Incorporating Residual and Normalization Layers into Analysis of Masked Language Models

<u>Goro Kobayashi</u>¹, Tatsuki Kuribayashi^{1,2}, Sho Yokoi^{1,3}, Kentaro Inui^{1,3}

¹Tohoku University, ²Langsmith Inc., ³RIKEN

https://github.com/gorokoba560/norm-analysis-of-transformer

EMNLP 2021 November 7-11, 2021

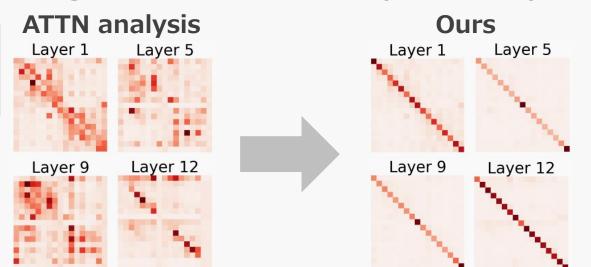
Overview

Propose to analyze Transformers considering:

- Multi-head attention (ATTN)

Our analysis of Masked LMs reveals weaker Mixing via Attention than previously assumed

Token-to-token interactions



EMNLP 2021

Background: Success of Transformers

Transformer[Vaswani+'17] has been successfully applied to a wide range of NLP tasks.

Score

91.1

91.0

90.8

90.8

90.7

90.6

Especially Masked language models (MLMs)

• **BERT**[Devlin+'19], **ROBERTa**[Liu+'19], etc.

7	GL	JE (Leaderboard on C	(Leaderboard on October 12, 2021)					
	Rank	Name	Model	URL				
	1	ERNIE Team - Baidu	ERNIE					
	2	AliceMind & DIRL	StructBERT + CLEVER					
	3	DeBERTa Team - Microsoft	DeBERTa / TuringNLRv4					

liangzhu ge

HFL iFLYTEK

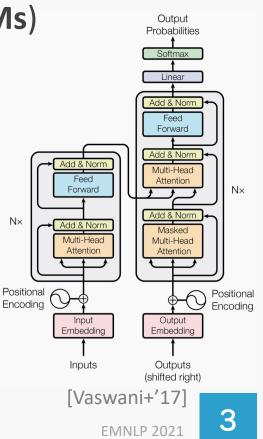
PING-AN Omni-Sinitic

4

5

6

╋



https://gluebenchmark.com/leaderboard

DeBERTa + CLEVER

MacALBERT + DKM

ALBERT + DAAF + NAS

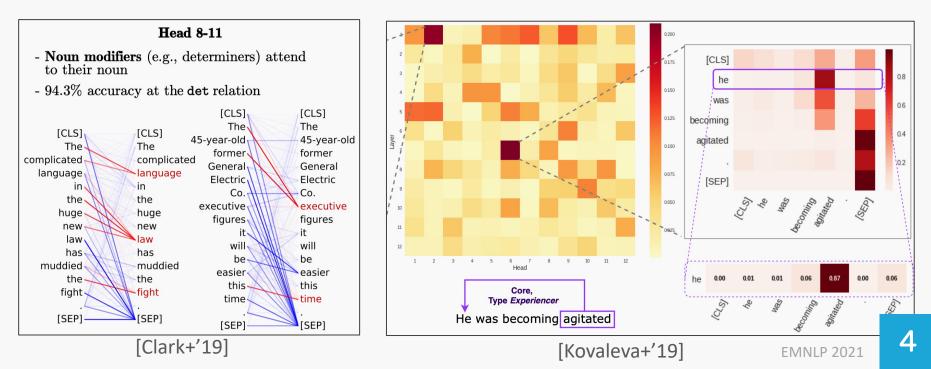
Big goal: Understand successful Transformers

Reveal mechanisms/characteristics of Transformers

analyzed and probed by many studies

[Hewitt&Manning'19;Reif+'19;Tenney+'19; etc.]

