Attention is Not Only a Weight: Analyzing Transformers with Vector Norms

<u>Goro Kobayashi</u>¹, Tatsuki Kuribayashi^{1,2}, Sho Yokoi^{1,3}, Kentaro Inui^{1,3}

¹Tohoku University, ²Langsmith Inc., ³RIKEN

EMNLP 2020 November 16-18, 2020

Background

Transformers have been successfully applied to a wide range of NLP tasks.

• Transformer[Vaswani+'17], BERT[Devlin+'19], RoBERTa[Liu+'19], etc.

	GLUE (Leaderboard on October 19)						
	Rank	Name		Model	URL	Score	
	1	HFL iFL	YTEK	MacALBERT + DKM		90.7	
+	2	Alibaba	DAMO NLP	StructBERT + TAPT	♂	90.6	
+	3	PING-A	N Omni-Sinitic	ALBERT + DAAF + NAS		90.6	
	4	ERNIE	Team - Baidu	ERNIE		90.4	
	5	T5 Tear	n - Google	T5	♂	90.3	

https://gluebenchmark.com/leaderboard

Attention: Key component in Transformers

Attention

- Updates each vector by mixing the inputs focusing on relevant information
- "How attention mixes inputs"
 has been investigated from attention weights

[Clark+'19;Kovaleva+'19; etc.]

Overview

Propose to analyze Transformers using vector norms instead of attention weights

- Able to consider more from the process within attention
- Intuitive results than those from attention weights

Attention mechanism consists of **3-step process**.

3 Summation

Weighting

Attention mechanism consists of **3-step process**.

3 Summation

2 Weighting

Attention mechanism consists of **3-step process**.

3 Summation

Weighting

Attention mechanism consists of **3-step process**.

3 Summation

Weighting

Attention mechanism consists of **3-step process**.

Output:

Weighted sum of transformed vectors

$$\mathbf{y}_i = \sum_j \alpha_{i,j} f(\mathbf{x}_j)$$

3 Summation

Weighting

Mixed amount ≠ Attention weight

Attention weight analysis

[Clark+'19;Kovaleva+'19;Reif+'19;etc.]

$$y_i = \sum_{j} \alpha_{i,j} f(x_j)$$

Input vectors

Mixed amount ≠ Attention weight

Attention weight analysis

[Clark+'19;Kovaleva+'19;Reif+'19;etc.]

$$y_i = \sum_{j} \alpha_{i,j} f(x_j)$$

 \bigcirc Ignore the effect of transformed vector f(x)

misunderstand that attention gathers a lot from x_5 to generate y_i even if $\alpha f(x_1)$ is predominant in y_i

Proposal: Norm analysis Measure the norm of the vector actually summed

Propose a new analysis

Focus on the vector
 to be actually summed

$$y_i = \sum_{j} \alpha_{i,j} f(x_j)$$

• Measure the mixed amount of each input by **norm** $\|\alpha_{i,j}f(x_i)\|$

Output vector y_i $\alpha_{4,1}f(\mathbf{x}_1) \ \alpha_{4,2}f(\mathbf{x}_2) \ \alpha_{4,3}f(\mathbf{x}_3) \ \alpha_{4,4}f(\mathbf{x}_4) \ \alpha_{4,5}f(\mathbf{x}_5)$ $f(x_1)$ $f(x_2)$ $f(x_3)$ $f(x_4)$ $f(x_5)$ $\widetilde{\boldsymbol{y}}_i$ x_4

Consider the vector f(x) in addition to attention weight α

Input vectors

Proposal: Norm analysis Measure the norm of the vector actually summed

Propose a new analysis

Focus on the vector
 to be actually summed

$$y_i = \sum_{j} \alpha_{i,j} f(x_j)$$

• Mascura the mixed

correctly interpret that attention gathers the most from x_1 to generate y_i (a little from x_5)

in addition to attention weight α

Input vectors

Output vector y_i

Experiment 1: BERT

Experiment 1: BERT --- Setup

Investigate the behavior of attention with previous and proposed methods

- Models
 - pre-trained BERT-base (uncased)
 - 12 layers, 12 head (total of 144 self-attentions in the model)
- Data
 - 992 segments extracted from Wikipedia [Clark+'19] https://github.com/clarkkev/attention-analysis

token used for classification tasks

separator tokens

Input segment: [CLS] paragraph1 [SEP] paragraph2 [SEP]

Previous result of attention weight analysis [Clark+'19]

Average attention weight in each layer

- Attention weights are biased towards specific token categories
 - Early layers --> [CLS]
 - Middle layers --> [SEP]
 - Deep layers --> periods or commas

Different results between the methods

Attention weight analysis [Clark+'19]

Proposed norm-based analysis

Largely different results

Layer

 Self-attention gathers only a little from special tokens, periods, and commas, and most from the other tokens.

