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Abstract

The ability to reason over relational knowledge is central to general intellectual behavior. Re-
lational knowledge here refers to the relationship between ”things” and ”things.”More specif-
ically, one relational knowledge is represented by ⟨head entity, relation, tail entity⟩. For ex-
ample, Wikidata, which is one of the databases, contains knowledge such as ⟨TensorFlow,
developer, Google Brain⟩ and ⟨Google Brain, field_of_work, Machine Learning⟩. Inference
on relational knowledge refers to using known relational knowledge to predict unknown re-
lational knowledge. For example, it can be used to predict what Chainer will be used for.
This kind of problem formulation, where we try to predict the missing entities, is specifically
called Knowledge Graph Completion or Knowledge Base Completion.

In this research, we address the problem of how to learn multi-hop inference, especially
in inference over relational knowledge. Multi-hop reasoning here refers to hopping over
relational knowledge multiple times in order to find an answer. For example, from known
relational knowledge, we can learn that the relation used_for is highly similar to the 2-hop
path developer/field_of_work. In this case, if there are triples ⟨Chainer, developer, PFN⟩
and ⟨PFN, field_of_work, Machine Learning⟩, one can infer ⟨Chainer, used_for, Machine
Learning⟩.

In this paper, we address two major problem settings for learning multi-hop reasoning.
One is multi-hop reasoning in predicate logic, and the other is multi-hop reasoning in propo-
sitional logic. We propose frameworks and models for learning multi-hop reasoning over
real-world knowledge bases, and explore their practical applicability.
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Chapter 1

Introduction

The ability to reason over relational knowledge is central to general intellectual behavior. Re-
lational knowledge here refers to the relationship between ”things” and ”things.”More specif-
ically, one relational knowledge is represented by ⟨head entity, relation, tail entity⟩. For ex-
ample, Wikidata, which is one of the databases, contains knowledge such as ⟨TensorFlow,
developer, Google Brain⟩ and ⟨Google Brain, field_of_work, Machine Learning⟩. Inference
on relational knowledge refers to using known relational knowledge to predict unknown rela-
tional knowledge. For example, it can be used to predict what Chainer will be used for. This
kind of problem formulation, where we aim to predict the missing entities, is specifically
called Knowledge Graph Completion or Knowledge Base Completion.

Most existing research models inference in a knowledge graph as an operation on a low-
dimensional vector space, where the embeddings of entities and relations are learned from a
set of triples (Wang et al., 2017). However, previous studies have shown that the performance
on artificial benchmark datasets, where the locally dense part of the knowledge graph is
extracted, is high, while the performance on sparse situations, such as those found in real-
world knowledge graphs, is limited (Pujara et al., 2017).

Due to the background, there are ongoing researches to incorporate additional informa-
tion during learning of knowledge graph embedding for more realistic situations. The one
is to consider multiple sequences of relations (relation paths) to enable multi-hop reason-
ing. For example, to infer ⟨Tensorflow, used_for, Machine Learning⟩ from ⟨Tensorflow, de-
veloper, Google Brain⟩ and ⟨Google Brain, field_of_work, Machine Learning⟩, the system
learns to make the embedding of the relational path developer/field_of_work closer to the
embedding of used_for. The other is integration with textual information Toutanova et al.
(2015). For example, if we can capture the fact that the relation developer is likely to appear
as “A is developed by B.” in the text, we can infer ⟨Chainer, used_for,Machine Learning⟩ by
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combining it with the above triplet using the text “Chainer is developed by PFN.” as a clue,
even if ⟨Chainer, developer, PFN⟩ is not stored in the knowledge graph. Although these
two directions have been studied independently in previous research, they are complemen-
tary, and by combining the relational knowledge in the knowledge graph with the relational
knowledge extracted from the text, there is a possibility of further improving the inference.

In this paper, we address two major problem settings for learning multi-hop reasoning.
One is multi-hop reasoning in predicate logic, and the other is multi-hop reasoning in propo-
sitional logic. We propose frameworks and models for learning multi-hop reasoning over
real-world knowledge bases, and explore their practical applicability.

The rest of this thesis is structured as follows.

• Chapter 2 discusses potential risk prediction in traffic scenes as an example of multi-
hop reasoning over predicate logic.

• Chapter 3 introduces knowledge graph completion as an example of multi-hop reason-
ing in propositional logic.

• Chapter 4 focuses on the sparseness of knowledge graphs and discusses joint represen-
tation learning of texts and knowledge graphs.

• Chapter 5 summarizes our discussion and presents our future direction.

2



Chapter 2

Explaining Potential Risks in
Traffic Scenes by Combining
Logical Inference and Physics
Simulation

The automatic recognition of risks in traffic scenes is a core technology of Advanced Driver
Assistance Systems (ADASs). Most of the existing work on traffic risk recognition has been
conducted in the context of motion prediction of vehicles. Thus, existing systems rely on
directly observed information (e.g., velocity), whereas the exploitation of implicit informa-
tion inferable from observed information (e.g., the intention of pedestrians) has rarely been
explored. Our previous approach used abductive reasoning to infer implicit information
from observation and jointly identify the most-likely risks in traffic scenes. However, ab-
ductive frameworks do not exploit quantitative information explicitly, which leads to a lack
of grounds for physical quantities. In this work, we propose a novel risk recognition model
combining first-order logical abduction-based symbolic reasoning with a simulation-based
on physical quantities. We build a novel benchmark dataset of real-life traffic scenes that are
potentially risky. Our evaluation demonstrates the potential of our approach. The developed
dataset has been made publicly available for research purposes.

3



2.1 Introduction

2.1 Introduction
In the field of automotive safety, technology for advanced driver assistance systems (ADASs)
and automated driving systems has received much attention Bengler et al. (2014); Lefèvre
et al. (2014); Rendon-Velez et al. (2009). One of the crucial, open issues in this field is how
to make the system capable of making an early prediction of potential risks from every frame
of a traffic scene.

Let us consider the traffic scene illustrated in Figure 2.1a, where an individual is driving
on a street and a red taxi is driving ahead of them. From this scene, the woman in yellow
may signal for a taxi ride, and the taxi driver may suddenly stop to pick up the woman. This
can be a potential risk for the individual if they suddenly brake and the green truck hits them
from behind. Furthermore, this can be a risk because the individual cannot overtake the taxi
due to the purple truck driving in the opposite lane.

A key to avoid such risks is to predict them as early as possible. However, early predic-
tion of potential risks is not straightforward because it requires prediction of the behavior or
intentions of pedestrians and vehicles (e.g. stopping a taxi) in a given traffic scene. Further-
more, as illustrated in Figure 2.1b, it requires reasoning about their plausible results through
chains of causalities. Another requirement is that it is necessary to consider physical quan-
tities for reasoning with such chains. In Figure 2.1, the likelihood of reasoning that the
individual might be hit by the green truck by braking suddenly is dependent on the distance
and the relative speed between the individual and the truck. While these requirements pro-
vide an intriguing application-oriented instance of the task of commonsense reasoning over
the human-physical world, few studies regarding early prediction of potential risks exist in
the field of automated driving and ADASs.

Regarding early prediction of potential risks, there are some studies on inference-based
approaches Armand et al. (2014); Mohammad et al. (2015); Zhao et al. (2015). However,
the inference engines used in these studies are deductive. As described below, this can-
not handle the uncertainty of observation. On the other hand, in our previous work Inoue
et al. (2015), we proposed a context-aware risk prediction model that exploits first-order
logic-based abductive reasoning. An abductive framework allows us to predict long-range
movements of traffic objects by using implicit contextual information and simultaneously
provides deeper explanations as to why a traffic scene has a risk. However, abductive frame-
works do not exploit quantitative information explicitly, which leads to a lack of grounds for
physical quantities. Our previous work also pointed out that the majority of the erroneous
traffic risks are derived via unreasonable inference rules, which are caused by a lack of phys-
ical information such as the precise positions and directions of traffic objects. For example,
the system needed to understand that if a bus was currently stopped at a bus stop, and a man
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2.1 Introduction

Woman

Taxi

Purple Truck
Green Truck

(a) A risky traffic scene. (This illustration was cited from kik (1999).)

Woman raises her hand

Woman takes Taxi

Taxi stops by Woman

Ego-vehicle collide with Taxi

Ego-vehicle brakes

Ego-vehicle avoids Taxi

Ego-vehicle collides with Purple Truck

Ego-vehicle collides with Green Truck

time

(b) A causality chains of above traffic scene. The red rectangles denote a potential
risk.

Fig. 2.1 What is dangerous about this traffic scene?

across the street appeared to be interested in crossing the street to ride the bus, then the man
may suddenly cross the street to catch the bus.

In this study, we integrate a symbolic inference-based approach and a physics simulation.
We rebuild our previous knowledge-base in order to connect it with physics simulation. We
expect our approach to perform well on risky traffic scenes that are needed to exploit quan-
titative information.

To evaluate our risk recognition system, we build a novel benchmark dataset of real-life
traffic scenes that have a potential risk from the existing near-miss database. To the best
of our knowledge, it is the largest dataset (over 3,000 scenes) of risk prediction based on
real-life data. We conducted a corpus study on the dataset to select scenes that are needed to
predict risks. Our preliminary evaluation results on a subset of the corpus suggest that the
proposed integrated architecture provides rich informations for early prediction of potential
risks in real-life traffic scenes.

5



2.2 Background

2.2 Background

2.2.1 Related Work
A majority of studies concerning inner-city risk assessment are based on detecting possible
conflicts of future trajectories Lefèvre et al. (2014). Broadhurst et al. Broadhurst et al. (2005)
used the so-called Monte Carlo method to generate a probability distribution for the possible
future motion of every vehicle in the scene to avoid danger. Althoff et al. Althoff et al. (2009)
have proposed a stochastic approach to detect forthcoming collisions. These works, as well
as other works, do not address the explicit interaction among traffic participants, although
its importance has been indicated in Rendon-Velez et al. (2009).

Several symbolic inference-based approaches have been proposed for understanding sit-
uations in an inner-city context. Armand et al. Armand et al. (2014) formulated an ontology
for inner-city traffic situation analysis and created rules which enable reasoning on the traffic
participants’ future behavior. Furthermore, they showed that the ontology makes it possible
to understand which are the key entities that a driver should consider. Mohammad et al. Mo-
hammad et al. (2015) proposed an ontology-based framework for assessing the degree of
risk in a road scene in which there are vehicles or pedestrians and indicated that the frame-
work is capable of assessing risk with high accuracy. Zhao et al. Zhao et al. (2015) proposed
an ontology-based knowledge base and a decision-making system capable of making safe
decisions on uncontrolled intersections and two-way narrow roads.

