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The writing process

2019/10/29

&2 FIRSTDRAFT:  “Model have good results.”

Revising “Our model show “Our model shows

good result /Va excellent perfomance

in this task. | in this task.”

. e X | V4
Editing “Our model shows ~ “Our model shows

good results in this ~ a-excellent perfomance
task.” in this task.”

Proofreading “Our model shows excellent

performance in this task.”

a4

E FINAL “Our model shows excellent
VERSION:  performance in this task.”
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Automatic writing assistance

 insufficient fluidity
« awkward style
« collocation errors
* missing words

« grammatical errors
» spelling errors
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Editing “Our model shows ~ “Our model shows

good results in this ~ e-excellent perfomance
task.” in this task.”

Pr°°fread'ng “Our model shows excellent
performance in this task.”
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VERSION:  performance in this task.”
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Automatic writing assistance

insufficient fluidity
awkward style
collocation errors
missing words

XX XX

v/ grammatical errors
v spelling errors

Grammatical error
correction (GEC)
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é@ FIRST DRAFT:  “Model have good results.”

Revising “Our model show “Our model shows
good result a excellent perfomance
in this task.” in this task.”

EXISTING STUDIES .

Editing “Our model shows ~ “Our model shows

good results in this ~ e-excellent perfomance
task.” in this task.”

Pr°°fread'ng “Our model shows excellent
performance in this task.”

b _

E FINAL “Our model shows excellent
VERSION:  performance in this task.”
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Automatic writing assistance

insufficient fluidity
awkward style
collocation errors
missing words

SSENENEN

v/ grammatical errors
v spelling errors

Grammatical error
correction (GEC)

é@ FIRST DRAFT:  “Model have good results.”

OUR FOCUS .

Revising “Our model show “Our model shows
good result a excellent perfomance

in this task.” in this task.”

Editing “Our model shows ~ “Our model shows

good results in this ~ e-excellent perfomance
task.” in this task.”

Pr°°fread'ng “Our model shows excellent
performance in this task.”

b

Sentence-level revision
(SentRev)
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E FINAL “Our model shows excellent
VERSION:  performance in this task.”
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Proposed Task: Sentence-level Revision

The idea of our approach derives
from the normal human reading
pattern.

draft ’::;fgg; Z‘:;g“g' final version

Our aproach idea is <*> at read
patern of normal human.

e input: early-stage draft sentence
- has errors (e.g., collocation errors)

- has Information gaps (denoted by <*>)

e output: final version sentence

- error-free

- correctly filled-in sentence

2019/10/29 INLG2019



Proposed Task: Sentence-level Revision

The idea of our approach derives
from the normal human reading
pattern.

draft revising, editing,
proofreading

Our aproach idea is <*> at read
patern of normal human.

final version

e input: early-stage draft sentence
- has errors (e.g., collocation errors)

- has Information gaps (denoted by <*>)

e output: final version sentence
- error-free

- correctly filled-in sentence

® issue: lack of evaluation resource
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Our contributions

The idea of our approach derives
from the normal human reading
pattern.

draft revising, editing,
proofreading

Our aproach idea is <*> at read
patern of normal human.

final version

e Created an evaluation dataset for SentRev
- Set of Modified Incomplete TecHnical paper sentences (SMITH)

e Analyzed the characteristics of the dataset

e Established baseline scores for SentRev
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Evaluation Dataset Creation

Goal: collect pairs of draft sentence and final version

Our model shows
competitive results

draft final

Our model <*> results
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Evaluation Dataset Creation

Goal: collect pairs of draft sentence and final version

Our model shows

Our model <*> results o
competitive results

Straight-forward approach :
Experts modify collected drafts to final version

=l

=== drafts

final version

limitation: Note:
early-stage draft sentences are ~ We can access plenty of
not usually publicly available final version sentences
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Evaluation Dataset Creation

Goal: collect pairs of draft sentence and final version

Our model shows

Our model <*> results o
competitive results

Straight-forward approach :
Experts modify collected drafts to final version

B

East drafts

final version

Our approach:

create draft sentences from final version sentences
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Crowdsourcing Protocol for
Creating an Evaluation Dataset

Our approach:

create draft sentences from final version sentences

@ @

Anthology

drafts final version

Our model <*> Our model shows

BEDETLIE & competitive results
results e P
pALELE,
2. Japanese native workers 1.automatically translate
translate into English the final sentence into

Japanese

2019/10/29 INLG2019 n



Crowdsourcing Protocol for
Creating an Evaluation Dataset

Our approach:

create draft sentences from final version sentences

> Anthology
final version

@ﬂ%) S Our model shows
\‘6’ BEDETIE o competitive results

insert <*> where workers
could not think of a good
expression

Our model <*>
results

Vs8R e =
AL ELE,
2. Japanese native workers 1.automatically translate
translate into English the final sentence into

Japanese
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Statistics

Dataset size wW/<*> w/change LZ\;:?;IESH
Lang-8 2.1M - 42 % 3.5
AESW 1.2M : 39% 4.8
JFLEG 1.5K - 86% 12.4
SMITH 10K 33% 99% 47.0

w/<*>: percentage of source sentences with <*>

w/change: percentage where the source and target sentences differ

e collected 10,804 pairs

e SMITH simulates significant editing

e Larger Levenshtein distance = more drastic editing

2019/10/29
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Examples of SMITH

draft:

final:

draft:

final:

draft:

final:

[ research the rate of workable SOQL <*> at the generated result.