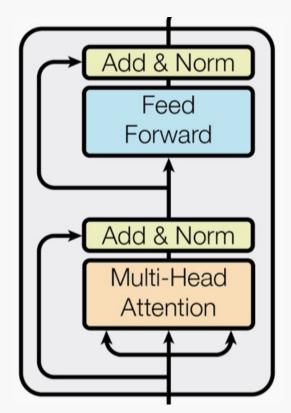
• Typically focused on "Mixing" at Attention (e.g., Attention weight) [Clark+'19;Kovaleva+'19;Reif+'19;etc.]



Transformer architecture

Transformer layer consists of:

- Multi-head attention (ATTN)
- Residual connection (RES)
- Layer normalization (LN)
- Feed-forward network (FF)

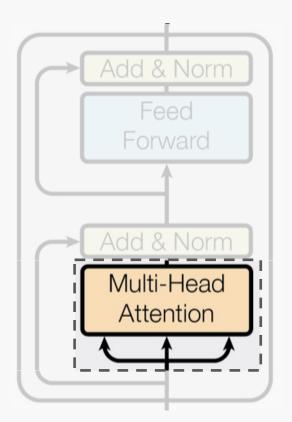


[Vaswani+'17]

Scope of existing Transformer analysis: Only attention

Transformer layer consists of:

- Multi-head attention (ATTN)
 - Residual connection (RES)
 - Layer normalization (LN)
 - Feed-forward network (FF)

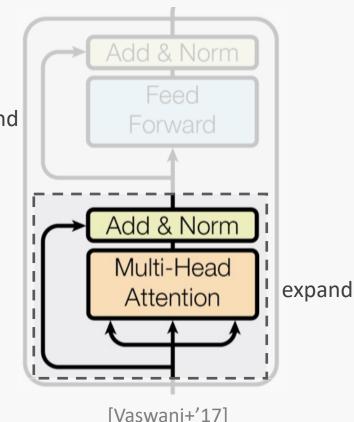


[Vaswani+'17]

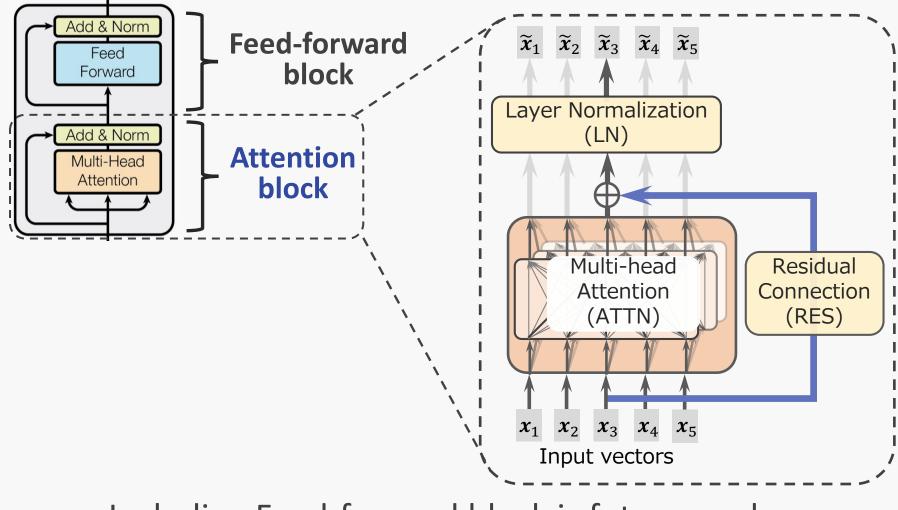
Problem: Ignored components can overwrite attention's process

6

Our scope of Transformer analysis

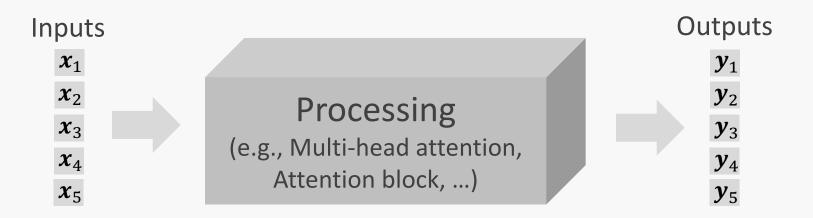


Our scope of Transformer analysis: Attention block



Including Feed-forward block is future work

Strategy: Norm-based analysis [Kobayashi+'20]