These approaches take into account the characteristics of the environment and the inter-
actions among them. The advantage of using a symbolic inference-based approach is the
transparency of the system: the prediction result is represented by a combination of pre-
diction rules. The rules can be used for explaining the reason of the prediction, which has
recently become an important research topic of ADASs. However, the inference engines em-
ployed in previous work is deductive, which cannot handle the uncertainty of observations.
Moreover, symbolic inference-based approaches occasionally overgeneralize the physical
world, as the prediction is not based on precise physical prediction.

Grounding technologies, including image/motion recognizers and radars, are considered
to recently becoming advanced Ambardekar et al. (2014). For object recognizers, a number
of benchmark datasets are publicly available Dollár et al. (2009); Enzweiler and Gavrila
(2009); Ess et al. (2008); Geiger et al. (2012), and they have been extensively studied over
the years. Zhang et al. Zhang et al. (2016) compare around 10 pedestrian detectors on the
Caltech-USA pedestrian benchmark Dollár et al. (2012) and report that the best method
Checkerboards achieve an 18.47% miss-rate. In fact, these technologies have already been
applied to traffic scene understanding Souza and Santos (2011). Regarding other grounding
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2.3 Task Definition

technologies, such as radars and vision cameras, extensive research has also been done (see
Bengler et al. Bengler et al. (2014) for a detailed overview). However, the accuracy is not
always perfect: handling uncertainty of observations is important.

To the best of our knowledge, there is no previous work that focuses on integrating logical
inference that makes maximum use of symbolic information and simulation that exploits
quantitative data.

2.2.2 Abduction
Abduction is inference to the best explanation and is widely used for knowledge-based sym-
bolic inference systems such as diagnosis systems or natural language understanding Hobbs
et al. (1993) in artificial intelligence research. Formally, first-order logical abduction is de-
fined as follows:

Given: Background knowledge B, and observations O, where B is a set of first-order logical
formulae, and O is a set of literals or substitutions,

Find: An hypothesis H such that H ∪ B ⊧ O, H ∪ B⊧̸⊥, where H is a set of literals or
substitutions.

Each of hypothesis H that satisfies the condition is called a candidate hypothesis, and denote
a set of candidate hypotheses as ℋ . The goal of abduction is to find the best explanation1

among candidate hypotheses by a specific evaluation measure. In this paper, we formulate
abduction as the task of finding the minimum-cost explanation Ĥ among ℋ . Formally, we
find Ĥ = arg minH∈ℋ Cost(H), where, Cost is a function that maps each H ∈ ℋ to a
real number, which is called the abductive cost function. We elaborate our cost function in
Section 2.4.1.

2.3 Task Definition
In this paper, we formalize the problem of traffic risk recognition as follows:

Given: A scene description s of a traffic scene which has potential risks with respect to the
ego-vehicle, and quantitative data E of each entity in the scene, where s is a set of
literals in first-order predicate logic following the knowledge representation described
in Sec. 2.4.1, and E is a set of triples of the form (shape, position, velocity),

1In the context of abduction, the term explanation and hypothesis are used interchangeably.
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2.4 Proposed Approach

Scene
Description s

Abductive 
Reasoner

(Sec. IV-A)

Top-K 
Explanations 
of each risk

Knowledge Base 
(Sec. IV-A)

Action-based 
Physics Simulator

(Sec. IV-B)

Reranked Top-K 
Explanations of 

each risk

Quantitative 
Data E

Car(Car2), Taxi(Taxi1),
Truck(Truck), Car(Me),
TurningOnRightBlinker(Me),
InFrontOf(Me, Car2),
On(Taxi1, LaneOW1), …

Risk Score

Taxi1 LCtL LaneOW 3090.5

Taxi1	Stop	None 3090.5

Car2	LCtR LaneOW1 3090.5

Car2	Stop	None 3110.7

Truck	Stop	None 3110.7

Risk TTC Score

Taxi1 LCtL LaneOW 1.0 3190.5

Car2	Stop	None 1.8 3290.7

Car2	LCtR LaneOW1 2.3 3320.5

Taxi1	Stop	None 100.0 13090.5

Truck	Stop	None 100.0 13110.7

Taxi1Car2

Fig. 2.2 A diagram of our system and an example. LCtL and LCtR in the table denote “lane
change to left” and “lane change to right” respectively. The lower the score is, the more risky
action is.

Find: The best explanation of the risk: a set R of potential risks, where each potential risk
r consists of an entity-action tuple (e, a).

This study assumes that s and E are constructed from the outputs of perception systems such
as Light Detection and Rangings (LIDARs) and object recognition technologies.

2.4 Proposed Approach
As mentioned in Sec. I, the prediction of the behavior or intentions of traffic agents is crucial
in the task of traffic risk prediction. Some prior studies, including our previous work Inoue
et al. (2015), proposed symbolic inference-based approaches to predict such information Ar-
mand et al. (2014); Mohammad et al. (2015); Zhao et al. (2015). We employ an abduction-
based approach proposed in our previous work Inoue et al. (2015) as the starting point of this
study because our previous work can handle the uncertainty of observation, which is consid-
ered to be more advantageous for practical situations. We then overcome the significant
drawback of the previous work: the previous work did not exploit the quantitative informa-
tion such as the shape, position, velocity of traffic agents. To solve this problem, we propose
a method to plug a physics simulator into a symbolic inference engine. More specifically, we
rebuild the knowledge base in previous work so that it can predict richer information which
is usable for a physics simulator, and show how to combine the symbolic inference with a
physics simulator.
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2.4 Proposed Approach

Car(Me), Adult(Woman), Taxi(Taxi), Truck(Truck), LeftFrontOf(Taxi, Woman), …

RiskyAction(a, subj, obj)
(where	subj is	mobile	entity)

a = Stop
subj = Taxi
obj = Woman

Taxi(subj)Pedestrian(obj)

LeftFrontOf(subj, obj)

FacingToS(subj, obj) hypothesized

obj = Woman subj = Taxi

ObservationO

Scene	description s:

Fig. 2.3 Working example of Action Recognition as Abduction.

We give a brief overview of our approach. Our overall traffic risk recognition architec-
ture is shown in Figure 2.2. Firstly, an abductive reasoner predicts multiple risky entities and
their actions from the point of view the ego-vehicle with the scores, using s and a qualitative
knowledge base as an input. Note that this module does not use precise quantitative informa-
tion: the distance between ego-vehicle and mobile entities, velocity, and so on. Secondly, an
action-based physics simulator simulates the former prediction exploiting quantitative data
E on a virtual space, and then outputs metricies such as time-to-collision (TTC). We expect
this module to determine whether the former prediction is indeed risky for ego-vehicle.

For example, in the traffic scene illustrated in Figure 2.2, an abductive reasoner predicts
that it is most dangerous that Taxi1, on the neighboring lane, might stop suddenly. However,
our system notices that it is not necessarily dangerous because ego-vehicle should not collide
with the taxi by simulating the situation, so it ranks lower in the scene. In the rest of this
section, the further detail of each component is described.

2.4.1 Action Recognition as Abduction
Following our previous work Inoue et al. (2015), we formulate the risk prediction problem as
the problem of abductive inference: the problem of explaining why an observed traffic scene
and a hypothetical observation “the observed scene has some risk.” are observed, using a
knowledge base. The knowledge base contains two types of axioms: (i) conceptual hierarchy
and (ii) knowledge about relation between intention and its implied situation.

We describe the overall framework using the working example illusrated in Figure 2.3.
The observationO includes the logical forms of the observed scene (i.e.,Car(Me), Adult(Woman),
...) and the hypothetical observation of the existence of a risky entity (i.e., RiskyAction(a, subj, obj)).
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The literal RiskyAction(a, subj, obj) indicates that a traffic agent subj will take a risky action
a to a target obj. We then feed this observation to the abductive inference system to obtain
the best explanation, which will contain the variable binding of a, subj and obj. In this exam-
ple, what happens is that: (i) RiskyAction(a, subj, obj) is explained by FacingToS(subj, obj)∧
LeftFrontOf(subj, obj) ∧Pedestrian(obj) ∧Taxi(subj), and (ii) Pedestrian(obj) and Taxi(subj)
are explained by the observed scene, assuming subj = Woman and obj = Taxi. As a result,
we can identify that the risky factor of this scene is the sudden stop of the taxi besides the
woman.

The main advantage of using abduction is characterized as its declarative nature. We
can abstract away from the process of inferences, concentrating on creating a sophisticated
knowledge base in the declarative fashion.

The second advantage is that by combining several types of knowledge bases (e.g., causal-
ity and ontological knowledge), our model can abductively infer implicit information from
observed information and jointly identify the most-likely risks in traffic scenes. For example,
in Figure 2.3, FacingToS(Taxi,Woman) is implicit inferred information that is not captured
by observations. Abduction-based modeling allows us to predict long-range movements of
traffic objects by using implicit contextual information, and simultaneously provide deeper
explanations as to why the traffic scene has a risk.

Knowledge Base

We now elaborate on the knowledge base used in this study. We first describe the knowledge
representation about a traffic scene. In principle, our representation consists of the following
concepts:

• Type of object: e.g., Vehicle(x),Pedestrian(x);

• Poperty of traffic objects (e.g., whether right blinker is turned on): e.g., TurningOnLeftBlinker(x);

• Relation between traffic objects (e.g., relative position): e.g., InFrontOf(x, y),RightOf(x, y);

• The definition of possible action of pedestrian and vehicle (e.g., turning right), which
are represented by constants: Stop,GoLeft.

Based on this knowledge representation, we constructed the following two types of ax-
ioms:

1. Conceptual hierarchy: This represents the hierarchical (a.k.a IS-A) structure of con-
cepts. For example, the knowledge “a taxi is one kind of a car” is represented by the
logical form ∀x. Taxi(x) ⇒ Car(x). This knowledge allows us to perform reasoning
on various levels of abstraction.

10
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2. Intention-situation axiom: The axiom describes the causal relation between an action
and the situation where the action is likely to be taken. For example, the knowledge
“a vehicle v is likely to overtake a large vehicle cl which belongs to v’s lane l and is
in front of v” is represented by the logical form ∀v, cl, l. Vehicle(v) ∧ LargeCar(cl) ∧
InFrontOf(v, cl) ∧ On(v, l) ∧ On(cl, l) ⇒ RiskyAction(Overtake, v, cl).