We study the percentage of executable SOL queries in the generated results.

For <*>, we used Adam using weight decay and gradient clipping .

We used Adam with a weight decay and gradient clipping for optimization.

In the model aechitecture, as shown in Figure 1, it is based an AE and
GAN.

The model architecture, as illustrated in figure 1 , is based on the AE and
GAN.
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Examples of SMITH

(1) Wording problems
draft: [Iresearch the rate of workable SOL <*> at the generated result.

final:  We study the percentage of executable SOL queries in the generated results.

draft: For <*>, we used Adam using weight decay and gradient clipping .

final:  We used Adam with a weight decay and gradient clipping for optimization.

draft: In the model aechitecture, as shown in Figure 1, it is based an AE and

GAN.
final:  The model architecture, as illustrated in figure 1 , is based on the AE and
GAN.
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Examples of SMITH

(1) Wording problems

draft: | I research the rate of workable SOL <*> at the generated result.
4 ~a T

final: | We study the percentage of|executable SOL queries in the generated results.

draft: For <*>, we used Adam using weight decay and gradient clipping.

final:  We used Adam with a weight decay and gradient clipping for optimization.

draft: In the model aechitecture, as shown in Figure 1, it is based an AE and

GAN.
final:  The model architecture, as illustrated in figure 1 , is based on the AE and
GAN.
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Examples of SMITH

(2) Information gaps
draft: [Iresearch the rate of workable SOL <*> at the generated result.

final:  We study the percentage of executable SOL queries in the generated results.

draft: For <*>, we used Adam using weight decay and gradient clipping .

final:  We used Adam with a weight decay and gradient clipping for optimization.

draft: In the model aechitecture, as shown in Figure 1, it is based an AE and
GAN.

final:  The model architecture, as illustrated in figure 1 , is based on the AE and
GAN.
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Examples of SMITH

(2) Information gaps

draft: [Iresearch the rate of workable SOL <*>|at the generated result.

final:  We study the percentage of executable SOL|queries|in the generated results.

draft: For|<*>, we used Adam using weight decay and gradient clipping.

>
final:  We used Adam with a weight decay and gradient clipping for|optimization.

draft: In the model aechitecture, as shown in Figure 1, it is based an AE and
GAN.

final:  The model architecture, as illustrated in figure 1 , is based on the AE and
GAN.
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Examples of SMITH

(3) Spelling and grammatical errors

draft: [Iresearch the rate of workable SOL <*> at the generated result.

final:  We study the percentage of executable SQLhe generated results.

draft: For <*>, we used Adam using weight decay and gradient clipping.

final:  We used Adam with a weight decay and gradient clipping for optimization.

draft: |In the model aechitecture, as shown in Figure 1 ,it is based an AE and

GAN. / /

final:  The model|architecture, as illustrated in figure 1 , is based|on the AE and
GAN.
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Experiments

many study <*> A great deal of research has
in grammar error [ ] Baseline models been carried out in
correction grammar error correction.

draft final version

e built baseline revision models (draft = final version)

- training data: generated synthetic data with noising methods

e ecvaluated the performance on SMITH

- using various reference and reference-less evaluation metrics
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Noising and Denoising

Noising: automatically generate drafts from the final versions

ACL sample A great deal of research has

Anthology been carried out in
grammar error correction.

A great deal of research has

many study <*>in « . b od out i
grammar error correction Nosing methods cen carried out im

grammar error correction.

draft final version
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Noising and Denoising

Denoising: generate final versions from the drafts

many study <*>in
grammar error correction

many study <*>in
grammar error correction

draft

2019/10/29

—_
ACL

Anthology

« Nosing methods

mmm Denoising models
(Baseline models)

sample

A great deal of research has
been carried out in
grammar error correction.

A great deal of research has
been carried out in
grammar error correction.

A great deal of research has
been carried out in
grammar error correction.

final version
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Noising methods

drafts

it is not surprisingly that
the random policy have
the worst performing.

we see the same on larger
data.

Figure 2 illustrates
effectiveness

perplexity indicates a <*>
model.

2019/10/29

Noising methods

« Grammatical error
generation

-

Style removal

- Entailed sentence
generation

-

Heuristic

final versions

it is not surprising that the
random policy has the
worst performance.

we observe a similar trend
on larger datasets.

