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Background

Transformers have been successfully applied to a
wide range of NLP tasks.

®* Transformer(vaswani+'17], BERT[Devlin+'19], ROBERTa[Liu+19], etc.
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Attention: Key component in Transformers

Attention

* Updates each vector by mixing the inputs focusing on
relevant information

* “How attention mixes inputs”
has been investigated from attention weights

[Clark+'19;Kovaleva+'19; etc.]
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Overview

Propose to analyze Transformers using vector norms
instead of attention weights

* Able to consider more from the process within attention

* Intuitive results than those from attention weights
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Attention performs
a weighted sum of vectors

Attention mechanism consists of 3-step process. Output vector Y
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Attention performs
a weighted sum of vectors
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Mixed amount + Attention weight

Attention weight analysis Output vector i

[Clark+'19;Kovaleva+'19;Reif+'19;etc.] /
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Mixed amount + Attention weight
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Proposal: Norm analysis
Measure the norm of the vector actually summed
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@ Consider the vector f(x)
in addition to attention weight «a Input vectors
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Experiment 1: BERT




Experiment 1: BERT --- Setup

Investigate the behavior of attention with previous and
proposed methods

* Models

* pre-trained BERT-base (uncased)
° 12 layers, 12 head (total of 144 self-attentions in the model)

®* Data

® 992 segments extracted from Wikipedia [Clark+'19]
https://github.com/clarkkev/attention-analysis

token used for classification tasks separator tokens

Input segment: [CLS] paragraphl [SEP] paragraph?2 [SEP]
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Previous result of attention weight analysis
[Clark+'19]
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° Attention weights are biased towards specific token categories
* Early layers --> [CLS]
* Middle layers --> [SEP]
* Deep layers --> periods or commas m
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Different results between the methods

Attention weight analysis [Clark+19]
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Largely different results

Proposed norm-based analysis
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* Self-attention gathers only a little from special tokens,
periods, and commas, and most from the other tokens.
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Detailed analysis ([SEP])

Why [laf (x)]| is small despite its large weight a?

a I Coll lleef (Xl
Attention weight Norm of transformed vector Norm of weighted vector
(previous analysis) preV|oust ignored element) (proposed analysis)

Layer

attention head
within a layer

* Attention weight @ and norm of transformed vector

lf (x)]| cancel each other out
* Same tendency for [CLS], periods, and commas m
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Experiment 2:
Transformer NMT model




Experiment 2: Transformer NMT model --- Setup

Compare the quality of word alignments extracted from
attention by two approaches: weight and norm

* Alignments induced from attention weight a have empirically
been shown NOisy [Li+'19; Zenkel+'19; Ding+'19]

* Hypothesis: much cleaner alignments can be extracted from
norm |laf (x|
°* Model (see the paper for detailed settings)
* Transformer (German-English, 6 layers, 4 heads)

* Alignment extraction

* Extract the source word with the highest weight & or norm
laf (x)]|| as the alignment target




Preliminary observation:
Behavior of attention differs in layers

From preliminary observation,

* Earlier layers focus on a source word corresponding to
the input word

Output words
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Preliminary observation:
Different layers focus on different words

From preliminary observation,

* Latter layers focus on a source word corresponding to

the output word Output words
| am a student EOS
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2 settings: Alignment with input/output

Explored two settings for alignment extraction:

* Alignment with output setting
* Extract the source word as alignment target of the output word

* Alignment with input setting

* Extract the source word as alignment target of the input word
a student EOS
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Results:
Alignment Error Rate (lower is better)

Alignment error rate

Alignement Alignment
with output with input
layer mean 68.4 68.6
Attention weight
best layer 47.7 (layer 4 or 5) 29.8 (layer 5)
layer mean 62.9 60.5
Norm (Ours)
best layer 41.4 (layer 2) 25.0 (layer 2)

* Possible to extract cleaner word alignments from
norms than weights




Results:
Alignment Error Rate (lower is better)

Alignment error rate

Alignement Alignment
with output with input
layer mean 68.4 68.6
Attention weight
best layer 47.7 (layer 4 or 5) 29.8 (layer 5)
layer mean 62.9 60.5
Norm (Ours)
best layer 41.4 (layer 2) 25.0 (layer 2)

Alignment error rate

fast_align 28.4
GIZA++ 21.0

Word aligner

* Alignments from norms in the alignment with input
setting are as good as those from fast_align




One Reason: Large weights for EOS

Attention weighta Norm ||a f(x)]|| (ours) Reference
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(alignment with input setting)
° In the weight-based extraction, EOS is often misaligned
with some target words

°* Norm is small despite its large weights




Summary

* Proposed the norm-based analysis considering input
vectors and vector transformations as well

* Self-attentions in BERT gather only a little from specific
tokens despite assigning high attention weights to them

* Cleaner word alignments can be extracted from
attentions in a Transformer NMT model

Attention weight a proposed analysis ||af (x)||
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Proposal: analyzing attentions
through vector norms

Propose to analyze Transformers (attentions)
using vector norms instead of attention weights

Output vector Y;

Ours: Norms of weighted vectors y
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input vector x and transformation f
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Summary of experiment results

* Self-attentions in BERT gather only a little from specific
tokens despite assigning high attention weights to them
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Summary of experiment results

* Cleaner word alignments can be extracted from
attentions in a Transformer NMT model by vector norms

Attention weight « Vector norm ||af (x)]|
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I'm not good at English...
Please speak slowly and simply./l\.

Thank you!!




