Subword-based Compact Reconstruction of Word Embeddings

Shota Sasaki, Jun Suzuki, Kentaro Inui

RIKEN AIP, Tohoku University

Quick overview

2019/06/05

Outline

Quick Overview

Background

- Word embeddings
- Related work
- Purpose

Proposed Method

- Key technique
 - Subword-to-memory mapping function
 - Subword mixing function

• Experiments

- Word similarity with OOV words
- Model compression test
- Downstream tasks (NER, TE)

Background: Pretrained Word Embeddings

Highly beneficial, fundamental language resources

- e.g., GloVe.840B embeddings [Pennington, 2014]
 - Training data: Common Crawl Corpus (840B tokens)
 - Available online

X Inapplicability to out-of-vocabulary (OOV) words

- Infrequent words (often cut off due to memory requirements)
- Novel words

Background: Pretrained Word Embeddings

Highly beneficial, fundamental language resources

- e.g., GloVe.840B embeddings [Pennington, 2014]
 - Training data: Common Crawl Corpus (840B tokens)
 - Available online

X Inapplicability to out-of-vocabulary (OOV) words

- Novel words
- Infrequent words (often cut off due to memory requirements)

Related Work: Bag of Subwords (BoS) [Zhao et al., EMNLP-2018]

Similar motivation

Reconstruct pretrained word embeddings to support **out-of-vocabulary (OOV) words**

Basic Idea

Compute embeddings of OOV words by summing up subword embeddings obtained through the reconstruction

Naïve approach significantly increases memory requirements

Setting	# of vectors (aka. # of vocab.)	Memory
Pre-trained word embeddings (fastText.600B)	2.0 M	2.2 GB
char N-gram (N=1, 2,, 6) subword embeddings	6.3 M	7.2 GB

Mem. (GB) = # of vectors \times # of dimensions \times 4bytes (float) / 1024^3

Purpose

Aim to develop a method that simultaneously satisfies **1 less memory requirement 2 applicability of OOV**

Outline

Quick Overview

Background

- Word embeddings
- Related work
- Purpose

Proposed Method

- Key technique
 - Subword-to-memory mapping function
 - Subword mixing function
- Experiments
 - Word similarity with OOV words
 - Model compression test
 - Downstream tasks (NER, TE)

Outline

- Quick Overview
- Background
 - Word embeddings
 - Related work
 - Purpose

Proposed Method

- Key technique
 - Subword-to-memory mapping function
 - Subword mixing function
- Experiments
 - Word similarity with OOV words
 - Model compression test
 - Downstream tasks (NER, TE)

Subword-to-memory mapping function

- 1. Discarding infrequent subwords
- 2. Memory sharing
- **3.** Combination of 1. and 2.

Subword mixing function

• Self-attention mechanism

Key Ideas

Subword-to-memory mapping function

- **1**. Discarding infrequent subwords
- 2. Memory sharing
- **3.** Combination of 1. and 2.

Subword mixing function

• Self-attention mechanism

- 1. Discarding infrequent subwords
- Use top-*F* frequent subwords instead of all possible subwords
- Model size = $F \times \#$ of dimensions

- 1. Discarding infrequent subwords
- Use top-*F* frequent subwords instead of all possible subwords
- Model size = $F \times \#$ of dimensions

- 1. Discarding infrequent subwords
- Use top-*F* frequent subwords instead of all possible subwords
- Model size = $F \times \#$ of dimensions

2. Memory sharing [Bojanowski, 2017]

- Randomly share the same vectors between several subwords
- Model size = $H \times \#$ of dimensions

- 1. Discarding infrequent subwords
- Use top-*F* frequent subwords instead of all possible subwords
- Model size = $F \times \#$ of dimensions

2. Memory sharing [Bojanowski, 2017]

- Randomly share the same vectors between several subwords
- Model size = $H \times \#$ of dimensions

3. Combination

- I. Reduce subword vocabulary to top-*F* frequent subwords
- II. Apply memory sharing method

3. Combination

- I. Reduce subword vocabulary to top-*F* frequent subwords
- II. Apply memory sharing method

3. Combination

- I. Reduce subword vocabulary to top-*F* frequent subwords
- II. Apply memory sharing method

Subword-to-memory mapping function

- **1**. Discarding infrequent subwords
- 2. Memory sharing
- **3.** Combination of 1. and 2.

Subword mixing function

• Self-attention mechanism

Subword-to-memory mapping function

- **1**. Discarding infrequent subwords
- 2. Memory sharing
- **3.** Combination of 1. and 2.

Subword mixing function

• Self-attention mechanism

Key-value-query self-attention operation

- incorporate a "context-dependent" weighting factor $a_{s,w}$
- "context" = all the subwords obtained from word w

Advantages

- Highly expressive
 - allows assigning a lower weight to subword vector sharing its memory with completely unrelated subword
- No need of extra transformation matrix
 - Model size = $H \times \#$ of dimensions

Subword-to-memory mapping function

- **1.** Discarding infrequent subwords
- 2. Memory sharing
- **3.** Combination of 1. and 2.

Subword mixing function

• Self-attention mechanism

Outline

- Quick Overview
- Background
 - Word embeddings
 - Related work
 - Purpose
- Proposed Method
 - Key technique
 - Subword-to-memory mapping function
 - Subword mixing function

Experiments

- Word similarity with OOV words
- Model compression test
- Downstream tasks (NER, TE)

Evaluation of OOV Word Embeddings

- Word Similarity (Rare Word dataset)
 - Followed experimental settings used in [Zhao, EMNLP-2018]
 - 2000 word pairs, OOV rate : 11%

	method	Spearman's ρ
Baseline	Random	0.452
	BoS [Zhao, EMNLP-2018]	0.46*
	SUM-topF	0.513
	SUM-share ≈ rerun of BOS in our impl.	0.485
	KVQ-share	0.509
	SUM-comb	0.488
	KVQ-comb	<mark>0.522</mark>

✓ Our methods outperformed previous method

Evaluation of Model Compression

Evaluation tasks

• Word similarity task (9 datasets)

Pre-trained Embeddings

- fastText embeddings trained on Common Crawl corpus
 - 2M words, 300 dimensions
- **Note:** discarded pairs containing at least one OOV word

✓ KVQ-comb achieved comparable performance with less memory requirements

Subword-based Compact Reconstruction of Word Embeddings

39

Evaluation on Downstream Tasks

• Used AllenNLP implementation, default settings

Textual Entailment (SNLI)

	Size (GB)	F1
fastText word emb.	2.23GB	87.8
KVQ-comb (H=0.5M)	0.59GB	<mark>88.0</mark>
KVQ-comb (H=0.2M)	0.23GB	87.6

Named Entity Recognition (CoNLL-2003)

	Size (GB)	F1
fastText word emb.	2.23GB	90.3
KVQ-comb (H=0.5M)	0.59GB	<mark>90.4</mark>
KVQ-comb (H=0.2M)	0.23GB	89.3

✓ KVQ-comb achieved comparable performance with less memory requirements

Conclusion

