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Mixture of Expert/Imitator Networks for

Large-scale Semi-supervised Learning∗

Shun Kiyono

Abstract

The current success of deep neural networks (DNNs) in an increasingly broad

range of tasks involving artificial intelligence strongly depends on the quality and

quantity of labeled training data. In general, the scarcity of labeled data, which

is often observed in many natural language processing tasks, is one of the most

important issues to be addressed. Semi-supervised learning (SSL) is a promising

approach to overcoming this issue by incorporating a large amount of unlabeled

data. In this paper, we propose a novel scalable method of SSL for text classi-

fication tasks. The unique property of our method, Mixture of Expert/Imitator

Networks, is that imitator networks learn to “imitate” the estimated label dis-

tribution of the expert network over the unlabeled data, which potentially con-

tributes a set of features for the classification. Our experiments demonstrate that

the proposed method consistently improves the performance of several types of

baseline DNNs. We also demonstrate that our method has the more data, better

performance property with promising scalability to the amount of unlabeled data.

Keywords:

Natural Language Processing, Semi-supervised Learning, Deep Learning, Text

Classification
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Expertと Imitatorの混合ネットワークによる大規模

半教師あり学習∗

清野 舜

内容梗概

近年，深層学習を用いた手法が様々な分野で目覚ましい成功を収めている．一

方で，その性能はラベル付きデータの質と量に強く依存することが知られている．

ラベル付きデータの不足は，自然言語処理分野の多くのタスクに共通しており，

同分野の抱える大問題の一つである．この問題へのアプローチの一つとして，半

教師あり学習が挙げられる．半教師あり学習では，ラベル付きデータに加えて，

大規模なラベル無しデータを学習に用いることで，機械学習モデルの汎化性能の

向上を試みる．本論文は，文書分類のための新しい半教師あり学習の枠組みを提

案する．提案手法（Expertと Imitatorの混合ネットワーク）の特徴は，Imitator

がExpertの出力する確率分布を “真似る”ような学習の枠組みにある．この学習

を，ラベル無しデータを用いて行うことで，Imitatorの出力は，識別に有効な特徴

量を表現可能となる．実験では，提案手法が，文書分類のベンチマークデータ上

で，複数のベースラインモデルの性能を向上させることを示す．また，提案手法

の計算時間が，大規模なラベル無しデータに対してもスケールすることを示す．

キーワード

自然言語処理，半教師あり学習，深層学習，文書分類

∗東北大学 大学院情報科学研究科 システム情報科学専攻 修士論文, B7IM2020, 2019年 2月

5日.
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1 Introduction

It is commonly acknowledged that deep neural networks (DNNs) can achieve

excellent performance in many tasks across numerous research fields, such as

image classification [3], speech recognition [4], and machine translation [5]. Recent

progress in these tasks has been primarily driven by the following two factors: (1)

A large amount of labeled training data exists. For example, ImageNet [6], one of

the major datasets for image classification, consists of approximately 14 million

labeled images. (2) DNNs have the property of achieving better performance

when trained on a larger amount of labeled training data, namely, the more data,

better performance property.

However, collecting a sufficient amount of labeled training data is not always

easy for many actual applications. We refer to this issue as the labeled data

scarcity issue. This issue is particularly crucial in the field of natural language

processing (NLP), where only a few thousand or even a few hundred labeled data

are available for most tasks. This is because, in typical NLP tasks, creating the

labeled data often requires the professional supervision of several highly skilled

annotators. As a result, the cost of data creation is high relative to the amount

of data.

Unlike labeled data, unlabeled data for NLP tasks is essentially a collection

of raw texts; thus, an enormous amount of unlabeled data can be obtained from

the Internet, such as through the Common Crawl website1, at a relatively low

cost. With this background, semi-supervised learning (SSL), which leverages

unlabeled data in addition to labeled training data for training the parameters of

DNNs, is one of the promising approaches to practically addressing the labeled

data scarcity issue in NLP. In fact, some intensive studies have recently been

undertaken with the aim of developing SSL methods for DNNs and have shown

promising results [7, 8, 1, 9, 10].

In this paper, we also follow this line of research topic, i.e., discussing SSL

suitable for NLP. Our interest lies in the more data, better performance property

of the SSL approach over the unlabeled data, which has been implicitly demon-

strated in several previous studies [11, 10]. In order to take advantage of the huge

1http://commoncrawl.org
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Figure 1: Overview of our framework: the Mixture of Expert/Imitator Networks

(MEIN)

amount of unlabeled data and improve performance, we need an SSL approach

that scales with the amount of unlabeled data. However, the scalability of an

SSL approach has not yet been widely discussed, since the primary focus of many

of the recent studies on SSL in DNNs has been on improving the performance.

