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Background: Success of Self-attention

Self-attention-based models have been successfully
applied to a wide range of NLP tasks.

® Transformerivaswani+'17], BERT[Devlin+'19], ROBERTa[Liu+19], etc.

m) Increasing research efforts on analysis of self-attention-
based models [Hewitt&Manning’19;Coenen+19;Tenney+'19;etc.]
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Previous studies: Attention weight analysis

One of the main analyses is to examine "how self-
attention mixes information”.

* Previous studies: Analysis of the magnitude of attention
Welght [Clark+19;Kovaleva+'19;Reif+'19;Lin+19;etc.]
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Our contribution: Propose a novel analysis
Taking into account more effects

One of the main analyses is to examine "how self-
attention mixes information”.

* This study: Analysis of vector norms
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Self-attention is a weighted sum of vectors

By simply rewriting equations, self-attention Output vectors
can be regarded as a 3-step process.
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Mixed amount #+ Attention weight

Output vectors

Attention weight analysis
[Clark+'19;Kovaleva+'19;Reif+'19;etc.]
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Mixed amount #+ Attention weight

Attention weight analysis
[Clark+'19;Kovaleva+'19;Reif+'19;etc.]
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Proposal: Norm analysis
Measure the norm of the vector actually summed

Output vectors

Propose a new analysis
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Proposal: Norm analysis
Measure the norm of the vector actually summed

Output vectors

Propose a new analysis

* Focus on the vector

to be actually summed /// \
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Experimental Setup

Investigate the behavior of self-attention with previous
and proposed methods

* Models

* pre-trained BERT-base (uncased)
° 12 layers, 12 head (total of 144 self-attentions in the model)

®* Data

® 992 segments extracted from Wikipedia [Clark+'19]
https://github.com/clarkkev/attention-analysis

token used for classification tasks separator tokens

Input segment: [CLS] paragraphl [SEP] paragraph?2 [SEP]
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Previous result of attention weight analysis
[Clark+'19]

Average attention weight in each layer
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° Attention weights are biased towards specific token categories
* Early layers --> [CLS]
* Middle layers --> [SEP]

* Deep layers --> periods or commas
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Different results between the methods

Attention weight analysis [Clark+19]
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Largely different results

Proposed norm-based analysis
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* Self-attention gathers only a little from special tokens,
periods, and commas, and most from the other tokens.
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Detailed analysis ([SEP])

Why [laf (x)]| is small despite its large weight a?
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Self-attention
within a layer

* Attention weight @ and norm of transformed vector

lf (x)]| cancel each other out
* Same tendency for [CLS], periods, and commas
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| Relation with frequency

Intuition: highly frequent words such as stop words
have a little importance for pre-training tasks
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Strong positive correlation

between frequency rank and
Ilf (x)|| (Spearman’s p = 0.75)

Suggest that BERT discounts
highly frequent words by

adjusting || f ()l
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Summary

* Proposed the norm-based analysis considering input
vectors and vector transformations as well

* Self-attentions in BERT gather only a little from specific
tokens despite assigning high attention weights to them

* Suggests that BERT discounts highly frequent words

Y1 Y2 Y3 Y4 Ys

hAAA A

Attention weight
| X X XK X X |

Transformations

S8tk

X1 X2 X3 X4 Xg

Attention weight a

\

cmn [CLS]

\ —_Or’

-~

s [SEP]
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Summary

Waiting for you in the following Q&A sessions!
 SRW session 6A (June 7)
e SRW session 12B (June 8)