As described in Sec. 2.4.2, a physics simulator requires an entity-action-object tuple as an
input. The knowledge base in our previous work Inoue et al. (2015) is tailored for predict-
ing an risky entity-action tuple, which is insufficient to integrate a physics simulator with
symbolic inference. Popular machine learning approaches for classification or ranking also
suffers from predicting this kind of richer information. By using first-order logic as a repre-
sentation, we can easily handle a richer information structure.

Cost function

We employ the cost function of Weighted Abduction Hobbs et al. (1993) as the abductive
cost function. In weighted abduction, observation O and hypothesis H are represented by
the conjunction of existentially quantified literals. Each literal has a positive real-valued
cost (henceforth, referred to as l$100). The cost of observation handles the uncertainty of
observations. Background knowledge B is a set of Horn clauses. Each literal in the body of
Horn clauses is assigned a positive real-valued weight (referred to as l0.6

1 ∧ l0.6
2 ⇒ l3).

We then describe the cost function. Let nonexp(H) be a set of non-explained literals in
H. In weighted abduction, the cost of a hypothesis H is defined by the sum of non-explained
literals:

CostWA(H) = ∑
h∈nonexp(H)

cost(h), (2.1)

where cost(h) is a cost of a literal h. If h is a non-observed literal, cost(h) is calculated by
cost(obs(h)) ⋅∏a∈axioms(h) weight(a), where axioms(h) is the set of axioms used for deriving
h, and obs(h) is the observed literal backchained on to hypothesize h. If h is an observed
literal, cost(h) is simply a real-valued cost attached to h in the input. See Hobbs et al. (1993)
for further details. In this study, we extend equation (2.1) in two ways.

Learning reliabiity of axioms Hobbs et al. (1993) did not provide a method to learn the
parameters of cost function. Following our previous work Inoue et al. (2015), in order to
learn the reliability of axioms, we extend equation (2.1) as follows:

Cost(H) = CostWA(H) + wa ⋅ Φa(H), (2.2)

11
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where Φa(H) is a feature vector that is constructed from the set of axioms used for deriving
H, and wa is a real-valued weight vector.

Context-dependency According to the cost function, the goodness of hypothesis depends
on the plausibility of axioms used for deriving H and the uncertainty of observations, but
not on the observed context. However, this is not suitable for traffic risk prediction. To
incorporate the context-dependency, we further extend equation (2.2) as follows:

Cost(H) = CostWA(H) + wa ⋅ Φa(H) + wc ⋅ Φc(H, O), (2.3)

where Φc(H, O) is a feature function that returns a d-dimensinal vector which is determined
by a given hypothesis H and an observation O, and wc is a real-valued weight vector.

In this study, we take a two-step supervised learning approach to learn wc and wa. We
first learn wc by using Ranking SVM Joachims (2002), where all the features are binary
features encoding (i) literals describing a ranked object and action (prefixed with “obj” and
“action_”) and (ii) literals describing the other traffic objects in a traffic scene (prefixed with
“context_”). Since the combinations of features are considered important for risk predic-
tion, we used a polynomial kernel of degree 2. We then use a latent structured perceptron
approach Sun et al. (2009) to learn wa, fixing wc and using the binary feature function that
returns a 0-1 vector where the value of i-th element is 1 if i-th axiom is used in H; 0 otherwise
as Φa. In our experiment, we use Phillip (Yamamoto et al., 2015) as an abductive inference
engine2.

To make inference tractable, we extend the cost function of Weighted Abduction as fol-
lows: (1) the cost of unification between hypothesized literals is ∞, (2) the cost of backward
inference on observed literals except action/3 is ∞. This amounts to performing a best-
proof search for a literal action/3 using O ∪ B as a background knowledge base.

2.4.2 Action-based Physics Simulations
In addition to qualitative inference described so far, we use physics simulation to rerank
the risk prediction results based on the physical information such as location, distance, and
velocity. We assume the input and output of a physics simulator as follows:

Input: (i) a road structure, (ii) the quantitative information of traffic agents (i.e., position,
direction, velocity), and (iii) the intention of each object represented by a first-order

2https://github.com/naoya-i/phillip
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logic literal (e.g., RiskyAction(Stop,Car,YellowSignal) for “Car will stop before Yel-
lowSignal.”);

Output: (i) the predicted future trajectories of each traffic agent, and (ii) information about
collision between traffic agents (e.g. time-to-collision (TTC)).

As illustrated in Figure 2.2, the physics simulator receives an output from the abduc-
tive reasoner, which contains a risky entity-action-object tuple, which is required by the
physics simulator input. Using this information, there could be some possible ways to com-
bine physics simulation with symbolic inference. In this chapter, we introduce a simple,
pipeline reranking model as a preliminary study for this new challenge. More advanced and
complicated combination methods will be explored in future work.

After running physics simulation, we simply rerank risky entity-action-object tuples
based on the TTC with the ego-vehicle because we want to detect an entity-action-object tu-
ple which brings a risk to the ego-vehicle. The re-ranking score function for a risk r = (e, a)
after n seconds is then defined as follows:

ScoreTTC(r, n) = Cost(Hr)

+ w ⋅
⎧⎪
⎨
⎪⎩

|n – TTC| if e collided with ego-vehicle
𝛼 otherwise,

where Hr is a hypothesis associated with r. We set w = 10 as a result of manual adjustment
on a development set. We empirically set 𝛼 as 10.

To implement the physics simulator, we use an action-based motion model using pro-
totype trajectories Lefèvre et al. (2014). Given an input, a physics simulator generates a
trajectory of each traffic object based on a predefined set of prototype trajectories, where a
prototype trajectory contains landmarks and a parametric trajectory represented by a set of
points and acceleration. We combine several prototype trajectories to generate a final trajec-
tory, transforming these prototype trajectories by scale and an angle. We use 14 prototype
trajectories as a preliminary study.

2.5 Evaluation
Our evaluation is two-folded. The purpose of the first evaluation is to check if the proposed
model can enrich prediction results without hurting a simple statistical ranking model. The
second evaluation aims at seeing the effectiveness of physics simulation integration. Our
previous work Inoue et al. (2015) evaluated the model on a non-realistic small dataset (i.e.,
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Table 2.1 Classification of cause of braking.

Label Cause # Freq. (%)
Rule Traffic rules 209 20.9

(e.g., red light traffic signals)
Avoidance To avoid imminent collisions 544 54.5

(e.g., a leading vehicle brakes suddenly)
Prediction To be on the safe side 166 16.6

(e.g., overtaking a bicycle)
Other Changing lane, entering road, etc. 49 4.9
Unknown Cannot judge cause 31 3.1

Table 2.2 Classification of behavior of the ego-vehicle.

Label # Freq. (%)
Direct 379 53.4
Change 281 39.6
Other 50 7.0

illustrations from a textbook), but we evaluate our model on a large database of near-miss
recordings which is collected by the taxis’ drive recorders.

2.5.1 Task Setting
Given a traffic scene two seconds before the actual near-miss, our task is to identify a risky
action-object tuple that causes the near-miss. In this experiment, we assume the input to our
task is a 2-dimensional bird-view map that represents the traffic scene two seconds before
the actual near-miss.

The 2-dimensional map contains information about the road structure, traffic objects
(position and its direction). The physics simulator uses this information to perform physics
simulation. The logical representation of each traffic scene is automatically generated from
the map according to Sec. 2.4.1. In this experiment, we assume that the accuracy of sensor
technologies is perfect, in order to focus on exploring the methodology of risk prediction.

We evaluate our results in the framework of ranking task. We use Acc@k (Accuracy at
k) as a metric, which is the fraction of problems where the correct prediction is made within
rank k.
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Table 2.3 Accuracy of risk prediction models.

Validation Test
Model Acc@1 Acc@3 Acc@5 Acc@1 Acc@3 Acc@5
BASELINE 52.8 (38/72) 80.6 (58/72) 90.3 (65/72) 55.6 (40/72) 77.8 (56/72) 93.1 (67/72)
INFERENCE 51.4 (37/72) 80.6 (58/72) 90.3 (65/72) 58.3 (42/72) 77.8 (56/72) 91.7 (66/72)
INF+PHYSIM 51.4 (37/72) 81.9 (59/72) 90.3 (65/72) 58.3 (42/72) 77.8 (56/72) 91.7 (66/72)

2.5.2 Dataset
We use a database of near-miss accidents published by Tokyo University of Agriculture and
Technology. The dataset consists of over 100,000 video recordings of near-miss accidents
recorded by a taxi’s drive recorders3. For evaluation, we use over 3,000 videos recorded in
2014.

The dataset includes traffic scenes that has no potential risks indeed, since it is collecded
based on existence of sudden braking. We conducted a corpus study on the dataset to classify
scenes that are needed to predict risk truly based on cause of braking. The classification is
entrusted to a person who is not involved in the development of the dataset. We classified
about 1,000 scenes that the risky object is visible from the point of view of the ego-vehicle
in two seconds before the actual near-miss. Table 2.1 shows the classification result. The
scenes labeled Avoidance and Prediction are considered to be potentially risky, so we further
classified them.

Next classification is based on whether the ego-vehicle changed the trajectory or not from
two seconds before the actual near-miss to it. We collect the scenes that ego-vehicle did not
change the trajectory in order to make task setting “What potential risks are there when the
ego-vehicle keeps the speed?” Table 2.2 shows the classification result. Direct label denotes
tha scene that ego-vehicle did not change the trajectory, and Change label denotes the scene
that it did. Finally, we use Direct labeled 379 scenes as evaluation data, divided the dataset
into a training set, test set, validation set with the ratio of 3:1:1. The data corresponding
above labels and ID on the database is publicly available4.

To create a benchmark dataset, we manually created a 2-dimensional bird-view map for
each video.

2.5.3 Models
In the evaluation, we compare the following three models.

3http://web.tuat.ac.jp/~smrc/drcenter.html (in Japanese)
4https://github.com/reiyw/traffic-scene-understanding
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• BASELINE: predicts a risk by an abductive reasoner with the cost function Cost(H) =
wc ⋅ Φc(H, O) (referred to as BASELINE). This baseline directly models a mapping be-
tween observed information and a risky entity-action tuple. Asmentioned in Sec. 2.4.1,
the weight vector wc is trained by Ranking SVM Joachims (2002); therefore, the result
of this baseline indicates the basic performance of a statistical machine learning-based
ranker.