For example, several studies have utilized unlabeled data as additional train-

ing data, which essentially increases the computational cost of (often complex)

DNNs [1, 9, 2]. Another SSL approach is to (pre-)train a gigantic bidirectional

language model [10]. Nevertheless, it has been reported that the training of such

a network requires 3 weeks using 32 GPUs [12]. By developing a scalable SSL

method, we hope to broaden the usefulness and applicability of DNNs since, as

mentioned above, the amount of unlabeled data can be easily increased.

In this paper, we propose a novel scalable method of SSL, which we refer to as

the Mixture of Expert/Imitator Networks (MEIN). Figure 1 gives an overview of

the MEIN framework, which consists of an expert network (EXN) and at least

one imitator network (IMN). To ensure scalability, we design each IMN to be

computationally simpler than the EXN. Moreover, we use unlabeled data exclu-

sively for training each IMN; we train the IMN so that it imitates the label esti-

mation of the EXN over the unlabeled data. The basic idea underlying the IMN

is that we force it to perform the imitation with only a limited view of the given

2



input. In this way, the IMN effectively learns a set of features, which potentially

contributes to the EXN. Intuitively, our method can be interpreted as a variant

of several training techniques of DNNs, such as the mixture-of-experts [13, 14],

knowledge distillation [15, 16], and ensemble techniques.

We conduct experiments on well-studied text classification datasets to evalu-

ate the effectiveness of the proposed method. We demonstrate that the MEIN

framework consistently improves the performance for three distinct settings of

the EXN. We also demonstrate that our method has the more data, better per-

formance property with promising scalability to the amount of unlabeled data.

In addition, a current popular SSL approach in NLP is to pre-train the language

model and then apply it to downstream tasks [7, 8, 17, 18, 10]. We empirically

prove in our experiments that MEIN can be easily combined with this approach

to further improve the performance of DNNs.

2 Related Work

There have been several previous studies in which SSL has been applied to text

classification tasks. A common approach is to utilize unlabeled data as additional

training data of the DNN. Studies employing this approach mainly focused on

developing a means of effectively acquiring a teaching signal from the unlabeled

data. For example, in virtual adversarial training (VAT) [1] the perturbation is

computed from unlabeled data to make the baseline DNN more robust against

noise. Sato et al. [2] proposed an extension of VAT that generates a more inter-

pretable perturbation. In addition, cross-view training (CVT) [9] considers the

auxiliary loss by making a prediction from an unlabeled input with a restricted

view. On the other hand, in our MEIN framework, we do not use unlabeled data

as additional training data for the baseline DNN. Instead, we use the unlabeled

data to train the IMNs to imitate the baseline DNN. The advantage of such usage

is that one can choose an arbitrary architecture for the IMNs. In this study, we

design the IMN to be computationally simpler than the baseline DNN to ensure

better scalability with the amount of unlabeled data (Table 4).

The idea of our expert-imitator approach originated from the SSL framework

proposed by Suzuki and Isozaki [19]. They incorporated several simple generative

3



models as a set of additional features for a supervised linear conditional random

field classifier. Our EXN and IMN can be regarded as their linear classifier and

the generative models, respectively. In addition, they empirically demonstrated

that the performance has a linear relationship with the logarithm of the unlabeled

data size. We empirically demonstrate that the proposed method also exhibits

similar behavior (Figure 3), namely, increasing the amount of unlabeled data

reduces the error rate of the EXN.

One of the major SSL approaches in NLP is to pre-train a language model

over unlabeled data. The pre-trained weights have many uses, such as parameter

initialization [8] and as a source of additional features [17, 18, 10], in downstream

tasks. For example, Peters et al. [10] have recently trained a bi-directional LSTM

language model using the One Billion Word Benchmark dataset [20]. They uti-

lized the hidden state of the LSTM as contextualized embedding, called ELMo

embedding, and achieved state-of-the-art results in many downstream tasks. In

our experiment, we empirically demonstrate that the proposed MEIN is comple-

mentary to the pre-trained language model approach. Specifically, we show that

by combining the two approaches, we can further improve the performance of the

baseline DNN.

4



3 Task Description and Notation Rules

This section gives a formal definition of the text classification task discussed in

this paper. Let V represent the vocabulary of the input sentences. xt ∈ {0, 1}|V|

denotes the one-hot vector of the t-th token (word) in the input sentence, where

|V| represents the number of tokens in V . Here, we introduce the short notation

form (xt)
T
t=1 to represent a sequence of vectors for simplicity, that is, (xt)

T
t=1 =

(x1, . . . ,xT ). Suppose we have an input sentence that consists of T tokens. For

a succinct notation, we introduce X to represent a sequence of one-hot vectors

that corresponds to the tokens in the input sentence, namely, X = (xt)
T
t=1. Y

denotes a set of output classes. Let y ∈ {1, . . . , |Y|} be an integer that represents

the output class ID. In addition, we define Xa:b as the subsequence of X from

index a to index b, namely, Xa:b = (xa,xa+1 . . . ,xb) and 1 ≤ a ≤ b ≤ T . We

also define x[i] as the i-th element of vector x. For example, if x = (5, 2, 1,−1)⊤,
then x[2] = 2 and x[4] = −1.
In the supervised training framework for text classification tasks modeled by

DNNs, we aim to maximize the (conditional) probability p(y|X) over a given

set of labeled training data (X, y) ∈ Ds by using DNNs. In the semi-supervised

training, the objective of maximizing the probability is identical but we also use

a set of unlabeled training data X ∈ Du.