Detailed analysis ([SEP])

Why $\|\alpha f(x)\|$ is small despite its large weight α ?

- Attention weight α and norm of transformed vector ||f(x)|| cancel each other out
 - Same tendency for [CLS], periods, and commas

Experiment 2: Transformer NMT model

Experiment 2: Transformer NMT model --- Setup

Compare the quality of word alignments extracted from attention by two approaches: weight and norm

- Alignments induced from **attention weight** α have empirically been shown **noisy** [Li+'19; Zenkel+'19; Ding+'19]
- Hypothesis: much cleaner alignments can be extracted from $\|\alpha f(x)\|$
- Model (see the paper for detailed settings)
 - Transformer (German-English, 6 layers, 4 heads)
- Alignment extraction
 - Extract the source word with the highest weight α or norm $\|\alpha f(x)\|$ as the alignment target

Preliminary observation: Behavior of attention differs in layers

From preliminary observation,

 Earlier layers focus on a source word corresponding to the input word

Preliminary observation: Different layers focus on different words

From preliminary observation,

 Earlier layers focus on a source word corresponding to the input word

• Latter layers focus on a source word corresponding to

2 settings: Alignment with input/output

Explored two settings for alignment extraction:

- Alignment with output setting
 - Extract the source word as alignment target of the output word
- Alignment with input setting
 - Extract the source word as alignment target of the input word

Results: Alignment Error Rate (lower is better)

		Alignment error rate	
		Alignement with output	Alignment with input
Attention weight	layer mean	68.4	68.6
Attention weight	best layer	47.7 (layer 4 or 5)	29.8 (layer 5)
Name (Orms)	layer mean	62.9	60.5
Norm (Ours)	best layer	41.4 (layer 2)	25.0 (layer 2)

 Possible to extract cleaner word alignments from norms than weights

Results: Alignment Error Rate (lower is better)

		Alignment error rate			
		Alignement with output	Alignment with input		
Attontion weight	layer mean	68.4	68.6		
Attention weight	best layer 47.7 (layer 4 or 5)		29.8 (layer 5)		
Nouse (Ours)	layer mean	62.9	60.5		
Norm (Ours)	best layer	41.4 (layer 2)	25.0 (layer 2)		
Alignment error rate					
Mand alienan	fast_align	28.	4		
Word aligner	GIZA++	21.	0		

Alignments from norms in the alignment with input setting are as good as those from fast_align

25

One Reason: Large weights for EOS

Attention weight α

Norm $\|\alpha f(x)\|$ (ours)

Reference

In layer 2 (alignment with input setting)

- In the weight-based extraction, EOS is often misaligned with some target words
 - Norm is small despite its large weights

Summary

- Proposed the norm-based analysis considering input vectors and vector transformations as well
- Self-attentions in BERT gather only a little from specific tokens despite assigning high attention weights to them
- Cleaner word alignments can be extracted from attentions in a Transformer NMT model

Attention weight α

Sep | CLS | CSEP | Cor, Other |

proposed analysis $\|\alpha f(x)\|$

3 min Overview for Zoom Q&A Session 11A

Attention is Not Only a Weight: Analyzing Transformers with Vector Norms

Goro Kobayashi¹, Tatsuki Kuribayashi^{1,2}, Sho Yokoi^{1,3}, Kentaro Inui^{1,3}

¹Tohoku University, ²Langsmith Inc., ³RIKEN

EMNLP 2020, Zoom Q&A Session 11A November 18, 2020

Proposal: analyzing attentions through vector norms

Propose to analyze Transformers (attentions) using vector norms instead of attention weights

Ours: Norms of weighted vectors $\|\alpha f(x)\|$

Previous: Attention weights

 α

Able to additionally consider input vector x and transformation f

Summary of experiment results

- Self-attentions in BERT gather only a little from specific tokens despite assigning high attention weights to them
- Cleaner word alignments can be extracted from attentions in a Transformer NMT model by norms

Vector norm $\|\alpha f(x)\|$

Summary of experiment results

- Self-attentions in BERT gather only a little from specific tokens despite assigning high attention weights to them
- Cleaner word alignments can be extracted from attentions in a Transformer NMT model by vector norms

I'm not good at English...
Please speak slowly and simply...

Thank you!!