Figure 2 illustrates the
effectiveness of different

features.

lower perplexity indicates
a better model.
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Noising methods

drafts Noising methods final versions
it is not surprisingly that - it is not surprising that the
the random policy have « Grammatlcgl error random policy has the
the worst performing. generation worst performance.
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Noising methods

drafts Noising methods final versions
we see the same on larger « o observe a similar trend
data. Style removal on larger datasets.

train Enc-Dec noising model (academic = non-academic)
using the ParaNMT-50M dataset [Wieting+18]
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Noising methods

drafts Noising methods final versions

train Enc-Dec noising model (= entailed sentence)
using SNLI [Bowman+ 15], MultiNLI [Williams+ 18]

Figure 2 illustrates the

Flgur? e - Entailed sentence  wmm  cffectiveness of different
effectiveness generation features.
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Noising methods

drafts Noising methods final versions

heuristic noising rules:
randomly deleting, replacing with <*> or common terms, and swapping

lower perplexity indicates

perplexity indicates a <*> « Heurist
euristic a better model.

model.
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Baseline models

many study <*> A great deal of research has
in grammar error [ ] Baseline models been carried out in
correction grammar error correction.

draft final version

e Noising and Denoising models

- Heuristic noising and denoising model (H-ND)

- Rule-based Heuristic noising (e.g., random token replacing)

- Enc-Dec noising and denoising model (ED-ND)

- Rule-based Heuristic noising

+ trained error generation models (e.g., grammatical error generation)

e SOTA GEC model [Zhao+ 19]
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Experiment settings

e Noising and Denoising Model architecture

- Transformer [Vaswani+ 17]
- Optimizer: Adam with @ = 0.0005, ;= 0.9, B, = 0.98, € = 10e~®

e Evaluation metrics
- BLEU
- ROUGE-L
- FO.5

BERTscore [Zhang+ 19]

- Grammaticality score [Napoles+ 16]: 1 — (#errors in sent /#tokens in sent)

Perplexity (PPL): 5-gram LM trained on ACL Anthology papers
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Results

Model BLEU ROUGE-L BERT-P

BERT-R  BERT-F

Draft X 9.8
H-ND 8.2
ED-ND 154
GEC 11.9

Reference Y -

Gramm. PPL
92.9 1454
94.1 406
96.3 236
96.7 414
96.5 147

e ED-ND model outperforms the other models

- the HD-ND noising methods induced noise closer to real-world drafts

e SOTA GEC model showed higher precision but low recall

- the GEC model is conservative

2019/10/29
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Examples of the baseline models’ output

Yhe input and output <*> are one - hot encoding of the center word

Draft
and the context word , <*> .

H.ND The input and output are one - hot encoding of the center word and
the context word , respectively .

ED.ND The input and output layers are one - hot encoding of the center word
and the context word , respectively .

GEC Yhe input and output are one - hot encoding of the center word and
the context word , .
The input and output layers are center word and context word one -

Reference

hot encodings , respectively .

ED-ND models replaced the <*> token with plausible words
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Analysis:
error types of drafts in SMITH & training data

>0 B drafts in SMITH
40 ‘ B drafts in synthetic training data
3
“ A u
S & R R L& NN RO
FCEITT LK L8P

Similar error type distribution
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Conclusions

e proposed the SentRev task

- Input: a incomplete, rough draft sentence

- Output: a more fluent, complete sentence in the academic domain.

e created the SMITH dataset with crowdsourcing for

development and evaluation of this task
- available at https://github.com/taku-ito/INLG2019 SentRev

e established baseline performance with

a synthetic training dataset

- training dataset available at the same link as above
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https://github.com/taku-ito/INLG2019_SentRev

Appendix
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Criteria for evaluating crowdworkers

Criteria Judgment . fl |t ere d th e

Working time is too short (< 2 minutes)  Reject

All answers are too short (< 4 words) Reject C rOWd WOr ke rs :

No answer ends with “.” or “?” Reject

Contain identical answers Reject . h

Some answers have Japanese words Reject dNSWers usin 9 the

No answer is recognized as English Reject . .

Some answers are too short (< 4 words) -2 points criteria

Some answers use fewer than 4 kinds of -2 points

words

Too close to automatic translation (20  -0.5 points/ans .
<=L.D. <= 30) - accepted answers with
Too close to automatic translation (10  -1.5 points/ans ]

<=LD. <=20) score O or higher

Too close to automatic translation (L.D.  Reject

<=10)

All answers end with “.” or “?” +1 points

Some answers have <*> +1 points

All answers are recognized as English +1 points

2019/10/29 INLG2019



Comparison of the top 10 frequent errors
observed in the 3 datasets

40 “ SMITH
B JFLEG

20 = AESW

" 1

O 1 I.-lh.al.._.
& N

(%)
U

SMITH included more "OTHER"” than the other two datasets
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Examples of “OTHER"” in SMITH

Draft: the best models are very effective on the  condition
that they are far greater than human. \OTHER

Reference: The best models are very effective in the local context condition
where they significantly outperform humans.

Draft: Results show MARM tend to generate <*> and very short responces.

OTHER

Reference: The results indicate that MARM tends to generate specific
but very short responses.

SMITH emphasizes “completion-type” task setting for

writing assistance.
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