5



4 Baseline Network: LSTM with MLP

In this section, we briefly describe a baseline DNN for text classification. Among

the many choices, we select the LSTM-based text classification model described

by Miyato et al. [1] as our baseline DNN architecture since they achieved the

current best results on several well-studied text classification benchmark datasets.

The network consists of the LSTM [21] cell and a multi layer perceptron (MLP).

First, the LSTM cell calculates a hidden state sequence (ht)
T
t=1, where ht ∈ RH

for all t and H is the size of the hidden state, as ht = LSTM(Ext,ht−1). Here,

E ∈ RD×|V| is the word embedding matrix, D denotes the size of the word

embedding, and h0 is a zero vector.

Then the T -th hidden state hT is passed through the MLP, which consists of

a single fully connected layer with ReLU nonlinearity [22], to compute the final

hidden state s ∈ RM . Specifically, s is computed as s = ReLU(WhhT + bh),

where Wh ∈ RM×H is a trainable parameter matrix and bh ∈ RM is a bias term.

Here, M denotes the size of the final hidden state of the MLP.

Finally, the baseline DNN estimates the conditional probability from the final

hidden state s as follows:

zy = w⊤
y s+ by, (1)

p(y|X,Θ) =
exp(zy)∑

y′∈Y exp(zy′)
, (2)

where wy ∈ RM is the weight vector of class y and by is the scalar bias term of

class y. Also, Θ denotes all the trainable parameters of the baseline DNN.

For the training process of the parameters in the baseline DNN Θ, we seek the

(sub-)optimal parameters that minimize the (empirical) negative log-likelihood

for the given labeled training data Ds, which can be written as the following

optimization problem:

Θ′ = argmin
Θ

{
Ls(Θ|Ds)

}
, (3)

Ls(Θ|Ds) = −
1

|Ds|
∑

(X,y)∈Ds

log
(
p(y|X,Θ)

)
, (4)

where Θ′ represents the set of obtained parameters in the baseline DNN, by

6



solving the above minimization problem. Practically, we apply a variant of a

stochastic gradient descent algorithm such as Adam [23].
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5 Proposed Model: Mixture of Expert/Imitator

Networks (MEIN)

Figure 1 gives an overview of the proposed method, which we refer to as MEIN.

MEIN consists of an expert network (EXN) and a set of imitator networks

(IMNs). Once trained, the EXN and the set of IMNs jointly predict the label

of a given input X. Figure 1 shows the baseline DNN (LSTM with MLP) as

an example of the EXN. Note that MEIN can adopt an arbitrary classification

network as the EXN.

5.1 Basic Idea

A brief description of MEIN is as follows: (1) The EXN is trained using labeled

training data. Thus, the EXN is expected to be very accurate over inputs that

are similar to the labeled training data. (2) IMNs (we basically assume that

we have more than one IMN) are trained to imitate the EXN. To accomplish

this, we train each IMN to minimize the Kullback ‒ Leibler (KL) divergence

between estimations of label distributions of the EXN and the IMNs over the

unlabeled data. (3) Our final classification network is a mixture of the EXN and

IMN(s). Here, we fine-tune the EXN using the labeled training data jointly with

the estimations of all the IMNs.

The basic idea underlying MEIN is that we force each IMN to imitate esti-

mated label distributions with only a limited view of the given input. Specifically,

we adopt a sliding window to divide the input into several fragments of n-grams.

Given a large amount of unlabeled data and the estimation by the EXN, the

IMN learns to represent the label “tendency” of each fragment in the form of a

label distribution (i.e., certain n-grams are more likely to have positive/negative

labels than others). Our assumption here is that this tendency can potentially

contribute a set of features for the classification. Thus, after training the IMNs,

we jointly optimize the EXN and the weight of each feature. Here, MEIN may

control the contribution of each feature by updating the corresponding weight.

Intuitively, our MEIN approach can be interpreted as a variant of several

successful machine learning techniques for DNNs. For example, MEIN shares

8
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Figure 2: Overview of the 1st IMN (c1 = 1). The IMN must predict the label

estimation of the EXN from a limited amount of information. $ denotes a special

token used to pad the input (a zero vector).

the core concept with the mixture-of-experts technique (MoE) [13, 14]. The

difference is that MoE considers a mixture of several EXNs, whereas MEIN

generates a mixture from a single EXN and a set of IMNs. In addition, one

can interpret MEIN as a variant of the ensemble, bagging, voting, or boosting

technique since the EXN and the IMNs jointly make a prediction. Moreover,

we train each IMN by minimizing the KL-divergence between the EXN and the

IMN through unlabeled data. This process can be seen as a form of “knowledge

distillation” [15, 16]. We utilize these methodologies and formulate the framework

as described below.