• INFERENCE: predicts a risk by an abductive reasonerwith the full cost function desribed
in Sec. 2.4.1. It does not perform physics simulation: the model uses only symbolic
information for the risk prediction.

• INF+PHYSIM: the proposed model, which predicts a risk by an abductive reasoner
combined with the physics simulator desribed in Sec. 2.4.2.

2.5.4 Evaluation Results
The results are shown in Table 2.3. By comparing BASELINE and INFERENCE, we observe
that adding abductive reasoning does not hurt the performance: the output is successfully
enriched so that physics simulation can be performed. Furthermore, we observed the perfor-
mance improvement on the test set. Manual inspection reveals that some mistakes made by
the baseline model were corrected by an inference-based prediction.

We show the example improvement in Figure 2.4. The risk is that Car will change the
lane to avoid ParkingCar, which might lead to a collision between the ego-vehicle (or Me)
and Car. While BASELINE predicted that Car will stop, INFERENCE predicted that Car will
change the lane with the richer information that the target lane is the lane next to the current
lane.

Using the predicted rich information, the physics simulator predicted the future trajec-
tories of each traffic agent. As illustrated in Figure 2.4, the physics simulator correctly
predicted the future trajectories and also infer that Me will collide with Car 3.6 seconds
after. This indicates that our logical inference framework successfully connects the world
of symbolic inference to the physical world. For a simple machine learning-based ranker or
classifier, it is relatively harder to predict this kind of richer explanations.

Finally, we compare INFERENCE with INF+PHYSIM. The results indicate that physics
simulation did not improve the results of qualitative inference. In future work, we will con-
duct a deeper analysis on the results of physics simulation and refine the entire framework
to improve the results.
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Fig. 2.4 Example trajectories our physics simulator output. Scene ID is 1397 on the database.
The boxes represent vehicles, and the lines that drawn from vehicles represent trajectories.

2.6 Conclusions
We have developd an Advanced Driver Assistance System (ADAS) that can recognize poten-
tial risks in traffic scenes and provide the reasoning for its prediction. We have extended our
previous qualitative risk prediction model with physics simulation to overcome the weakness
of qualitative inference. Our evaluation on a real-life traffic incident database demonstrates
the potentiality of our approach.

In future work, wewill refine the task setting for more practical evaluation. Currently, the
task setting requires us to predict a risk exactly two seconds after the input scene; however,
in practice, predicting any risks after the input scene will be beneficial. Another future work
will include evaluating the quality of produced explanations.
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Chapter 3

Interpretable and Compositional
Relation Learning by Joint
Training with an Autoencoder

Embedding models for entities and relations are extremely useful for recovering missing
facts in a knowledge base. Intuitively, a relation can be modeled by a matrix mapping entity
vectors. However, relations reside on low dimension sub-manifolds in the parameter space of
arbitrary matrices – for one reason, composition of two relations M1, M2 may match a third
M3 (e.g. composition of relations currency_of_country and country_of_film usually
matches currency_of_film_budget), which imposes compositional constraints to be sat-
isfied by the parameters (i.e. M1 ⋅ M2 ≈ M3). In this chapter we investigate a dimension
reduction technique by training relations jointly with an autoencoder, which is expected to
better capture compositional constraints. We achieve state-of-the-art on Knowledge Base
Completion tasks with strongly improved Mean Rank, and show that joint training with an
autoencoder leads to interpretable sparse codings of relations, helps discovering composi-
tional constraints and benefits from compositional training. Our source code is released at
github.com/tianran/glimvec.

3.1 Introduction
Broad-coverage knowledge bases (KBs) such as Freebase (Bollacker et al., 2008) and DB-
Pedia (Auer et al., 2007) store a large amount of facts in the form of ⟨head entity, relation,
tail entity⟩ triples (e.g. ⟨The Matrix, country_of_film, Australia⟩), which could support
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Fig. 3.1 In joint training, relation parameters (e.g. M1) receive updates from both a KB-
learning objective, trying to predict entities in the KB; and a reconstruction objective from
an autoencoder, trying to recover relations from low dimension codings.

a wide range of reasoning and question answering applications. The Knowledge Base Com-
pletion (KBC) task aims to predict the missing part of an incomplete triple, such as ⟨Finding
Nemo, country_of_film, ?⟩, by reasoning from known facts stored in the KB.

As a most common approach (Wang et al., 2017), modeling entities and relations to op-
erate in a low dimension vector space helps KBC, for three conceivable reasons. First, when
dimension is low, entities modeled as vectors are forced to share parameters, so “similar” en-
tities which participate in many relations in common get close to each other (e.g. Australia
close to US). This could imply that an entity (e.g. US) “type matches” a relation such as
country_of_film. Second, relations may share parameters as well, which could transfer
facts from one relation to other similar relations, for example from ⟨x, award_winner, y⟩ to
⟨x, award_nominated, y⟩. Third, spatial positions might be used to implement composition
of relations, as relations can be regarded as mappings from head to tail entities, and the com-
position of two maps can match a third (e.g. the composition of currency_of_country
and country_of_film matches the relation currency_of_film_budget), which could be
captured by modeling composition in a space.

However, modeling relations as mappings naturally requires more parameters – a general
linear map between d-dimension vectors is represented by a matrix of d2 parameters – which
are less likely to be shared, impeding transfers of facts between similar relations. Thus, it
is desired to reduce dimensionality of relations; furthermore, the existence of a composition
of two relations (assumed to be modeled by matrices M1, M2) matching a third (M3) also
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justifies dimension reduction, because it implies a compositional constraint M1 ⋅ M2 ≈ M3
that can be satisfied only by a lower dimension sub-manifold in the parameter space1.

Previous approaches reduce dimensionality of relations by imposing pre-designed hard
constraints on the parameter space, such as constraining that relations are translations (Bor-
des et al., 2013a) or diagonal matrices (Yang et al., 2015), or assuming they are linear com-
binations of a small number of prototypes (Xie et al., 2017). However, pre-designed hard
constraints do not seem to cope well with compositional constraints, because it is difficult to
know a priori which two relations compose to which third relation, hence difficult to choose
a pre-design; and compositional constraints are not always exact (e.g. the composition of
currency_of_country and headquarter_location usuallymatches business_operation_currency
but not always), so hard constraints are less suited.

In this chapter, we investigate an alternative approach by training relation parameters
jointlywith an autoencoder (Figure 3.1). During training, the autoencoder tries to reconstruct
relations from low dimension codings, with the reconstruction objective back-propagating
to relation parameters as well. We show this novel technique promotes parameter sharing
between different relations, and drives them toward low dimension manifolds (Sec.3.6.2).
Besides, we expect the technique to cope better with compositional constraints, because it
discovers low dimension manifolds posteriorly from data, and it does not impose any explicit
hard constraints.

Yet, joint training with an autoencoder is not simple; one has to keep a subtle balance
between gradients of the reconstruction and KB-learning objectives throughout the training
process. We are not aware of any theoretical principles directly addressing this problem;
but we found some important settings after extensive pre-experiments (Sec.3.4). We evalu-
ate our system using standard KBC datasets, achieving state-of-the-art on several of them
(Sec.3.6.1), with strongly improved Mean Rank. We discuss detailed settings that lead to the
performance (Sec.3.4.1), and we show that joint training with an autoencoder indeed helps
discovering compositional constraints (Sec.3.6.2) and benefits from compositional training
(Sec.3.6.3).

3.2 Base Model
A knowledge base (KB) is a set 𝒯 of triples of the form ⟨h, r, t⟩, where h, t ∈ ℰ are entities
and r ∈ ℛ is a relation (e.g. ⟨The Matrix, country_of_film, Australia⟩). A relation r
has its inverse r–1 ∈ ℛ so that for every ⟨h, r, t⟩ ∈ 𝒯 , we regard ⟨t, r–1, h⟩ as also in the

1It is noteworthy that similar compositional constraints apply to most modeling schemes of relations, not
just matrices.
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KB. Under this assumption and given 𝒯 as training data, we consider the Knowledge Base
Completion (KBC) task that predicts candidates for a missing tail entity in an incomplete
⟨h, r, ?⟩ triple.

Most approaches tackle this problem by training a score function measuring the plausi-
bility of triples being facts. The model we implement in this work represents entities h, t
as d-dimension vectors uh, vt respectively, and relation r as a d × d matrix Mr. If uh, vt
are one-hot vectors with dimension d = |ℰ| corresponding to each entity, one can take Mr
as the adjacency matrix of entities joined by relation r, so the set of tail entities filling into
⟨h, r, ?⟩ is calculated by u⊤

h Mr (with each nonzero entry corresponds to an answer). Thus,
we have u⊤

h Mrvt > 0 if and only if ⟨h, r, t⟩ ∈ 𝒯 . This motivates us to use u⊤
h Mrvt as a natu-

ral parameter to model plausibility of ⟨h, r, t⟩, even in a low dimension space with d ≪ |ℰ|.
Thus, we define the score function as

s(h, r, t) ∶= exp(u⊤
h Mrvt) (3.1)

for the basic model. This is similar to the bilinear model of Nickel et al. (2011), except that
we distinguish uh (the vector for head entities) from vt (the vector for tail entities). It has
also been proposed in Tian et al. (2016), but for modeling dependency trees rather than KBs.

More generally, we consider composition of relations r1/ … /rl to model paths in a KB
(Guu et al., 2015a), as defined by r1, … , rl participating in a sequence of facts such that the
head entity of each fact coincides with the tail of its previous. For example, a sequence of two
facts ⟨The Matrix, country_of_film, Australia⟩ and ⟨Australia, currency_of_country,
AustralianDollar⟩ form a path of composition country_of_film / currency_of_country,
because the head of the second fact (i.e. Australia) coincides with the tail of the first. Using
the previous d = |ℰ| analogue, one can verify that composition of relations is represented
by multiplication of adjacency matrices, so we accordingly define

s(h, r1/ … /rl, t) ∶= exp(u⊤
h Mr1 ⋯ Mrl

vt)

to measure the plausibility of a path. It is explored in Guu et al. (2015a) to learn a score
function not only for single facts but also for paths. This compositional training scheme is
shown to bring valuable information about the structure of the KB and may help KBC. In
this work, we conduct experiments both with and without compositional training.

