampling of theme y
in the MUM-CM inference. Table A.2 shows the notations in Eq. A.2 for collapsed
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Table A.1: Notations in Eq. A.1 for MUM-CM

Notation Definition
Γ(·) Gamma function
ϵ, ζ Hyperparameter
w Word set in training corpus
y¬m Theme set except the m-th lyric
V Size of the vocabulary
Mi,¬m # of lyrics with theme label i except the m-th lyric
Nm # of words in the m-th lyric
Ni,¬m # of the word whose theme label is i except the m-th lyric
Nm,v # of a word v in the m-th lyric
Ni,v,¬m # of a word v whose theme label is i except the m-th lyric

Gibbs sampling of topic z in the MUM-CM inference. Table A.3 shows the notations in
Eq. A.3 for collapsed Gibbs sampling of binary variable x in the MUM-CM inference.

A.2 Equation for Mixture of Content Model Inference

P (ym = i|y¬m, z, α, ϵ) ∝ (Mi,¬m + ϵ)

·
Sm∏
s=1

(
Γ(Si,zm,s→∗,¬m + αJ)

Γ(Si,zm,s→∗,¬m + Sm,zm,s→∗ + αJ)
·

Sm∏
s′=1

Γ(Si,zm,s→zm,s′ ,¬m + Sm,zm,s→zm,s′
+ α)

Γ(Si,zm,s→zm,s′ ,¬m + α)

)
(A.4)

The update equation in Algorithm 2 can be rewritten as Eq. A.4. Table A.4 shows the
notations in Eq. A.4 for collapsed Gibbs sampling of theme y in the MCM inference.
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Table A.2: Notations in Eq. A.2 for MUM-CM

Notation Definition
1(·) Indicator function
α, β Hyperparameter
w Word set in training corpus
z¬(m,s) Topic set except the s-th segment in the m-th lyric
J # of topics
Szm,s−1→j,¬(m,s) # of segments that trans topic zm,s−1 to j except the s-th

segment in the m-th lyric
Szm,s−1→∗,¬(m,s) # of segments with topic zm,s−1 except the s-th segment in

the m-th lyric
N(m,s) # of words in the s-th segment in the m-th lyric
Nj,¬(m,s) # of words whose topic label is j except the s-th segment in

the m-th lyric
N(m,s),v # of a word v in the s-th segment in the m-th lyric
Nj,v,¬(m,s) # of a word v whose topic label is j except the s-th segment

in the m-th lyric

Table A.3: Notations in Eq. A.3 for MUM-CM

Notation Definition
V Size of the vocabulary
η, ζ , β Hyperparameter
w Word set in training corpus
x¬(m,s,n) Binary variable set except the n-th binary variable of the s-th seg-

ment in the m-th lyric
Nm,¬(m,s,n) # of words in the m-th lyric except the n-th word of the s-th seg-

ment in the m-th lyric
Nm,k,¬(m,s,n) # of words in the m-th lyric with binary label k except the n-th

word of the s-th segment in the m-th lyric
Nym,¬(m,s,n) # of a word whose theme label is ym except the n-th binary vari-

able of the s-th segment in the m-th lyric
Nym,wm,s,n,¬(m,s,n) # of a word wm,s,n with theme label ym except the n-th binary

variable of the s-th segment in the m-th lyric
Nzm,s,¬(m,s,n) # of a word whose topic label is zm,s except the n-th binary vari-

able of the s-th segment in the m-th lyric
Nzm,s,wm,s,n,¬(m,s,n) # of a word wm,s,n with topic label zm,s except the n-th binary

variable of the s-th segment in the m-th lyric
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Table A.4: Notations in Eq. A.4 for MCM

Notation Definition
α, ϵ Hyperparameter
z Topic set in training corpus
y¬m Theme set except the m-th lyric
J # of topics
Mi,¬m # of lyrics with theme label i except the m-th lyric
Sm,z→∗ # of segments with topic z in the m-th lyric
Sy,z→∗,¬m # of segments whose topic is z and theme is y except the m-th

lyric
Sm,z→z′ # of segments whose topic transitions z to z′ in the m-th lyric
Sy,z→z′,¬m, # of segments whose theme is y and topic transitions z to z′ in the

m-th lyric except the m-th lyric
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