5.2 Network Architecture

Let σ(·) be the sigmoid function defined as σ(λ) = (1 + exp(−λ))−1. Φ denotes

a set of trainable parameters of the IMNs and I denotes the number of IMNs.

Then, the EXN combined with a set of IMNs models the following (conditional)

probability:

p(y|X,Θ,Φ,Λ) =
exp(z′y)∑

y′∈Y exp(z′y′)
, (5)

where z′y = zy +
I∑

i=1

σ(λi)αi[y]. (6)

λi is a scalar parameter that controls the contribution of logit αi of the i-th IMN

and Λ is defined as Λ = {λ1, . . . , λI}. Here, logit αi represents an estimated

label distribution, which we assume to be a feature. Note that the first term of

9



Equation 6 is the baseline DNN logit zy = w⊤
y s + by (Equation 1). In addition,

if we set σ(λi) = 0 for all i, then Equation 5 becomes identical to Equation 2

regardless of the value of Φ.

ci denotes the window size of the i-th IMN. Given an input X and the i-th

IMN, we create J inputs with a sliding window of size ci. Then the IMN predicts

the EXN for each input and generates J predictions as a result. We compute the

i-th imitator logit αi by taking the average of these predictions. Specifically, αi

is defined as

αi = log

(
1

J

J∑
j=1

pi,j(y|Xa:b,Φ)

)
, (7)

where a = j − ci and b = j + ci.

Here, a is a scalar index that represents the beginning of the window. Similarly,

b represents the last index of the window.

5.3 Definition of IMNs

Note that the architecture of the IMN used to model Equation 7 is essentially ar-

bitrary. In this research, we adopt a single-layer CNN for modeling pi,j(y|Xa:b,Φ).

This is because a CNN has high computational efficiency [24], which is essential

for our primary focus: scalability with the amount of unlabeled data.

Figure 2 gives an overview of the architecture of the IMN. First, the IMN

takes a sequence of word embeddings of input X and computes a sequence of

hidden states (oj)
J
j=1 by applying a one-dimensional convolution [25] and leaky

ReLU nonlinearity [26]. We ensure that J is always equal to T . To achieve this,

we pad the beginning and the end of the input X with zero vectors 0 ∈ R|V ′|×ci ,

where |V ′| denotes the vocabulary size of the IMN.

As explained in Section 5.2, each IMN has a predetermined and fixed window

size ci. One can choose an arbitrary window size for the i-th IMN. Here, we

define ci as ci = i for simplicity. For example, as shown in Figure 2, the 1st IMN

(i = 1) has a window size of c1 = 1. Such a network imitates the estimation of

the EXN from three consecutive tokens.

Then the i-th IMN estimates the probability pi,j(y|X,Φ) from each hidden

10



Algorithm 1: Training framework of MEIN

Data: Labeled data Ds and unlabeled data Du

Result: Trained set of parameters Θ̂, Φ̂, Λ̂

1 Θ′ ← argmin
Θ
{Ls(Θ|Ds)} ▷ Train EXN (Equation 3)

2 Φ̂← argmin
Φ
{Lu(Φ|Θ′,Du)} ▷ Train IMN(s) (Equation 11)

3 Θ̂, Λ̂← argmin
Θ,Λ

{L′
s(Θ,Λ|Φ̂,Ds)} ▷ Train EXN (Equation 13)

state oj as

pi,j(y|Xa:b,Φ) =
exp(w′⊤

i,yoj + b′i,y)∑
y′∈Y exp(w′⊤

i,y′oj + b′i,y′)
, (8)

where w′
i,y ∈ RN is the weight vector of the i-th IMN and b′i,y is the scalar bias

term of class y. N denotes the CNN kernel size.

5.4 Training Framework

First, we define the imitation loss of each IMN as the KL-divergence between the

estimations of the label distributions of the EXN and the IMN given (unlabeled)

data X, namely, KL(p(y|X,Θ)||pi,j(y|Xa:b,Φ)). Note that this imitation loss is

defined for an input with the sliding windowXa:b. Thus, this definition effectively

accomplishes the concept, i.e., the IMN making a prediction pi,j(y|Xa:b,Φ) from

only a limited view of the given input Xa:b.

Next, our objective is to estimate the set of optimal parameters by minimizing

the negative log-likelihood of Equation 5 while also minimizing the total imitation

losses for all IMNs as biases of the network. Therefore, we jointly solve the

following two minimization problems for the parameter estimation of MEIN:

Θ̂, Λ̂ = argmin
Θ,Λ

{L′
s(Θ,Λ|Φ̂,Ds)} (9)

Φ̂ = argmin
Φ
{Lu(Φ|Θ′,Du)}. (10)

As described in Equations 9 and 10, we update the different sets of parameters

depending on the labeled/unlabeled training data. Specifically, we use the labeled
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training data (X, y) ∈ Ds to update the set of parameters in the EXN, Θ, and

the set of mixture parameters of the IMNs, Λ. In addition, we use the unlabeled

training data X ∈ Du to update the parameters of the IMNs, Φ.

