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Highly beneficial, fundamental language resources
• e.g., GloVe.840B embeddings [Pennington, 2014]

• Training data: Common Crawl Corpus (840B tokens)
• Available online

Inapplicability to out-of-vocabulary (OOV) words
• Infrequent words (often cut off due to memory requirements)
• Novel words

Background: Pretrained Word Embeddings

2019/06/05 3

✓

✘

Subword-based Compact Reconstruction of Word Embeddings



Highly beneficial, fundamental language resources
• e.g., GloVe.840B embeddings [Pennington, 2014]

• Training data: Common Crawl Corpus (840B tokens)
• Available online

Inapplicability to out-of-vocabulary (OOV) words
• Novel words
• Infrequent words (often cut off due to memory requirements)

Background: Pretrained Word Embeddings

2019/06/05 4

✓

✘

Subword-based Compact Reconstruction of Word Embeddings



Related Work:
Bag of Subwords (BoS) [Zhao et al., EMNLP-2018]

•Similar motivation
Reconstruct pretrained word embeddings 
to support out-of-vocabulary (OOV) words

•Basic Idea
Compute embeddings of OOV words by summing up 
subword embeddings obtained through the reconstruction
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The Problem with Subwords: There are too many

Naïve approach significantly increases memory requirements
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Setting # of vectors
(aka. # of vocab.) Memory

Pre-trained word embeddings
(fastText.600B) 2.0 M 2.2 GB

char N-gram (N=1, 2, ..., 6)
subword embeddings 6.3 M 7.2 GB

Mem. (GB) = # of vectors ✕ # of dimensions ✕ 4bytes (float) / 1024^3
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Purpose
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Key Ideas

p Subword-to-memory mapping function
1. Discarding infrequent subwords
2. Memory sharing
3. Combination of 1. and 2.

p Subword mixing function
• Self-attention mechanism
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Subword-to-Memory Mapping 
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1. Discarding infrequent subwords

• Use top-𝐹 frequent subwords 
instead of all possible subwords

• Model size ＝ 𝐹 ✕ # of dimensions

h

subwords memory

i

er

ighe

ower

low

…

more
frequent

less
frequent

Subword-based Compact Reconstruction of Word Embeddings



Subword-to-Memory Mapping 

132019/06/05

h

𝑭

more
frequent subwords memory

i

er

ighe

ower

low

…less
frequent

1. Discarding infrequent subwords

• Use top-𝐹 frequent subwords 
instead of all possible subwords

• Model size ＝ 𝐹 ✕ # of dimensions

Subword-based Compact Reconstruction of Word Embeddings



Subword-to-Memory Mapping 

142019/06/05

h

𝑭

more
frequent subwords memory

i

er

ighe

ower

low

…less
frequent

h

subwords memory

i

er

ighe

ower

low

…

2. Memory sharing [Bojanowski, 2017]
• Randomly share the same vectors 
between several subwords

• Model size ＝ 𝐻 ✕ # of dimensions
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Subword-to-Memory Mapping 
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Subword-to-Memory Mapping 
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3.  Combination
I. Reduce subword vocabulary to top-𝐹 frequent subwords
II. Apply memory sharing method
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Subword-to-Memory Mapping 
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Key  Ideas

p Subword-to-memory mapping function
1. Discarding infrequent subwords
2. Memory sharing
3. Combination of 1. and 2.

p Subword mixing function
• Self-attention mechanism
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Subword Mixing Function
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Subword Mixing Function
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Subword Mixing Function
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Subword Mixing Function
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Subword Mixing Function

Key-value-query self-attention operation
• incorporate a “context-dependent” weighting factor 𝑎&,(
• “context” = all the subwords obtained from word 𝑤
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Summation Key-value-query
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Modification of Mixing Function
- Key-value-query Operation
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Modification of Mixing Function
- Key-value-query Operation

312019/06/05 Subword-based Compact Reconstruction of Word Embeddings

Advantages
• Highly expressive

• allows assigning a lower weight to subword vector 
sharing its memory with completely unrelated subword

• No need of extra transformation matrix
• Model size ＝ 𝐻 ✕ # of dimensions
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Evaluation of OOV Word Embeddings

•Word Similarity (Rare Word dataset)
• Followed experimental settings used in [Zhao, EMNLP-2018]
• 2000 word pairs, OOV rate：11%
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method Spearman’s 𝛒

Baseline Random 0.452
BoS [Zhao,�EMNLP-2018] 0.46*

Proposed SUM-topF 0.513
SUM-share
≈�rerun�of�BOS�in�our�impl. 0.485

KVQ-share 0.509
SUM-comb 0.488
KVQ-comb 0.522

Subword-based Compact Reconstruction of Word Embeddings

ü Our methods outperformed previous method



Evaluation of Model Compression

•Evaluation tasks
•Word similarity task (9 datasets)

•Pre-trained Embeddings
• fastText embeddings trained on Common Crawl corpus

• 2M words, 300 dimensions

•Note: discarded pairs containing at least one OOV word
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Results on Word Similarity Task
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ü KVQ-comb achieved comparable performance with less memory requirements



Evaluation on Downstream Tasks
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Size (GB) F1

fastText word emb. 2.23GB 90.3
KVQ-comb (H=0.5M) 0.59GB 90.4
KVQ-comb (H=0.2M) 0.23GB 89.3

Named Entity Recognition (CoNLL-2003)

Size (GB) F1

fastText word emb. 2.23GB 87.8
KVQ-comb (H=0.5M) 0.59GB 88.0
KVQ-comb (H=0.2M) 0.23GB 87.6

Textual Entailment (SNLI)

Subword-based Compact Reconstruction of Word Embeddings

• Used AllenNLP implementation, default settings

ü KVQ-comb achieved comparable performance with less memory requirements
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Conclusion
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