

PheMT: A **Phenomenon-wise Dataset for Machine Translation Robustness** on User-Generated Contents

<u>Ryo Fujii¹</u>,

Summary

- A new dataset for evaluating the robustness of Japanese-to-English MT systems on UGC
- Provide focused evaluation on four linguistic phenomena with the idea of contrastive datasets
- Evaluated the effect of the phenomena with both in-house and widely used off-the-shelf systems
- Discovered a unique preprocessing method towards improving the performance on *Variant*

Background

- UGC are prevailing in our real-life communication
- e.g., social media, blog posts, user reviews
- A shared task on machine translation robustness ^[1]

More attention towards handling UGC to promote cross-cultural communication

The performance of current MT systems on UGC is still far behind

Q. Why is it difficult to translate UGC? Still not clear...

We need a solid basis for more detailed analysis !

[1] Li et al. (2019), Findings of the first shared task on machine translation robustness. [2] Michel and Neubig (2018), MTNT: A Testbed for Machine Translation of Noisy Text.

Masato Mita^{2,1}, Kaori Abe¹, Kazuaki Hanawa^{2,1}, Makoto Morishita^{3,1}, Jun Suzuki^{1,2}, Kentaro Inui^{1,2} 1. Tohoku University 2. RIKEN 3. NTT Communication Science Laboratories

Creating phenomenon-wise dataset

MTNT corpus^[2]

Label *	Example
Proper Noun	安倍首木 (<i>abeshus</i>
Abbreviated Noun	{ アプデ (<i>apude</i> , n
Colloquial Expression	{ かなち (<i>kanachii</i>
Variant	{アリガ (<i>arigatou</i>

* Please refer to the paper for the definition

Translation models

- The five **in-house models** :
- Q1. Effect of training data size ?

1. SMALL 3.9 M pairs

VS.

2. LARGE 14.0 M pairs

Effect of tokenization ? O2.

2. LARGE **BPE-based** VS.

3. CHAR Char-based

Susceptible to local improvement? Q3. Trained on a fully-pronunciation based corpus to absorb symbolic differences in *Variant*

> 4. PRON Phonetic

and

• Off-the-shelf systems : Google, DeepL

5. CAT Concatenated

Our robustness measure :

The difference of arbitrary metrics for (Orig. / Norm.) input

Translation accuracy with extracted alignment (raw acc. only for Proper)

		-		•		-	
	SMALL	LARGE	CHAR	PRON	CAT	Google	DeepL
Proper	(34.3)	(49.7)	(47.1)	(43.2)	(48.0)	(55.2)	(50.5)
Abbrev.	+6.4	-0.6	+0.6	+ 1.1	-1.2	-4.3	-1.2
	(24.1 / 30.5)	(33.6 / 33.0)	(34.2 / 34.8)	(30.2 / 31.3)	(34.2 / 33.0)	(41.1 / 36.8)	(39.1 / 37.9)
Colloq.	+5.8	+9.9	+4.1	+21.5	+16.9	+7.0	+5.8
	(18.0 / 23.8)	(14.5 / 24.4)	(17.4 / 21.5)	(8.7 / 30.2)	(15.7 / 32.6)	(19.2 / 26.2)	(22.7 / 28.5)
Variant	+19.5	+25.2	+20.4	+10.7	+8.8	+14.6	+16.6
	(15.5 / 35.0)	(13.6 / 38.8)	(13.6 / 34.0)	(25.2 / 35.9)	(26.2 / 35.0)	(23.3 / 37.9)	(18.4 / 35.0)

- A1. High coverage with larger training data was effective for nouns, while not for UGC-specific phenomena
- A2. Char-based tokenization worked well with *Collog.*, which share most of the characters with their canonical forms
- A3. Our dataset could detect the improvement against *Variant*, which was proven to be more problematic to current systems

Phenomenon-wise evaluation