In order to learn parameters uh, vt, Mr of the score function, we follow Tian et al. (2016)
using a Noise Contrastive Estimation (NCE) (Gutmann and Hyvärinen, 2012) objective.
For each path (or triple) ⟨h, r1/ … , t⟩ taken from the KB, we generate negative samples
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by replacing the tail entity t with some random noise t∗. Then, we maximize

ℒ1 ∶= ∑
path

ln
s(h, r1/ … , t)

k + s(h, r1/ … , t) + ∑
noise

ln k
k + s(h, r1/ … , t∗)

as our KB-learning objective. Here, k is the number of noises generated for each path.
When the score function is regarded as probability, ℒ1 represents the log-likelihood of
“⟨h, r1/ … , t⟩ being actual path and ⟨h, r1/ … , t∗⟩ being noise”. Maximizing ℒ1 increases
the scores of actual paths and decreases the scores of noises.

3.3 Joint Training with an Autoencoder
Autoencoders learn efficient codings of high-dimensional data while trying to reconstruct the
original data from the coding. By joint training relation matrices with an autoencoder, we
also expect it to help reducing the dimensionality of the original data (i.e. relation matrices).

Formally, we define a vectorization mr for each relation matrix Mr, and use it as input
to the autoencoder. mr is defined as a reshape of Mr flattened into a d2-dimension vector,
and normalized such that ‖mr‖ = √d. We define

cr ∶= ReLU(Amr) (3.2)

as the coding. Here A is a c × d2 matrix with c ≪ d2, and ReLU is the Rectified Linear Unit
function (Nair and Hinton, 2010). We reconstruct the input from cr by multiplying a d2 × c
matrix B. We want Bcr to be more similar to mr than other relations. For this purpose, we
define a similarity

g(r1, r2) ∶= exp( 1
√dc

m⊤
r1Bcr2), (3.3)

which measures the length of Bcr2 projected to the direction of mr1 . In order to learn the
parameters A, B, we adopt the Noise Contrastive Estimation scheme as in Sec.3.2, generate
random noises r∗ for each relation r and maximize

ℒ2 ∶= ∑
r∈ℛ

ln g(r, r)
k + g(r, r) + ∑

r∗∼ℛ
ln k

k + g(r, r∗)

as our reconstruction objective. Maximizing ℒ2 increases mr’s similarity with Bcr, and
decreases it with Bcr∗ .

During joint training, both ℒ1 and ℒ2 are simultaneously maximized, and the gradient
∇ℒ2 propagates to relation matrices as well. Since ∇ℒ2 depends on A and B, and A, B
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interact with all relations, they promote indirect parameter sharing between different relation
matrices. In Sec.3.6.2, we further show that joint training drives relations toward a low
dimension manifold.

3.4 Optimization Tricks
Joint training with an autoencoder is not simple. Relation matrices receive updates from both
∇ℒ1 and ∇ℒ2, but if they update ∇ℒ1 too much, the autoencoder has no effect; conversely,
if they update ∇ℒ2 too often, all relation matrices crush into one cluster. Furthermore,
an autoencoder should learn from genuine patterns of relation matrices that emerge from
fitting the KB, but not the reverse – in which the autoencoder imposes arbitrary patterns to
relation matrices according to random initialization. Therefore, it is not surprising that a
naive optimization of ℒ1 + ℒ2 does not work.

After extensive pre-experiments, we have found some crucial settings for successful train-
ing. The most important “magic” is the scaling factor 1

√dc
in definition of the similarity

function (3.3), perhaps being combined with other settings as we discuss below. We have
tried different factors 1, 1

√d
, 1

√c
and 1

dc instead, with various combinations of d and c; but
the autoencoder failed to learn meaningful codings in other settings. When the scaling factor
is too small (e.g. 1

dc ), all relations get almost the same coding; conversely if the factor is too
large (e.g. 1), all codings get very close to 0.

The next important rule is to keep a balance between the updates coming from ∇ℒ1
and ∇ℒ2. We use Stochastic Gradient Descent (SGD) for optimization, and the common
practice (Bottou, 2012) is to set the learning rate as

𝛼(𝜏) ∶= 𝜂
1 + 𝜂𝜆𝜏 . (3.4)

Here, 𝜂, 𝜆 are hyper-parameters and 𝜏 is a counter of processed data points. In this work, in
order to control the updates in detail to keep a balance, wemodify (3.4) to use a a step counter
𝜏r for each relation r, counting “number of updates” instead of data points2. That is, when-
ever Mr gets a nonzero update from a gradient calculation, 𝜏r increases by 1. Furthermore,
we use different hyper-parameters for different “types of updates”, namely 𝜂1, 𝜆1 for updates
coming from ∇ℒ1, and 𝜂2, 𝜆2 for updates coming from ∇ℒ2. Thus, let Δ1 be the partial
gradient of ∇ℒ1, and Δ2 the partial gradient of ∇ℒ2, we update Mr by 𝛼1(𝜏r)Δ1 + 𝛼2(𝜏r)Δ2

2Similarly, we set separate step counters for all head and tail entities, and the autoencoder as well.
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at each step, where

𝛼1(𝜏r) ∶= 𝜂1
1 + 𝜂1𝜆1𝜏r

, 𝛼2(𝜏r) ∶= 𝜂2
1 + 𝜂2𝜆2𝜏r

.

The rule for setting 𝜂1, 𝜆1 and 𝜂2, 𝜆2 is that, 𝜂2 should be much smaller than 𝜂1, because
𝜂1, 𝜂2 control the magnitude of learning rates at the early stage of training, with the autoen-
coder still largely random and Δ2 not making much sense; on the other hand, one has to
choose 𝜆1 and 𝜆2 such that ‖Δ1‖/𝜆1 and ‖Δ2‖/𝜆2 are at the same scale, because the learn-
ing rates approach 1/(𝜆1𝜏r) and 1/(𝜆2𝜏r) respectively, as the training proceeds. In this way,
the autoencoder will not impose random patterns to relation matrices according to its initial-
ization at the early stage, and a balance is kept between 𝛼1(𝜏r)Δ1 and 𝛼2(𝜏r)Δ2 later.

But how to estimate ‖Δ1‖ and ‖Δ2‖? It seems that we can approximately calculate
their scales from initialization. In this work, we use i.i.d. Gaussians of variance 1/d to
initialize parameters, so the initial Euclidean norms are ‖uh‖ ≈ 1, ‖vt‖ ≈ 1, ‖Mr‖ ≈ √d,
and ‖BAmr‖ ≈ √dc. Thus, by calculating ∇ℒ1 and ∇ℒ2 using (3.1) and (3.3), we have
approximately

‖Δ1‖ ≈ ‖uhv⊤
t ‖ ≈ 1, and (3.5)

‖Δ2‖ ≈ ‖ 1
√dc

Bcr‖ ≈ 1
√dc

‖BAmr‖ ≈ 1. (3.6)

It suggests that, because of the scaling factor 1
√dc

in (3.3), we have ‖Δ1‖ and ‖Δ2‖ at the
same scale, so we can set 𝜆1 = 𝜆2. This might not be a mere coincidence.

3.4.1 Training the Base Model
Besides the tricks for joint training, we also found settings that significantly improve the base
model on KBC, as briefly discussed below. In Sec.3.6.3, we will show performance gains
by these settings using the FB15k-237 validation set.

Normalization It is better to normalize relation matrices to ‖Mr‖ = √d during training.
This might reduce fluctuations in entity vector updates.

Regularizer It is better to minimize ‖M⊤
r Mr– 1

d tr(M⊤
r Mr)I‖ during training. This regular-

izer drives Mr toward an orthogonal matrix (Tian et al., 2016) and might reduce fluctuations
in entity vector updates. As a result, all relation matrices trained in this work are very close
to orthogonal.
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Initialization Instead of pure Gaussian, it is better to initialize matrices as (I+G)/2, where
G is random. The identity matrix I helps passing information from head to tail (Tian et al.,
2016).

Negative Sampling Instead of a unigram distribution, it is better to use a uniform distri-
bution for generating noises. This is somehow counter-intuitive compared to training word
embeddings.

3.5 Related Works
KBs have a wide range of applications (Berant et al., 2013; Hixon et al., 2015; Nickel et al.,
2016a) and KBC has inspired a huge amount of research (Bordes et al., 2013a; Das et al.,
2017a; Hayashi and Shimbo, 2017; Nguyen et al., 2016; Riedel et al., 2013; Socher et al.,
2013; Toutanova et al., 2016a; Wang et al., 2014a,c; Xiao et al., 2016).

Among the previous works, TransE Bordes et al. (2013a) is the classic method which
represents a relation as a translation of the entity vector space, and is partially inspired by
Mikolov et al. (2013)’s vector arithmetic method of solving word analogy tasks. Although
competitive in KBC, it is speculated that this method is well-suited for 1-to-1 relations but
might be too simple to represent N-to-N relations accuratelyWang et al. (2017). Thus, exten-
sions such as TransRLin et al. (2015c) and STransENguyen et al. (2016) are proposed tomap
entities into a relation-specific vector space before translation. The ITransF model Xie et al.
(2017) further enhances this approach by imposing a hard constraint that the relation-specific
maps should be linear combinations of a small number of prototypical matrices. Our work
inherits the same motivation with ITransF in terms of promoting parameter-sharing among
relations.

On the other hand, the base model used in this work originates from RESCAL Nickel
et al. (2011), in which relations are naturally represented as analogue to the adjacency matri-
ces (Sec.3.2). Further developments include HolE Nickel et al. (2016b) and ConvE Dettmers
et al. (2018) which improve this approach in terms of parameter-efficiency, by introducing
low dimension factorizations of the matrices. We inherit the basic model of RESCAL but
draw additional training techniques from Tian et al. (2016), and show that the base model al-
ready can achieve near state-of-the-art performance (Sec.3.6.1,3.6.3). This sends a message
similar to Kadlec et al. (2017), saying that training tricks might be as important as model
designs.

Nevertheless, we emphasize the novelty of this work in that the previous models mostly
achieve dimension reduction by imposing some pre-designed hard constraints (Bordes et al.,
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2013a; Dettmers et al., 2018; Nickel et al., 2016b; Trouillon et al., 2016; Xie et al., 2017;
Yang et al., 2015), whereas the constraints themselves are not learned from data; in contrast,
our approach by jointly training an autoencoder does not impose any explicit hard constraints,
so it leads to more flexible modeling.