Compute the contribution of each input x_j to the output y_i :

1. Decompose y_i into the sum of transformed input vectors

$$y_i = \sum_j F(x_j)$$

Sum of transformed vectors

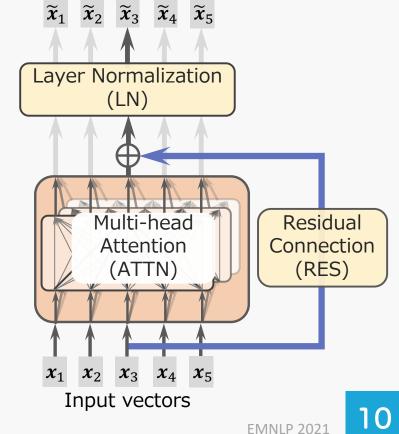
2. Measure the **norm** $||F(\mathbf{x}_j)||$

Decomposition of processing at attention block

Express the processing at the attention block as "the sum of transformed input vectors"

Input vectors:
$$X = [x_1, ..., x_n] \in \mathbb{R}^{n \times d}$$

 $\widetilde{x}_i = \text{LN} \left(\text{RES}(\text{ATTN}(X)) \right)$
 $= \sum_j F(x_j)$
Sum of transformed vectors

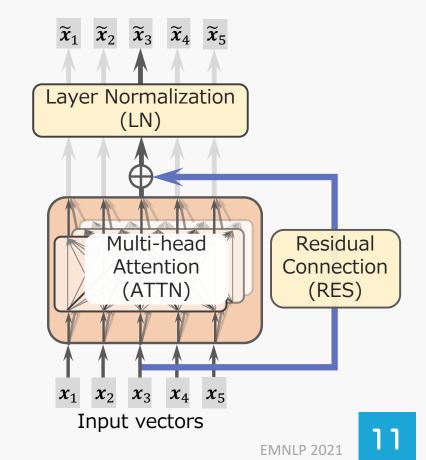


Decomposition of processing at attention block

Express the processing at the attention block as "the sum of transformed input vectors"

Role of each component:

- ATTN \rightarrow Mixing the surrounding inputs
- RES → Preserving the original input
- LN → Normalizing and Scaling each vector



Decomposition of processing at attention block

Express the processing at the attention block as "the sum of transformed input vectors"

No non-linear calculations

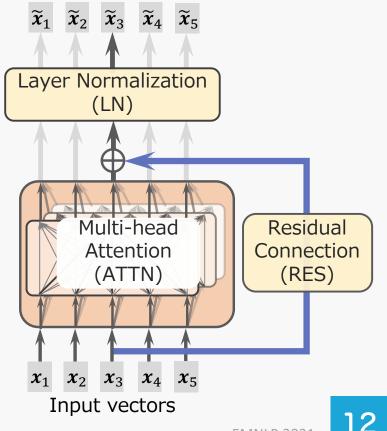
Able to decompose:

 $\widetilde{\boldsymbol{x}}_i = \mathrm{LN}\left(\mathrm{Res}(\mathrm{ATTN}(\boldsymbol{X}))\right)$

• without approximation

$$=\sum_{j}F(\boldsymbol{x}_{j})+\boldsymbol{\beta}$$

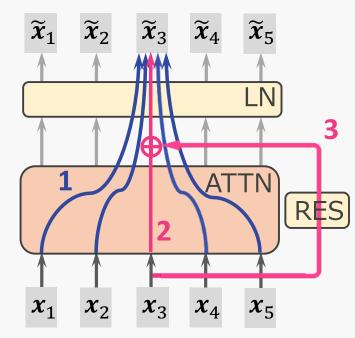
Sum of transformed vectors



Our interest: Relationship between Mixing and Preserving

Effects in Attention block:

