

The AIP-Tohoku System at the BEA-2019 Shared Task

Hiroki Asano^{12*}, Masato Mita²¹, Tomoya Mizumoto²¹⁺, Jun Suzuki¹²

¹Tohoku University, ²RIKEN Center for Advanced Intelligence Project (AIP), *Yahoo Japan Corporation, ⁺ Future Corporation

Summary

- This is the first study that has combined GEC with sentence-level error detection (SED)
- Our result demonstrates SED improve the precision of GEC
- Our system is ranked 9th in Track1 and 2nd in Track2

🔏 System Architecture

We input grammatically incorrect sentences predicted by the SED model into our GEC model

阈 Key Technique: Sentence-level Error Detection (SED)

Motivation

Reduce FP by passing only sentences that contain errors to the GEC model using SED

Architecture

Experimental Configurations

Model

GEC Model

• Transformer-based Model

SED Model

- BERT-based Model
- Error Generation Model (GenData)
- Following the system by Edunov et al. (2018)

Dataset

Model	Track1	Track2
GEC	• Official data (564K)	 Official data (564K) EFCAMDAT [Geertzen et al+2013] + Non- public Lang-8 (7.7M)
GenData	 Simple Wikipedia + Essay scoring data sets (i.e, ICLE [Granger+2009], ICNALE[Ishikawa], ASAP, TOEFL 11[Blanchard+2013]) (1.4M) 	
SED	Official data (564K)	<u>.</u>

Base SED

 Performs sentence-level binary classification of sentences that need editing

Proficiency Prediction Module (PPM)

- Base PP predicts the leaners proficiency
- Employed a multi-task learning approach in which PP model and SED model simultaneously

Fine-tuned SED

• SED model is fine-tuned for each level of proficiency (Lv. A, Lv. B, Lv. C)

Results

Main Leaderboard

Model	Prec.	Rec.	F0.5	Rank
Track1	68.62	42.16	60.97	9 th
Track2	70.60	51.03	65.57	2 nd

Ablation Test

Model	Prec.	Rec.	F0.5
GEC	61.97	42.11	56.63
+GenData	64.57	46.40	59.88
+SED	68.62 + 4.05 pc	42.16	60.97