To ensure an efficient training procedure, the training framework of MEIN

consists of three consecutive steps (Algorithm 1). First, we perform standard

supervised learning to obtain Θ′ using labeled training data while keeping λi =

−∞ unchanged for all i during the training process to ensure that σ(λi) = 0 in

Equation 6. Note that this optimization step is essentially equivalent to that of

the baseline DNN (Equation 4).

Second, we estimate the set of IMN parameters Φ by solving the minimization

problem in Equation 10 with the following loss function:

Lu(Φ|Θ′,Du) =
1

|Du|
∑

X∈Du

I∑
i=1

J∑
j=1

KL(p||pi,j), (11)

KL(p||pi,j) =−
∑
y∈Y

p(y|X,Θ′) log
(
pi,j(y|Xa:b,Φ)

)
+ const, (12)

where KL(p||pi,j) is a shorthand notation of the imitation loss KL(p(y|X,Θ)||pi,j(y|Xa:b,Φ))

and const is a constant term that is independent of Φ.

Finally, we estimate Θ and Λ by solving the minimization problem in Equa-

tion 9 with the following loss function:

L′
s(Θ,Λ|Φ̂,Ds) = −

1

|Ds|
∑

(X,y)∈Ds

log
(
p(y|X,Θ, Φ̂,Λ)

)
. (13)
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Task Dataset Classes Train Dev Test Unlabeled

SEC

Elec 2 22,500 2,500 25,000 200,000

IMDB 2 21,246 3,754 25,000 50,000

Rotten 2 8,636 960 1,066 7,911,684

CAC RCV1 55 14,007 1,557 49,838 668,640

Table 1: Summary of datasets. Each value represents the number of instances

contained in each dataset.

6 Experiments

To investigate the effectiveness of MEIN, we conducted experiments on two text

classification tasks: (1) a sentiment classification (SEC) task and (2) a category

classification (CAC) task.

6.1 Datasets

For SEC, we selected the following widely used benchmark datasets: IMDB [27],

Elec [28], and Rotten Tomatoes (Rotten) [29]. For the Rotten dataset, we used

the Amazon Reviews dataset [30] as unlabeled data, following previous stud-

ies [8, 1, 2]. For CAC, we used the RCV1 dataset [31]. Table 1 summarizes the

characteristics of each dataset2.

6.2 Baseline DNNs

In order to investigate the effectiveness of the MEIN framework, we combined

the IMN with following three distinct EXNs and evaluated their performance:

• LSTM: This is the baseline DNN (LSTM with MLP) described in Section 4.

• LM-LSTM: Following Dai and Le [8], we initialized the embedding layer

and the LSTM with a pre-trained RNN-based language model (LM) [33].

2DBpedia [32] is another widely adopted CAC dataset. We did not use this dataset in our

experiment because it does not contain unlabeled data.
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We trained the language model using the labeled training data and un-

labeled data of each dataset. Several previous studies have adopted this

network as a baseline [1, 2].

• ADV-LM-LSTM: Adversarial training (ADV) [34] adds small perturba-

tions to the input and makes the network robust against noise. Miyato

et al. [1] applied ADV to LM-LSTM for a text classification. We used the

reimplementation of their network.

Note that these three EXNs have an identical network architecture, as described

in Section 4. The only difference is in the initialization or optimization strategy

of the network parameters.

To the best of our knowledge, ADV-LM-LSTM provides a performance com-

petitive with the current best result for the configuration of supervised learning

(using labeled training data only). Thus, if the IMN can improve the perfor-

mance of a strong baseline, the results will strongly indicate the effectiveness of

our method.

6.3 Network Configurations

Table 2 summarizes the hyperparameters and network configurations of our ex-

periments. We carefully selected the settings commonly used in the previous

studies [8, 1, 2].

We used a different set of vocabulary for the EXN and the IMNs. We created

the EXN vocabulary V by following the previous studies [8, 1, 2], i.e., we removed

the tokens that appear only once in the whole dataset. We created the IMN

vocabulary V ′ by byte pair encoding (BPE) [35]3. The BPE merge operations are

jointly learned from the labeled training data and unlabeled data of each dataset.

We set the number of BPE merge operations to 20,000.
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Hyperparameter Value

EXN

(baseline DNN)

Word Embedding Dim. (D) 256

Embedding Dropout Rate 0.5

LSTM Hidden State Dim. (H) 1024

MLP Dim. (M) for SEC Task 30

MLP Dim. (M) for CAC Task 128

Activation Function ReLU

IMN

CNN Kernel Dim. (N) 512

Word Embedding Dim. 512

Activation Function Leaky ReLU

Number of IMNs (I) 4

Optimization

Algorithm Adam

Mini-Batch Size 32

Initial Learning Rate 0.001

Fine-tune Learning Rate 0.0001

Decay Rate 0.9998

Baseline Max Epoch 30

Fine-tune Max Epoch 30

Table 2: Summary of hyperparameters

6.4 Results

Table 3 summarizes the results on all benchmark datasets, where the evaluation

metric is the error rate. Therefore, a lower value indicates better performance.