- **1.** Mixing contexts via ATTN
- **2. Preserving** the original via **ATTN**
- **3.** Preserving the original via RES



Contextualized representations have been successful

Interested in **strength of the context mixing**

Power relationship between mixing and preserving

Mixing ratio: Relationship between Mixing and Preserving

Able to decompose the process of Attention block into two effects and bias:

$$\widetilde{x}_{i} = \underbrace{\widetilde{x}_{i \leftarrow \text{context}}}_{\text{Mixing}} + \underbrace{\widetilde{x}_{i \leftarrow i}}_{\text{Preserving}} + \underbrace{\beta}_{\text{bias}}$$

Measure each magnitude by its vector norm

- Magnitude of Mixing: $\|\widetilde{x}_{i \leftarrow \text{context}}\|$
- Magnitude of Preserving: $\|\widetilde{\boldsymbol{x}}_{i \leftarrow i}\|$

Mixing ratio: Relationship between Mixing and Preserving

Able to decompose into two effects an

 $\widetilde{\boldsymbol{x}}_i =$

Mixing ratio:

$$r = \frac{\|\widetilde{x}_{i \leftarrow \text{context}}\|}{\|\widetilde{x}_{i \leftarrow \text{context}}\| + \|\widetilde{x}_{i \leftarrow i}\|}$$

• If r = 0.5, mixing and preserving are 1:1

Measure each magnitude by its vector norm

- Magnitude of Mixing: $\|\widetilde{x}_{i \leftarrow \text{context}}\|$
- Magnitude of Preserving: $\|\widetilde{\boldsymbol{x}}_{i \leftarrow i}\|$

Experiments

Experiment setup

Measure mixing ratio at each attention block of MLMs

- Models
 - Pre-trained BERT [Devlin+'19; Turc+'19]
 - BERT-tiny, BERT-small, BERT-medium, **BERT-base**, BERT-large
 - 25 BERT-base models trained with different seeds [Sellam+'21]
 - Pre-trained RoBERTa [Liu+'19]
 - RoBERTa-base, RoBERTa-large
- Data
 - Excerpts from Wikipedia [Clark+'19]
 - SST-2 [Socher+'03]
 - MNLI [Williams+'18]
 - CoNLL-2003 NER dataset [Sang&Meulder'03]

Compare mixing ratio computed with different analysis methods

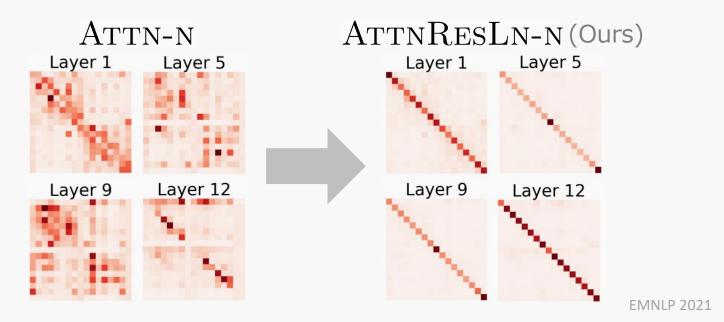
 \widetilde{x}_1 \widetilde{x}_2 \widetilde{x}_3 \widetilde{x}_4 \widetilde{x}_5 • ATTN-W Layer Normalization **ATTNRESLN** (LN)ATTNRES • ATTN-N [Kobayashi+'20] Residual Multi-head ATTN Attention Connection (ATTN) (RES) • ATTNRES-W [Abnar+'20] $x_2 x_3 x_4$ x_{5} Input vectors Strategy: • ATTNRES-N (Ours) -W: based on attention Weights • ATTNRESLN-N (Ours) -N : use Norm-based method

Mean of mixing ratio: Lower mixing ratio than previously assumed

- More expanded method shows the lower mixing ratio
 - 19% Mixing « Preserving
 - RES largely decreases the ratio
 - LN decreases slightly the ratio

Methods	Mean
— BERT-base —	
ATTN-W	97.1
ATTN-N	85.2
ATTNRES-W	48.6
ATTNRES-N	22.3
ATTNRESLN-N	18.8

