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Overview

Propose to analyze Transformers considering:
°* Multi-head attention (ATTN)
* Residual connection (RES) <& new!
° Layer normalization (1) <& new!

Our analysis of Masked LMs reveals
weaker Mixing via Attention than previously assumed
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Background: Success of Transformers

Transformervaswani+'171 has been successfully applied
to a wide range of NLP tasks.

* Especially Masked language models (MLMs)
®* BERT/peviin+'19], ROBERTa|[Liu+19], etc.

(Leaderboard on October 12, 2021)

Rank Name Model URL Score

1 ERNIE Team - Baidu ERNIE C’J 91.1

2 AliceMind & DIRL StructBERT + CLEVER C}J' 91.0

3 DeBERTa Team - Microsoft DeBERTa / TuringNLRv4 C);' 90.8

4 liangzhu ge DeBERTa + CLEVER 90.8

5  HFLIFLYTEK MacALBERT + DKM 90.7

+ 6  PING-AN Omni-Sinitic ALBERT + DAAF + NAS 90.6

https://gluebenchmark.com/leaderboard
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Big goal:
Understand successful Transformers

Reveal mechanisms/characteristics of Transformers

* analyzed and probed by many studies
[Hewitt&Manning’19;Reif+'19;Tenney+'19; etc.]

* Typically focused on “Mixing” at Attention
(e.g., Attention weight) [Clark+'19;Kovaleva+'19;Reif+'19;etc.]
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Transformer architecture

Transformer layer consists of:
* Multi-head attention (ATTN)

* Residual connection ( )
* Layer normalization (L)

* Feed-forward network (FF)
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Scope of existing Transformer analysis:
Only attention

Problem. [Vaswani+'17]
Ignored components can overwrite attention’s process




Our scope of Transformer analysis

——————————————————————————

* Multi-head attention (ATTN) -

* Residual connection (#£5)  expand
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* Layer normalization (/1) :
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Our scope of Transformer analysis:
Attention block
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Including Feed-forward block is future work




Strategy: Norm-based analysis [Kobayashi+20]

Inputs Outputs
X1 Y1
;Z Processing z .
X, (e.g., Multi-head attention, v,
Xe Attention block, ...) Ve

Compute the contribution of each input x; to the output y;:
1. Decompose y; into the sum of transformed input vectors

yi= ), F)

Sum of transformed vectors

2. Measure the norm HF(xj)H




Decomposition of
processing at attention block

Express the processing at the attention block
s “the sum of transformed input vectors”

Input vectors: X = [xy, ..., x,] € R™* A

Layer Normalization
(LN)

%; = LN (RES(ATTN(X)))

Multi—head

§ [ Residual 1
Attention Connection
ATTN RES
— z | F(x;) ( ) (RES)
j F i
Sum of transformed vectors f 1
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Decomposition of
processing at attention block

Express the processing at the attention block
s “the sum of transformed input vectors”

~ ~ ~ ~  ~

Role of each component: A

[Layer Normalization]
« ATTN — Mixing L)
the surrounding inputs
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Decomposition of
processing at attention block

Express the processing at the attention block
s “the sum of transformed input vectors”

~ ~ ~ ~  ~

No non-linear calculations A
[Layer Normalization]

(LN)

Able to decompose:
%; = LN (Res(ATTN(X))) & i
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Our interest:
Relationship between Mixing and Preserving

~

X1 %2 xg §4 X5

Effects in Attention block:

[ /

Jk
2. Preserving the original via ATTN 1
3. Preserving the original via [//
T T | | |

X1 X2 X3 Xy Xg

1. Mixing contexts via ATTN

Contextualized representations have been successful
Interested in strength of the context mixing

Power relationship between
mixing and preserving




Mixing ratio:
Relationship between Mixing and Preserving

Able to decompose the process of Attention block
into two effects and bias:

Xi =Xjccomet T Xji+ 0

Mixing Preserving bias

Measure each magnitude by its vector nhorm

* Magnitude of Mixing: ||X ; — context

- Magnitude of Preserving: ||X; ;