Here, all the reported results are the average of five distinct trials using five

different random seeds. Moreover, for each trial, we automatically selected the

best network in terms of the performance on the validation set among the net-

works obtained at every epoch. For comparison, we also performed experiments

on training baseline DNNs (LSTM, LM-LSTM, and ADV-LM-LSTM) with

incorporating random vectors as the replacement of IMNs, which is denoted as

“+IMN (Random)”. Moreover, we present the published results of VAT-LM-

3We used sentencepiece [36] (https://github.com/google/sentencepiece) for the BPE

operations.
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Method Elec IMDB Rotten RCV1

LSTM 10.09 10.98 26.47 14.14

LSTM+IMN (Random)† 9.87 10.75 27.27 14.04

LSTM+IMN† 8.83 10.04 24.93 12.31

LM-LSTM† 5.72 7.25 16.80 8.37

LM-LSTM+IMN (Random)† 5.71 7.01 16.78 7.83

LM-LSTM+IMN† 5.48 6.51 15.91 7.53

ADV-LM-LSTM† 5.38 6.58 15.73 7.89

ADV-LM-LSTM+IMN (Random)† 5.34 6.27 15.11 7.78

ADV-LM-LSTM+IMN† 5.14* 6.07* 13.98 7.51*

VAT-LM-LSTM (rerun) † 5.47 6.20 18.50 8.44

VAT-LM-LSTM (Miyato 2017)† 5.54 5.91 19.1 7.05

VAT-LM-LSTM (Sato 2018)† 5.66 5.69 14.26 11.80

iVAT-LSTM (Sato 2018)† 5.18 5.66 14.12 11.68

Table 3: Test performance (error rate (%)) on each dataset. A lower error rate

indicates better performance. Models using the unlabeled data are marked

with †. Results marked with ∗ are statistically significant compared with ADV-

LM-LSTM. Miyato 2017: the result reported by Miyato et al. [1]. Sato 2018:

the result reported by Sato et al. [2].

LSTM [1] and iVAT-LSTM [2] in the bottom three rows of Table 3, which

are the current state-of-the-art networks that adopt unlabeled data. For VAT-

LM-LSTM, we also report the result of the reimplemented network, denoted as

“VAT-LM-LSTM (rerun)”.

As shown in Table 3, incorporating the IMNs consistently improved the perfor-

mance of all baseline DNNs across all benchmark datasets. Note that the source

of these improvements is not the extra set of parameters Λ but the outputs of the

IMNs. We can confirm this fact by comparing the results of IMNs, “+IMN”,

with those of random vectors, “+IMN (Random)”, since the difference between

these two settings is the incorporation of IMNs or random vectors.

The most noteworthy observation about MEIN is that the amount of the

improvement upon incorporating the IMN is nearly consistent, regardless of the
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performance of the base EXN. For example, Table 3 shows that the IMN reduced

the error rates of LSTM, LM-LSTM, and ADV-LM-LSTM by 1.54%, 0.89%,

and 1.22%, respectively, for the Rotten dataset. From these observations, the

IMN has the potential to further improve the performance of much stronger

EXNs developed in the future.

We also remark that our best configuration, ADV-LM-LSTM+IMN, outper-

formed VAT-LM-LSTM (rerun) on all datasets4. In addition, the best config-

uration outperformed the current best published results on the Elec and Rotten

datasets, establishing new state-of-the-art results.

As a comparison with the current strongest SSL method, we combined the IMN

with the current state-of-the-art VAT method, namely, VAT-LM-LSTM+IMN.

In the Elec dataset, the IMN improved the error rate from 5.47% to 5.16%. This

result indicates that the IMN and VAT have a complementary relationship. Note

that utilizing VAT is challenging in terms of the scalability with the amount of

unlabeled data. However, if sufficient computing resources exist, then VAT and

the IMN can be used together to achieve even higher performance.

4The performance of our VAT-LM-LSTM (rerun) is lower than the performances reported

by Miyato et al. [1] except for the Elec and Rotten datasets. Through extensive trials to

reproduce their results, we found that the hyperparameter of the RNN language model is

extremely important in determining the final performance; therefore, the strict reproduction

of the published results is significantly difficult. In fact, a similar difficulty can be observed in

Table 3, where VAT-LM-LSTM (Sato 2018) has lower performance than VAT-LM-LSTM

(Miyato 2017) on the Elec and RCV1 datasets. Thus, we believe thatVAT-LM-LSTM (rerun)

is the most reliable result for the comparison.
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7 Analysis

7.1 More Data, Better Performance Property

We investigated whether the MEIN framework has the more data, better per-

formance property for unlabeled data. Ideally, MEIN should achieve better

performance by increasing the amount of unlabeled data. Thus, we evaluated

the performance while changing the amount of unlabeled data used to train the

IMN.