19



Detailed analysis 1: Differences by layers and tokens

- Mixing ratio at each layer computed with our method
- Token categories
 - Normal: non-special tokens
 - [MASK]
 - [CLS]
 - [SEP]

								100%
12	11	10	39	21	11			
11	15	19	17	15	15			
10	18	22	21	18	19			80%
6	17	25	15	3	17			
∞	19	30	11	2	20		-	-60%
'er 7	19	25	20	2	20			00,0
Layer 6 7	20	25	20	2	20			
ى —	20	21	18	2	19		-	-40%
4	21	21	16	3	21			
Μ	19	16	8	12	19		-	20%
7	20	17	5	12	20			
-	25	15	15	15	24			0.0/
	Normal	[MASK]	[CLS]	[SEP]	Overall		-	-0%
	2			E	MNLF	P 2021	1	20

Detailed analysis 1: Differences by layers and tokens

• Mixing ratio is relatively higher in the earlier layers

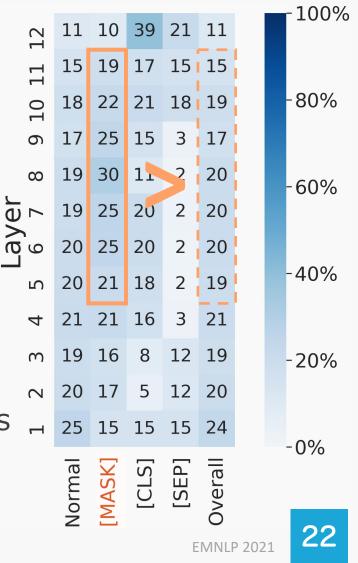
	12	11	10	39	21	11
	11	15	19	17	15	15
	10	18	22	21	18	19
	6	17	25	15	3	17
	∞	19	30	11	2	20
èГ	2	19	25	20	2	20
_a<	67	20	25	20	2	20
	Ω	20	21	18	2	19
	4	21	21	16	3	21
	Μ	19	16	8	12	19
	7	20	17	5	12	20
	Ч	25	15	15	15	24
		Normal	[MASK]	[CLS]	[SEP]	Overall

EMNLP 202

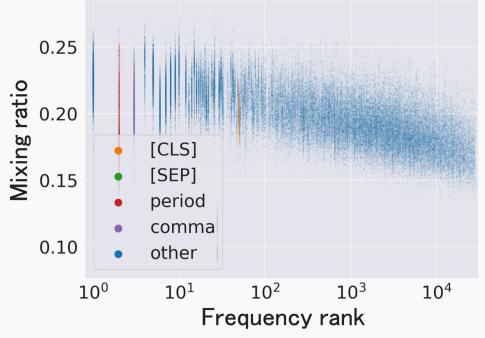
Detailed analysis 1: Differences by layers and tokens

- Mixing ratio is relatively higher in the earlier layers
- Mixing ratio for [MASK] is relatively high in the middle and deep layers

These layers refer to more contextual information for predicting masked words



Detailed analysis 2: Relationship with the word frequency



- Strong negative correlation (Spearman's $\rho = -0.54$)
- Higher frequent word tends to gather more contextual information than lower frequent word

Suggests that BERT discounts the information of high-frequency words

Summary

- Propose to analyze Transformers considering RES and LN in addition to ATTN
- Our analysis of MLMs reveals:
 - Mixing ratio is lower than previously assumed
 - Mixing is relatively strong to update MASK tokens
 - Contribution of contextual information is related to word frequency

https://github.com/gorokoba560/norm-analysis-of-transformer

Summary

- Propose to analyze Transformers considering RES and LN in addition to ATTN
- Our analysis of MLMs reveals:
 - Mixing ratio is lower than previously assumed
 - Mixing is relatively strong to update MASK tokens
 - Contribution of contextual information is related to word frequency

Questions & comments are welcome!! I'm not a native speaker of English. Please speak simply and slowly A

https://github.com/gorokoba560/norm-analysis-of-transformer