Self-Attention is Not Only a Weight: Analyzing BERT with Vector Norms

<u>Goro Kobayashi¹</u>, Tatsuki Kuribayashi^{1,2}, Sho Yokoi^{1,3}, Kentaro Inui^{1,3}

¹Tohoku University, ²Langsmith Inc., ³RIKEN

ACL Student Research Workshop 2020 July 6-8, 2020

Background: Success of Self-attention

Self-attention-based models have been successfully applied to a wide range of NLP tasks.

• Transformer[Vaswani+'17], BERT[Devlin+'19], RoBERTa[Liu+'19], etc.

 Increasing research efforts on analysis of self-attentionbased models [Hewitt&Manning'19;Coenen+'19;Tenney+'19;etc.]

	GL	UE (Leaderboard on	June 14)		
	Rank	Name	Model	URL	Score
+	1	PING-AN Omni-Sinitic	ALBERT + DAAF + NAS		90.6
	2	ERNIE Team - Baidu	ERNIE		90.4
+	3	Alibaba DAMO NLP	StructBERT		90.3
	4	T5 Team - Google	Т5		90.3
	5	Microsoft D365 AI & MSR AI & GATECH	MT-DNN-SMART		89.9

2020/07/06-08

https://gluebenchmark.com/leaderboard ACL SRW2020 - 115

Previous studies: Attention weight analysis

One of the main analyses is to examine "how selfattention mixes information".

 Previous studies: Analysis of the magnitude of attention weight [Clark+'19;Kovaleva+'19;Reif+'19;Lin+'19;etc.]

Previous studies

- Ignore the effects of input vectors and vector transformations
 - might lead to a misleading conclusion

3

Our contribution: Propose a novel analysis Taking into account more effects

One of the main analyses is to examine "how selfattention mixes information".

• This study: Analysis of vector norms

This study

not lead to a misleading conclusion

Self-attention is a weighted sum of vectors

By simply rewriting equations, self-attention can be regarded as a **3-step process**.

Output vectors

Mixed amount \neq Attention weight

Attention weight analysis [Clark+'19;Kovaleva+'19;Reif+'19;etc.]

$$\mathbf{y}_i = \sum_j \alpha_{i,j} f(\mathbf{x}_j) + \mathbf{b}^O$$

Solution like the effect of transformed vector f(x)

Mixed amount \neq Attention weight

 x_5

Proposal: Norm analysis Measure the norm of the vector actually summed

Propose a new analysis

Focus on the vector
to be actually summed

$$y_i = \sum_j \alpha_{i,j} f(x_j) + b^0$$

- Measure the mixed amount of each input by **norm** $\|\alpha_{i,j}f(x_j)\|$
- Consider the vector f(x)in addition to attention weight α

Input vectors

ACL SRW2020 - 115

Proposal: Norm analysis Measure the norm of the vector actually summed

Propose a new analysis

Focus on the vector
to be actually summed

$$y_i = \sum_j \alpha_{i,j} f(x_j) + b^0$$

Mascura the mixed

correctly understand that selfattention gathers the most from x_1 to generate y_4 (a little from x_5)

Input vectors

Experimental Setup

Investigate the behavior of self-attention with previous and proposed methods

- Models
 - pre-trained BERT-base (uncased)
 - 12 layers, 12 head (total of 144 self-attentions in the model)
- Data
 - 992 segments extracted from Wikipedia [Clark+'19] https://github.com/clarkkev/attention-analysis

token used for classification tasks

separator tokens

Input segment: [CLS] paragraph1 [SEP] paragraph2 [SEP]

Previous result of attention weight analysis [Clark+'19]

Average attention weight in each layer

- Attention weights are biased towards specific token categories
 - Early layers --> [CLS]
 - Middle layers --> [SEP]
 - Deep layers --> periods or commas

Different results between the methods

Attention weight analysis [Clark+'19]

Proposed norm-based analysis

Largely different results

 Self-attention gathers only a little from special tokens, periods, and commas, and most from the other tokens.

12

Detailed analysis ([SEP])

Why $\|\alpha f(\mathbf{x})\|$ is small despite its large weight α ?

- Attention weight α and norm of transformed vector ||f(x)|| cancel each other out
 - Same tendency for [CLS], periods, and commas

Relation with frequency

Intuition: highly frequent words such as stop words have a little importance for pre-training tasks

Strong positive correlation between frequency rank and ||f(x)|| (Spearman's $\rho = 0.75$)

Suggest that BERT discounts highly frequent words by adjusting ||f(x)||

Summary

- Proposed the norm-based analysis considering input vectors and vector transformations as well
- Self-attentions in BERT gather only a little from specific tokens despite assigning high attention weights to them
- Suggests that BERT discounts highly frequent words

Summary

Waiting for you in the following Q&A sessions!

Suggests •haSRW sessions •6A (June 7) words