Moreover, we additionally focus on leveraging composition in KBC. Although this idea
has been frequently explored before (Guu et al., 2015a; Lin et al., 2015a; Neelakantan et al.,
2015a), our discussion about the concept of compositional constraints and its connection to
dimension reduction has not been addressed similarly in previous research. In experiments,
we will show (Sec.3.6.2,3.6.3) that joint training with an autoencoder indeed helps finding
compositional constraints and benefits from compositional training.

Autoencoders have been used solo for learning distributed representations of syntactic
trees (Socher et al., 2011), words and images (Silberer and Lapata, 2014), or semantic roles
(Titov and Khoddam, 2015). It is also used for pretraining other deep neural networks (Erhan
et al., 2010). However, when combined with other models, the learning of autoencoders, or
more generally sparse codings (Rubinstein et al., 2010), is usually conveyed in an alternat-
ing manner, fixing one part of the model while optimizing the other, such as in Xie et al.
(2017). To our knowledge, joint training with an autoencoder is not widely used previously
for reducing dimensionality.

Jointly training an autoencoder is not simple because it takes non-stationary inputs. In
this work, we modified SGD so that it shares traits with some modern optimization algo-
rithms such as Adagrad (Duchi et al., 2011), in that they both set different learning rates for
different parameters. While Adagrad sets them adaptively by keeping track of gradients for
all parameters, our modification of SGD is more efficient and allows us to grasp a rough
intuition about which parameter gets how much update. We believe our techniques and find-
ings in joint training with an autoencoder could be helpful to reducing dimensionality and
improving interpretability in other neural network architectures as well.

3.6 Experiments
We evaluate on standard KBC datasets, including WN18 and FB15k (Bordes et al., 2013a),
WN18RR (Dettmers et al., 2018) and FB15k-237 (Toutanova and Chen, 2015). The statisti-
cal information of these datasets are shown in Table 3.1.

WN18 collects word relations from WordNet (Miller, 1995), and FB15k is taken from
Freebase (Bollacker et al., 2008); both have filtered out low frequency entities. However,
it is reported in Toutanova and Chen (2015) that both WN18 and FB15k have information
leaks because the inverses of some test triples appear in the training set. FB15k-237 and
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Dataset |ℰ| |ℛ| #Train #Valid #Test
WN18 40,943 18 141,442 5,000 5,000
FB15k 14,951 1,345 483,142 50,000 59,071
WN18RR 40,943 11 86,835 3,034 3,134
FB15k-237 14,541 237 272,115 17,535 20,466

Table 3.1 Statistical information of the KBC datasets. |ℰ| and |ℛ| denote the number of
entities and relation types, respectively; #Train, #Valid, and #Test are the numbers of triples
in the training, validation, and test sets, respectively.

WN18RR fix this problem by deleting such triples from training and test data. In this work,
we do evaluate on WN18 and FB15k, but our models are mainly tuned on FB15k-237.

For all datasets, we set the dimension d = 256 and c = 16, the SGD hyper-parameters
𝜂1 = 1/64, 𝜂2 = 2–14 and 𝜆1 = 𝜆2 = 2–14. The training batch size is 32 and the triples in each
batch share the same head entity. We compare the basemodel (BASE) to our joint trainingwith
an autoencodermodel (JOINT), and the basemodel with compositional training (BASE+COMP)
to our joint model with compositional training (JOINT+COMP). When compositional training
is enabled (BASE+COMP, JOINT+COMP), we use random walk to sample paths of length 1+X,
where X is drawn from a Poisson distribution of mean 𝜆 = 1.0.

For any incomplete triple ⟨h, r, ?⟩ in KBC test, we calculate a score s(h, r, e) from (3.1),
for every entity e ∈ ℰ such that ⟨h, r, e⟩ does not appear in any of the training, validation,
or test sets (Bordes et al., 2013a). Then, the calculated scores together with s(h, r, t) for the
gold triple is converted to ranks, and the rank of the gold entity t is used for evaluation.
Evaluation metrics include Mean Rank (MR), Mean Reciprocal Rank (MRR), and Hits at
10 (H10). Lower MR, higher MRR, and higher H10 indicate better performance.

We consult MR and MRR on validation sets to determine training epochs; we stop train-
ing when both MR and MRR have stopped improving.

3.6.1 KBC Results
The results are shown in Table 3.2. We found that joint training with an autoencoder mostly
improves performance, and the improvement becomes more clear when compositional train-
ing is enabled (i.e., JOINT ≥ BASE and JOINT+COMP > BASE+COMP). This is convincing
because generally, joint training contributes with its regularizing effects, and drastic im-
provements are less expected3. When compositional training is enabled, the system usually

3The source code and trained models are publicly released at https://github.com/tianran/glimvec,
where we also show the mean performance and deviations of multiple random initializations, to give a more
complete picture.
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profession
profession−1

film_crew_role−1

film_release_region−1

film_language−1

nationality

currency_of_country
currency_of_company

currency_of_university
currency_of_film_budget

2 4 6 8 10 12 14 16

currency_of_film_budget
release_region_of_film

corporation_of_film
producer_of_film

writer_of_film

Fig. 3.2 Examples of relation codings learned from FB15k-237. Each row shows a 16 di-
mension vector encoding a relation. Vectors are normalized such that their entries sum to
1.

achieves better MR, though not always improves in other measures. The performance gains
are more obvious on the WN18RR and FB15k-237 datasets, possibly because WN18 and
FB15k contain a lot of easy instances that can be solved by a simple rule Dettmers et al.
(2018).

Furthermore, the numbers demonstrated by our joint and base models are among the
strongest in the literature. We have conducted re-experiments of several representative al-
gorithms, and also compare with state-of-the-art published results. For re-experiments, we
use Lin et al. (2015c)’s implementation4 of TransE (Bordes et al., 2013a) and TransR, which
represent relations as vector translations; and Nickel et al. (2016b)’s implementation5 of
RESCAL (Nickel et al., 2011) and HolE, where RESCAL is most similar to the BASE model

4https://github.com/thunlp/KB2E
5https://github.com/mnick/holographic-embeddings
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Model WN18 FB15k WN18RR FB15k-237
MR H10 MR H10 MR MRR H10 MR MRR H10

JOINT 277 95.8 53 82.5 4233 .461∗ 53.4 212 .336 52.3∗

BASE 286 95.8 53 82.5 4371 .459 52.9 215 .337∗ 52.3∗

JOINT+COMP 191∗ 94.8 53 69.7 2268∗ .343 54.8∗ 197∗ .331 51.6
BASE+COMP 195 94.8 54 69.4 2447 .310 54.1 203 .328 51.5
TransE (Bordes et al., 2013a) 292 92.0 66 70.4 4311 .202 45.6 278 .236 41.6
TransR (Lin et al., 2015c) 281 93.6 76 74.4 4222 .210 47.1 320 .282 45.9
RESCAL (Nickel et al., 2011) 911 58.0 163 41.0 9689 .105 20.3 457 .178 31.9
HolE (Nickel et al., 2016b) 724 94.3 293 66.8 8096 .376 40.0 1172 .169 30.9
STransE (Nguyen et al., 2016) 206 93.4 69 79.9 - - - - - -
ITransF (Xie et al., 2017) 205 94.2 65 81.0 - - - - - -
ComplEx (Trouillon et al., 2016) - 94.7 - 84.0 5261 .44 51 339 .247 42.8
Ensemble DistMult (Kadlec et al., 2017) 457 95.0 35.9 90.4 - - - - - -
IRN (Shen et al., 2017) 249 95.3 38 92.7∗ - - - - - -
ConvE (Dettmers et al., 2018) 504 95.5 64 87.3 5277 .46 48 246 .316 49.1
R-GCN+ (Schlichtkrull et al., 2017) - 96.4∗ - 84.2 - - - - .249 41.7
ProjE (Shi and Weninger, 2017) - - 34∗ 88.4 - - - - - -

Table 3.2 KBC results on the WN18, FB15k, WN18RR, and FB15k-237 datasets. The first
and second sectors compare our joint to the base models with and without compositional
training, respectively; the third sector shows our re-experiments and the fourth shows previ-
ous published results. Bold numbers are the best in each sector, and (∗) indicates the best of
all.

and HolE is a more parameter-efficient variant. We experimented with the default settings,
and found that our models outperform most of them.

Among the published results, STransE (Nguyen et al., 2016) and ITransF (Xie et al.,
2017) are more complicated versions of TransR, achieving the previous highest MR on
WN18 but are outperformed by our JOINT+COMP model. ITransF is most similar to our
JOINT model in that they both learn sparse codings for relations. On WN18RR and FB15k-
237, Dettmers et al. (2018)’s report of ComplEx (Trouillon et al., 2016) and ConvE were
previously the best results. Our models mostly outperform them. Other results include
Kadlec et al. (2017)’s simple but strong baseline and several recent models (Schlichtkrull
et al., 2017; Shen et al., 2017; Shi and Weninger, 2017) which achieve best results on FB15k
or WN18 in some measure. Our models have comparable results.

3.6.2 Intuition and Insight
What does the autoencoder look like? How does joint training affect relation matrices? We
address these questions by analyses showing that (i) the autoencoder learns sparse and in-
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terpretable codings of relations, (ii) the joint training drives relation matrices toward a low
dimension manifold, and (iii) it helps discovering compositional constraints.

Sparse Coding and Interpretability

Due to the ReLU function in (3.2), our autoencoder learns sparse coding, with most relations
having large code values at only two or three dimensions. This sparsity makes it easy to find
patterns in the model that to some extent explain the semantics of relations. Figure 3.2 shows
some examples.

In the first group of Figure 3.2, we show a small number of relations that are almost
always assigned a near one-hot coding, regardless of initialization. These are high frequency
relations joining two large categories (e.g. film and language), which probably constitute the
skeleton of a KB.

In the second group, we found the 12th dimension strongly correlates with currency;
and in the third group, we found the 4th dimension strongly correlates with film. As for
the relation currency_of_film_budget, it has large code values at both dimensions. This
kind of relation clustering also seems independent of initialization. Intuitively, it shows that
the autoencoder may discover similarities between relations and promote indirect parameter
sharing among them. Yet, as the autoencoder only reconstructs approximations of relation
matrices but never constrain them to be exactly equal to the original, relation matrices with
very similar codings may still differ considerably. For example, producer_of_film and
writer_of_film have codings of cosine similarity 0.973, but their relation matrices only
have6 a cosine similarity 0.338.

Low dimension manifold

In order to visualize the relation matrices learned by our joint and base models, we use
UMAP7 (McInnes and Healy, 2018) to embed Mr into a 2D plane8. We use relation matrices
trained on FB15k-237, and compare models trained by the same number of epochs. The
results are shown in Figure 3.3.