We selected the Elec and RCV1 datasets as the focus of this analysis. We

created the following subsamples of the unlabeled data for each dataset: {5K,

20K, 50K, 100K, Full Data} for Elec and {5K, 50K, 250K, 500K, Full Data}
for RCV1. In addition, for the Elec dataset, we sampled extra unlabeled data

from the electronics section of the Amazon Reviews dataset [30] and constructed

{2M, 4M, 6M} unlabeled data5. For each (sub)sample, we trained ADV-LM-

LSTM+IMN as explained in Section 6.

Figures 3a and 3b demonstrate that increasing the amount of unlabeled data

improved the performance of the EXN. It is noteworthy that in Figure 3a, ADV-

LM-LSTM+IMN trained with 6M data achieved an error rate of 5.06%, outper-

forming the best result in Table 3 (5.14%). These results explicitly demonstrate

the more data, better performance property of the MEIN framework. We also

report that the training process on the largest amount of unlabeled data (6M)

only took approximately a day.

7.2 Scalability with Amount of Unlabeled Data

The primary focus of the MEIN framework is its scalability with the amount of

unlabeled data. Thus, in this section, we compare the computational speed of the

IMNs with that of the base EXN. We also compare the IMNs with the state-

of-the-art SSL method, VAT-LM-LSTM, and discuss their scalability. Here, we

focus on the computation in the training phase of the network, where the network

5We discarded instances from the unlabeled data when the non stop-words overlap with

instances in the Elec test set. Thus, the unlabeled data and the Elec test set had no instances

in common.
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Figure 3: Error rate (%) at different amounts of unlabeled data. The x-axis is in

log-scale. A lower error rate indicates better performance. The dashed

horizontal line represents the performance of the base EXN (ADV-LM-LSTM).

Method Tokens/sec Relative Speed

LM-LSTM 41,914 -

ADV-LM-LSTM 13,791 0.33x

VAT-LM-LSTM 9,602 0.23x

IMN (ci = 1) 555,613 13.26x

IMN (ci = 1, 2) 236,065 5.63x

IMN (ci = 1, 2, 3) 122,076 2.91x

IMN (ci = 1, 2, 3, 4) 75,393 1.80x

Table 4: Number of tokens processed per second during the training

processes both forward and backward computations.

We measured the number of tokens that each network processes per second. We

used identical hardware for each measurement, namely, a single NVIDIA Tesla

V100 GPU. We used the cuDNN implementation for the LSTM cell since it is

highly optimized and substantially faster than the naive implementation [37].
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Figure 4: Effect of the IMN with different window sizes ci on the final error

rate (%) of ADV-LM-LSTM. A lower error rate indicates better per-

formance. Base: EXN (ADV-LM-LSTM) without the IMN, A: ci = 1, B:

ci = 1, 2, C: ci = 1, 2, 3, D: ci = 1, 2, 3, 4.

Table 4 summarizes the results. The table shows that even the slowest IMN

(ci = 1, 2, 3, 4) was 1.8 times faster than the optimized cuDNN LSTM network

and eight times faster than VAT-LM-LSTM. This indicates that it is possible

to use an even larger amount of unlabeled data in a practical time to further

improve the performance of the EXN. In addition, note that each IMN can be

trained in parallel. Thus, if multiple GPUs are available, the training can be

carried out much faster than reported in Table 4.
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7.3 Effect of Window Size of the IMN

In this section, we investigate the effectiveness of combining IMNs with different

window sizes ci on the final performance of the EXN. Figure 4 summarizes the

results across all datasets. The figure shows that integrating an IMN with a

greater window size consistently reduced the error rate, and the IMN with the

greatest window size (D: ci = 1, 2, 3, 4) achieved the best performance. This

observation implies that the context, which is captured by a greater window size,

contributes to the performance.
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Window Size Error Rate (%)

ci = 1, 2, 3, 4 5.14

ci = 2, 3, 4 5.18

ci = 3, 4 5.26

ci = 4 5.23

Table 5: Effect of removing IMNs with smaller window sizes on the error rate

(%) of ADV-LM-LSTM on the Elec dataset. A lower error rate indicates

better performance.

8 Discussion

8.1 Variations of the IMN

In this section, we discuss two possible variations of the IMN to better understand

its effectiveness in the MEIN framework.

8.1.1 Incorporating IMN with Greater Window Size

As discussed in Section 7.3, Figure 4 demonstrates that increasing the window

size of the IMN consistently improves the performance. From this observation,

one may hypothesize that integrating an IMN with an even greater window size

will be beneficial. Thus, we carried out an experiment with such a configuration,

i.e., ci = 1, 2, 3, 4, 5, and found that the hypothesis is valid. For example, the

error rates of ADV-LM-LSTM+IMN (ci = 1, 2, 3, 4, 5) were 5.12% and 6.00%

for Elec and IMDB, respectively, which are better than the values reported in

Table 3.