Mixing ratio:
Relationship between Mixing and Preserving

Mixing ratio:

”x L <—context”

T = —— —
Hx L <—contextH + Hx L <—iH

* If r = 0.5, mixing and preserving are 1:1

Measure each magnitude by its vector nhorm

* Magnitude of Mixing: ||X ; — context

- Magnitude of Preserving: ||X; ;




Experiments
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Experiment setup

Measure mixing ratio at each attention block of MLMs

* Models

® Pre-trained BERT [Devlin+’19; Turc+'19]
* BERT-tiny, BERT-small, BERT-medium, BERT-base, BERT-large
* 25 BERT-base models trained with different seeds [Sellam+'21]

® Pre-trained ROBERTa [Liu+'19]
°* RoBERTa-base, RoBERTa-large

® Data
* Excerpts from Wikipedia [Clark+19]
® SST-2 [Socher+'03]
* MINLI [Williams+'18]
®* CoNLL-2003 NER dataset [Sang&Meulder’03]
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Compare mixing ratio computed with
different analysis methods
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Mean of mixing ratio:
Lower mixing ratio than previously assumed

* More expanded method shows Methods Mean
the lower mixing ratio _ BERT-base —
. . . 1
* 19% Mixing <« Preserving ‘amnon 4
_ ATTNRES-W 48.6
* RES largely decreases the ratio ArTNREs-N 22.3
_ _ ATTNRESLN-N 18.8
* LN decreases slightly the ratio
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Layer 1 Layer 5 Layer 1 Layer 5
e g =-" ",
L . .,
-.:l. . I. - %I.
.Iwi mn .I.
&= "u

Laye£ 9 Laxer_lz Layer 9 . Layer 12

-~ Rt e B




Detailed analysis 1:
Differences by layers and tokens

° Mixing ratio at each layer ~uwEau
computed with our method  _ 1519 17 15 15
o 18 22 21 18 19 80%
o 17 25 15 3 17
* Token categories © 193011 2 20 W
* Normal: non-special tokens ~ @~ 1025 20 2 20
_ Ccw 20 25 20 2 20
:MASK] T 202118 2 10 | 40%
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Detailed analysis 1:
Differences by layers and tokens

* Mixing ratio is relatively
higher in the earlier layers
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Detailed analysis 1:
Differences by layers and tokens

Mixing ratio is relatively ~ 11 10 D 11 D2
higher in the earlier layers ; 15| 19|17 15115

2 18 22 21 1819 80%
o [17025115 3 17

* Mixing ratio for [MASK] is o (10080 1% |20 oo
relatively high in the middle g~ 19/25/20 2 20
and deep layers o [20fe5420° 2 20

i~ 20 21 18 2 |19 ~40%
< 21 21 16 3 21

m 19 16 8 12 19 -20%
These layers refer to more contextual ~ 20 17 5 12 20
information for predicting masked words ., 25 15 15 15 24
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Detailed analysis 2:
Relationship with the word frequency

Mixing ratio

0.15

0.10

10° 101 102 103 10%
Frequency rank

* Strong negative correlation (Spearman’s p = —0.54)

* Higher frequent word tends to gather more
contextual information than lower frequent word

Suggests that BERT discounts the information
of high-frequency words




Summary

* Propose to analyze Transformers considering RES and
LN in addition to ATTN

* Our analysis of MLMs reveals:
* Mixing ratio is lower than previously assumed
* Mixing is relatively strong to update MASK tokens

* Contribution of contextual information is related to
word frequency

O https://github.com/gorokoba560/norm-analysis-of-transformer
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Summary

* Propose to analyze Transformers considering RES and
LN in addition to ATTN

* Our analysis of MLMs reveals:
* Mixing ratio is lower than previously assumed
* Mixing is relatively strong to update MASK tokens

* Contribution of contextual information is related to
word frequency

Questions & comments are welcome!!
I'm not a native speaker of English.
Please speak simply and slowly Ju
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