We can see that Figure 3.3a and Figure 3.3c are mostly similar, with high frequency re-
lations scattered randomly around a low frequency cluster, suggesting that they come from
various directions of a high dimension space, with frequent relations probably being pulled
further by the training updates. On the other hand, in Figure 3.3b and Figure 3.3d we found

6Cosine similarity 0.338 is still high for matrices, due to the high dimensionality of their parameter space.
7https://github.com/lmcinnes/umap
8UMAP is a recently proposed manifold learning algorithm based on the fuzzy topological structure. We

also tried t-SNE (van der Maaten and Hinton, 2008) but found UMAP more insightful.
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(a) BASE (b) JOINT

(c) BASE+COMP (d) JOINT+COMP

Fig. 3.3 ByUMAP, relationmatrices are embedded into a 2D plane. Colors show frequencies
of relations; and lighter color means more frequent.

less frequent relations being clustered with frequent ones, and multiple traces of low dimen-
sion structures. It suggests that joint training with an autoencoder indeed drives relations
toward a low dimension manifold. In addition, Figure 3.3d shows different structures against
Figure 3.3b, which we conjecture could be related to compositional constraints discovered
by compositional training.
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Model MR MRR
JOINT+COMP 130±27 .0481±.0090
BASE+COMP 150±3 .0280±.0010
RANDOMM2 181±19 .0356±.0100

Table 3.3 Performance at discovering compositional constraints extracted from FB15k-237

Compositional constraints

In order to directly evaluate a model’s ability to find compositional constraints, we extracted
from FB15k-237 a list of (r1/r2, r3) pairs such that r1/r2 matches r3. Formally, the list is
constructed as below. For any relation r, we define a content set C(r) as the set of (h, t) pairs
such that ⟨h, r, t⟩ is a fact in the KB. Similarly, we define C(r1/r2) as the set of (h, t) pairs
such that ⟨h, r1/r2, t⟩ is a path. We regard (r1/r2, r3) as a compositional constraint if their
content sets are similar; that is, if |C(r1/r2)∩C(r3)| ≥ 50 and the Jaccard similarity between
C(r1/r2) and C(r3) is ≥ 0.4. Then, after filtering out degenerated cases such as r1 = r3 or
r2 = r–1

1 , we obtained a list of 154 compositional constraints, e.g.
(currency_of_country/country_of_film, currency_of_film_budget).

For each compositional constraint (r1/r2, r3) in the list, we take the matrices M1, M2 and
M3 corresponding to r1, r2 and r3 respectively, and rank M3 according to its cosine similarity
with M1M2, among all relation matrices. Then, we calculate MR and MRR for evaluation.
We compare the JOINT+COMP model to BASE+COMP, as well as a randomized baseline where
M2 is selected randomly from the relation matrices in JOINT+COMP instead (RANDOMM2).
The results are shown in Table 3.3. We have evaluated 5 different random initializations for
each model, trained by the same number of epochs, and we report the mean and standard de-
viation. We verify that JOINT+COMP performs better than BASE+COMP, indicating that joint
training with an autoencoder indeed helps discovering compositional constraints. Further-
more, the random baseline RANDOMM2 tests a hypothesis that joint training might be just
clustering M3 and M1 here, to the extent that M3 and M1 are so close that even a random
M2 can give the correct answer; but as it turns out, JOINT+COMP largely outperforms RAN-
DOMM2, excluding this possibility. Thus, joint training performs better not simply because
it clusters relation matrices; it learns compositions indeed.

3.6.3 Losses and Gains
In the KBC task, where are the losses and what are the gains of different settings? With
additional evaluations, we show (i) some crucial settings for the base model, and (ii) joint
training with an autoencoder benefits more from compositional training.
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Settings MR MRR H10
BASE 214 .338 52.5

no normalization 309 .326 49.9
no regularizer 400 .328 51.3
pure Gaussian 221 .336 52.1

unigram distribution 215 .324 50.6
Table 3.4 Ablation of the four settings of the base model as described in Sec.3.4.1

Crucial settings for the base model

It is noteworthy that our base model already achieves strong results. This is due to several
detailed but crucial settings as we discussed in Sec.3.4.1; Table 3.4 shows their gains on
the FB15k-237 validation data. The most dramatic improvement comes from the regularizer
that drives matrices to orthogonal.

Gains with compositional training

One can force a model to focus more on (longer) compositions of relations, by sampling
longer paths in compositional training. Since joint training with an autoencoder helps dis-
covering compositional constraints, we expect it to be more helpful when the sampled paths
are longer. In this work, path lengths are sampled from a Poisson distribution, we thus vary
the mean 𝜆 of the Poisson to control the strength of compositional training. The results on
FB15k-237 are shown in Table 3.5.

We can see that, as 𝜆 gets larger, MR improves much but MRR slightly drops. It suggests
that in FB15k-237, composition of relations might mainly help finding more appropriate can-
didates for amissing entity, rather than pinpointing a correct one. Yet, joint training improves
base models even more as the paths get longer, especially in MR. It further supports our
conjecture that joint training with an autoencoder may strongly interact with compositional
training.

3.7 Conclusion
We have investigated a dimension reduction technique which trains a KB embedding model
jointly with an autoencoder. We have developed new training techniques and achieved state-
of-the-art results on several KBC tasks with strong improvements in Mean Rank. Further-
more, we have shown that the autoencoder learns low dimension sparse codings that can be
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Model 𝜆 Valid Test
MR MRR H10 MR MRR H10

BASE 0 209 .341 52.9 215 .337 52.3
JOINT 0 +1 -.001 -.2 -3 -.001 0
BASE 0.5 204 .337 52.2 211 .332 51.7
JOINT 0.5 -3 +.002 +.1 +1 +.002 +.2
BASE 1.0 191 .334 52.0 203 .328 51.5
JOINT 1.0 -5 +.002 -.1 -6 +.003 +.1

Table 3.5 Evaluation of BASE and gains by JOINT, on FB15k-237 with different strengths of
compositional training. Bold numbers are improvements.

easily explained; the joint training technique drives high-dimensional data toward low dimen-
sion manifolds; and the reduction of dimensionality may interact strongly with composition,
help discovering compositional constraints and benefit from compositional training. We be-
lieve these findings provide insightful understandings of KB embedding models and might
be applied to other neural networks beyond the KBC task.
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Chapter 4

Universal Graph Embedding: An
Empirical Analysis

In this chapter, we consider an approach, called Universal Graph Embedding (UGE), that
embeds the whole graph (Universal Graph) into a vector space by integrating the relational
knowledge in the knowledge base and the relational knowledge extracted from the text. UGE
can effectively learn knowledge base embedding from a large amount of raw text, and has the
potential to speed up compositional reasoning in knowledge bases. However, Toutanova et
al. (2015) is the only previous work that has addressedUGE, and the developmental potential
of UGE has yet to be discussed. In this chapter, we address three main issues of UGE with
the aim of gaining insight into UGE: (1) learning strategies, (2) extension to relational paths,
and (3) integration with pre-trained language models.

4.1 Introduction
Knowledge graph completion (or knowledge base completion) is a task that aims to predict
unknown facts from known facts in a knowledge graph, and has been applied to the question
answering (Qiu et al., 2019; Yang et al., 2019) and knowledge acquisition systems in the
biomedical domain (Dai et al., 2019a,b). In typical knowledge bases such asWikidata (Vran-
dečiundefined and Krötzsch, 2014), Freebase (Bollacker et al., 2008), and UMLS (Lindberg
et al., 1993), real-world facts are stored in the form of triples of head entities, relations, and
tail entities. In this context, knowledge graph completion is represented as a problem of
predicting missing entities (tail prediction problem).

Most existing research models inference in a knowledge graph as an operation on a low-
dimensional vector space, where embeddings of entities and relations are learned from a
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set of triples (Wang et al., 2017). Since the tail prediction problem requires the selection
of tail candidates from the entire entity set, the time efficiency during inference is also an
important metric. The approach of embedding the entire knowledge graph in a vector space
is advantageous in terms of efficiency, as it does not require the inference of the original
knowledge graph during inference, and the candidates can be narrowed down by using only
operations in the vector space. However, previous studies have shown that the performance
on artificial benchmark datasets, where the locally dense part of the knowledge graph is
extracted, is high, while the performance on sparse situations, such as those found in real-
world knowledge graphs, is limited (Pujara et al., 2017).

Considering the background, there are ongoing researches to incorporate the complemen-
tary information during the learning of knowledge graph embeddings for the more realistic
situations. The one is to consider multiple sequences of relations (relation paths) to enable
compositional reasoning (Guu et al., 2015b; Takahashi et al., 2018). For example, to in-
fer ⟨Tensorflow, used_for, Machine Learning⟩ from ⟨Tensorflow, developer, Google Brain⟩
and ⟨Google Brain, field_of_work, Machine Learning⟩, the system learns to make the em-
bedding of the relational path developer/field_of_work closer to the embedding of used_for.
The other is integration with textual information Toutanova et al. (2015). For example, if
we can capture the fact that the relation developer is likely to appear as “A is developed by
B.” in the text, we can infer ⟨Chainer, used_for, Machine Learning⟩ by combining it with
the above triplet using the text “Chainer is developed by PFN.” as a clue, even if ⟨Chainer,
developer, PFN⟩ is not stored in the knowledge graph. Although these two directions have
been studied independently in previous research, they are complementary, and by combin-
ing the relational knowledge in the knowledge graph with the relational knowledge extracted
from the text, there is a possibility of further improving the inference.

In this study, we attempt to incorporate both the relation paths and textual information
in the learning of knowledge graph embeddings. Specifically, we construct a graph that
integrates the relational knowledge in the knowledge graph and the relational knowledge
extracted from the text (hereafter referred to as theUniversal Graph (UG); the exact definition
of UG is given later in Section 4.3) as shown in Figure 1, and consider an approach called
Universal Graph Embedding (UGE), which embeds UG into a vector space. To the best of
our knowledge, Toutanova et al. (2015) is the only previous work on UGE. Toutanova et al.
(2015) showed that the performance of knowledge graph completion can be improved by
simultaneously training the model of knowledge graph completion and the encoder of the
text on a UGE constructed from a large corpus of text. However, the potential of UGE, such
as integration with pre-trained language models and consideration of multi-hop paths, has
not yet been explored.
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apomorphine
may_treat

Parkinson
disease

has_mechanism
_of

dopamine_agonists

apomorphine
may_treat Parkinson

disease

α-synuclein
associated_with

Alzheimer’s
disease

may_treat?