However, we found that a large window size has a major drawback; the training

of IMNs becomes significantly slower. This undesirable property must be avoided

as our primary focus is the scalability with the amount of unlabeled data. Thus,

we do not report these values as the main results of the experiment in Table 3.
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8.1.2 Removing IMNs with Smaller Window Sizes

We also investigated the effectiveness of utilizing IMNs with smaller window

size in addition to the larger window sizes. Table 5 gives the results of this

investigation, and we can see that combining IMNs with smaller window sizes

works better than incorporating a single IMN with the greatest window size.

8.2 Stronger Baseline DNN

In this section, we discuss the results of two attempts to improve the performance

of baseline DNNs.

8.2.1 Increasing Number of Parameters

The most straightforward means of improving the performance of baseline DNNs

is to increase the number of parameters. Thus, we doubled the word embedding

dimension and trained ADV-LM-LSTM, namely, the ADV-LM-LSTM-Large

model. This model has approximately the same number of parameters as the

ADV-LM-LSTM+IMN. However, the performance did not improve from that

of the original ADV-LM-LSTM. Specifically, the error rate degraded by 0.08

points for the IMDB dataset and was unchanged for the Elec dataset.

8.2.2 Combining ELMo

ELMo [10] is one of the strongest SSL approaches in the research field. Thus,

we conducted an experiment with a baseline that utilizes ELMo. Specifically,

we combined LSTM with the ELMo embeddings, namely, ELMo-LSTM6. The

error rate of this network on the IMDB test set was 8.67%, which is worse than

that of LM-LSTM reported in Table 3. This result suggests that, at least in

this task setting, pre-training the RNN language model for initialization is more

effective than using the ELMo embeddings.

6We used the implementation available in AllenNLP [38].
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9 Conclusion

In this paper, we proposed a novel method for SSL, which we named Mixture of

Expert/Imitator Networks (MEIN). The MEIN framework consists of a baseline

DNN, i.e., an EXN, and several auxiliary networks, IMNs. The unique property

of our method is that the IMNs learn to “imitate” the estimated label distribution

of the EXN over the unlabeled data with only a limited view of the given input. In

this way, the IMNs effectively learn a set of features that potentially contributes

to improving the classification performance of the EXN.

Experiments on text classification datasets demonstrated that theMEIN frame-

work consistently improved the performance of three distinct settings of the EXN.

We also trained the IMNs with extra large-scale unlabeled data and achieved a

new state-of-the-art result. This result indicates that our method has the more

data, better performance property. Furthermore, our method operates eight times

faster than the current strongest SSL method (VAT), and thus, it has promising

scalability to the amount of unlabeled data.
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Appendix

A Notation Rules and Tables

This paper uses the following notation rules:

1. Calligraphy letter represents a mathematical set (e.g., Ds denotes a set of

labeled training data)

2. Bold capital letter represents a (two-dimensional) matrix (e.g., W denotes

a trainable matrix)

3. Bold lower case letter represents a (one-dimensional) vector (e.g., x is a

one-hot vector)

4. Non-bold capital letter represents a fixed scalar value (e.g., H denotes the

LSTM hidden state dimension)

5. Non-bold lower case letter represents a scalar variable (e.g., t denotes a

scalar time step t)

6. Greek bold capital letter represents a set of (trainable) parameters (e.g., Θ

denotes a set of parameter of the EXN)

7. Non-bold Greek letter represents a scalar (trainable) parameter (e.g., λi

denotes a scalar trainable parameter)

8. (xt)
T
t=1 is a short notation for (x1, . . . ,xT )

9. x[i] represents i-th element of the vector x

10. Xa:b represents an operation that slices a sequence of vectors (xa,xa+1 . . . ,xb−1,xb)

from the matrix X.

A set of notations used in this paper is summarized in Table 6.
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Figure 5: Effect of the IMN with different window size ci on the final error rate

(%) of LSTM. A lower error rate indicates better performance. Base:

EXN (LSTM) without the IMN, A: ci = 1, B: ci = 1, 2, C: ci = 1, 2, 3, D:

ci = 1, 2, 3, 4

B Effect of Window Size of the IMN

Following Section 7.3, we investigated the effectiveness of combining the IMNs

with different window sizes (ci) on the final error rate (%) of the EXN. We carried

out experiment for both LSTM+IMN (Figure 5) and LM-LSTM+IMN (Fig-

ure 6). The result is consistent to that of ADV-LM-LSTM+IMN (Figure 4),

that greater window size improves the performance.
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Figure 6: Effect of the IMN with different window size ci on the final error

rate (%) of LM-LSTM. A lower error rate indicates better performance.

Base: EXN (LM-LSTM) without the IMN, A: ci = 1, B: ci = 1, 2, C: ci =

1, 2, 3, D: ci = 1, 2, 3, 4
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