KB
“… [Apomorphine] is used for improving [Parkinson disease]

“ [Alzheimer’s disease] is deeply associated with [α-Synuclein]

“… [Alpha-Synuclein] has been identified as a causative 
mutation in hereditary [Parkinson disease] or ...

Text

“has been identified as 
a causative mutation   
in hereditary”

“is used for improving” 

“is deeply associated with”

Fig. 4.1 Example of relational reasoning on Universal Graph.

In this chapter, we start with a simple model and provide quantitative evaluation results
from different angles, in order to gain insights into the UGE. We conducted an exhaustive
quantitative evaluation on three main topics: (1) learning the order of the relations in the
knowledge graph and the relations extracted from the text, (2) whether multi-hop paths are
sampled, and (3) whether the language model is pre-trained. The experimental results re-
confirm the usefulness of integrating textual information in knowledge graph completion,
but suggest that the noise in the textual information and relation paths must be addressed to
further improve the performance by integrating with pre-trained language models and con-
sidering multi-hop paths.

4.2 Knowledge Graph Completion
In this study, we consider a set of triples 𝒯 (e.g., ⟨Chainer, developer, PFN⟩) consisting
of entities h, r and relations r as a knowledge graph. A knowledge graph can be regarded
as a directed multigraph with entities as nodes and relations as edges. knowledge graph
completion is a task that completes the triples that do not appear in the training data when
the knowledge graph lacking some triples is given as training data.

Most of the prior work addressing this task trains a score function that measures the
facticity of the triples. For example, one of the most widely known models, TransE (Bordes
et al., 2013b), represents two entities h, t (hereafter referred to as the head and tail entities,
respectively) and the relation r by a d-dimensional vector h, t, r ∈ ℝd, respectively, and
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4.2 Knowledge Graph Completion

learns the embedding to maximize the following score function:

f(h, r, t; Θ) ∶= – ‖h + r – t‖ . (4.1)

4.2.1 Relation Paths in Knowledge Graph Embedding
More generally, learning for knowledge base embedding can consider the path r1/ … /rl

1

of the relation r1 … rl (Guu et al., 2015b; Takahashi et al., 2018). Starting from an entity
(node) h, let t be the entity that is reached after l transitions in the knowledge graph. The
score function of TransE can be extended as in

f(h, r1/ … /rl, t; Θ) ∶= – ‖h + r1 + ⋯ + rl – t‖ . (4.2)

It is known that the constraints between relations inherent in the knowledge graph can
be automatically obtained from the data by optimizing the score function for paths sampled
from the knowledge graph (Takahashi et al., 2018). For example, the relation used_for in the
knowledge graph is statistically likely to share a head entity and a tail entity with the relation
that is a composite of developer and field_of_work. In this case, the relation embedding
rused_for of used_for acts as a force that brings it closer to the vector rdeveloper + rfield_of_work,
which is a composite of developer and field_of_work (rdeveloper + rfield_of_work ≈ rused_for).
At the same time, this corresponds to applying a regularization on the spatial arrangement
of the entity embeddings (Guu et al., 2015b).

4.2.2 Joint Representation Learning of Text and Knowledge Graph
Methods for utilizing information from text during learning for knowledge base embedding
have been actively studied (Riedel et al., 2013; Toutanova et al., 2015; Wang et al., 2014b).
The common idea in these studies is to compensate for the missing information in a clean
but sparse knowledge base with a large but noisy set of text.

The most important issue in integrating textual information during training for knowl-
edge base embedding is to solve what kind of relationship does a mention pair appear in a
text. The textual relation is a textual representation that describes the relationship between
mentions. For example, given the sentence “Chainer is developed by PFN,” the relationship
between Chainer and PFN is considered to be specified by the textual relation “is developed
by”. Mention pairs appearing in the text do not necessarily represent a specific relation. This

1In this chapter, a relation path of length one consisting of a single relation is called a single-hop path, and
a relation path of length two or more is called a multi-hop path.
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is known as a noise problem in dinstantly supervised relation extraction. There has been a
lot of discussion on the specific representation of textual relations, but mainly in the field of
relation extraction, simply word sequences between the mentions or engaged paths between
the mentions have been widely used (Pawar et al., 2017).

To the best of our knowledge, Toutanova et al. (2015) is the only work that corresponds to
the UGE approach, although there are many previous studies that utilize textual information
when training knowledge graph embedding. The model of Toutanova et al. (2015) is based
on the addition of a textual triple to the training data of knowledge base embedding, which
is composed of a textual relation and a mention pair extracted from a text corpus. They also
found that there is a common substructure in textual relations such that they share mention
pairs2. They showed that by sharing the embedding of mentions with the embedding of
entities and learning the substructure of the textual relation through CNNs, the predictive
performance of knowledge graph completion can be improved.

In order to gain insight into UGE, this study starts with a simple modeling and examines
design choices not considered in the work of Toutanova et al. (2015). Therefore, comparison
with them as a model is outside the focus of this study.

4.3 Universal Graph
AUGconsists of a union set of knowledge graph triplets𝒯KG = {⟨h, rKG, t⟩|h, t ∈ ℰ, rKG ∈
ℛKG} and textual triples 𝒯text = {⟨h, rtext, t⟩|h, t ∈ ℰ, rtext ∈ ℛtext}, where rKG ∈
ℛKG is the relation on the knowledge graph (KG relation) and rtext ∈ ℛtext is the relation
extracted from the text (textual relation). The representation format of rtext is arbitrary, but
in this study, we assume that it is an anonymized word sequence containing several words
between and before a mention pair, in consideration of integration with language models.
For example, from the text “Chainer has been used at PFN since 2015 ...,” we obtain the
triplet ⟨Chainer, “[ENT] has been used at [ENT] since 2015”, PFN⟩. The path p to be
sampled from UG can contain both relations on the knowledge base and relations extracted
from the text:

p = r1/ … /rl, r1, … , rl ∈ ℛKG ∪ ℛtext� (4.3)

UGE implies embedding each element h, t, rKG, rtext of UG in a common vector space ℝd.
2They adopted the inter-mention engagement path as the textual relation, but the same argument can be

made for the inter-mention word sequence.
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4.4 Model
Our model is based on TransE (Bordes et al., 2013b), which is the most basic model of
knowledge base embedding. To take into account the learning of multi-hop paths, we adopt
Equation 4.2 as the score function. Since the paths we sample from the UG contain different
kinds of relations, we vary the way we compute the fixed-length vector r ∈ ℝd depending on
whether the input r is knowledge-base or text-derived according to the following equation:

r =
⎧⎪
⎨
⎪⎩

R(r), r ∈ ℛKG

g(Encoder (r)), r ∈ ℛtext,
(4.4)

where R is a lookup function for embedding relations, Encoder is an arbitrary encoder
that takes a word sequence as input and returns a fixed-length h-dimensional vector, and
g ∈ ℝh×d is a function that projects the vector output by the encoder into the vector space of
the knowledge base.

The property that must be satisfied by Encoder in UGE is that textual relations that rep-
resent semantically similar relations become similar vectors. The simplest way for Encoder
to satisfy this property is to pre-train a language model with a corpus of textual relations
and then construct Encoder from the language model. In this study, we used the k-layer Bi-
LSTM as Encoder, but it is also possible to use a high-performance sentence encoder based
on a pre-trained language model such as Sentence-BERT (Reimers and Gurevych, 2019),
which is a future work.

Under the properties of Encoder described above, the property that g must satisfy is
that the vector of the encoding result of the textual relation is projected near the vector of
the KG relation that represents a similar meaning. If the property of Encoder is satisfied
satisfactorily, the property of g is also expected to be satisfied satisfactorily by the usual
learning of knowledge base completion, but a deeper analysis of this point is left for future
work.

4.4.1 Training
The training data is generated by a random walk on KG or UG. In other words, starting from
the head entity h sampled from ℰ , the training data {(hi, pi, ti)}N

i=1 is generated by repeating
N times to reach the tail entity t via the appropriate path p = r1/ … /r|p|. In this study, we
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minimize the following loss function:

ℒ(Θ) =
N

∑
i=1

∑
t∗∈𝒩 (hi,pi)

max(0, [𝛾 + f– – f+]) (4.5)

f– = f(hi, pi, t∗; Θ), f+ = f(hi, pi, ti; Θ), (4.6)

where t∗ is a negative example for (hi, pi, ti) and 𝛾 is the margin. Various loss functions have
been proposed in the research on knowledge-based embedding (Wang et al., 2017), and a
comparative study with other loss functions is a future work. The path sampling method
follows Takahashi et al. (2018).

4.5 Experiments

4.5.1 Settings
In order to understand the behavior of the UGE model, we created and experimented with a
controlled evaluation dataset. To create the dataset, we constructed a seed UG from a real
knowledge base and a text corpus, and took a subset of the graph as the evaluation dataset.

Seed UG

The construction of a Universal Graph requires a knowledge base and an entity-linked text
corpus. In this study, we constructed the UG based on UMLS3, a knowledge base in the
biomedical domain, and MEDLINE4, a literature database in the same domain.

As described in Section 4.3, the UG consists of a knowledge graph 𝒯KG and textual
triples 𝒯text. First, we collect a subset of UMLS as the knowledge graph 𝒯KG. In order to
make sense of the multi-hop paths sampled from the knowledge base, we filtered the UMLS
entities using the information of the types associated with the relationships. Specifically, the
relation type is RO (RO is defined as “has Relationship Other than synonymous, narrower,
or broader.” It includes may_treat, disease_has_associated_gene, and etc.) The entity types
include Protein, Gene, Disease or Syndrome, Enzyme, Chemical, Sign or Symptom, and
Pharmacologic Substance. Next, we collected textual triples 𝒯text from MEDLINE. Scis-
paCy Neumann et al. (2019) was used to identify UMLS entities in the MEDLINE text. For
each mention pair in a sentence that refers to an entity in 𝒯KG, the The word sequence be-

3https://www.nlm.nih.gov/research/umls/
4https://www.nlm.nih.gov/databases/download/pubmed_medline.html
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4.5 Experiments

Table 4.1 Statistics of evaluation datasets.

|ℰ| |ℛ| #Train #Valid #Test

UMLS.SYN 𝒯KG 2.137 31 2,280 281 253
𝒯text 2,137 17,716 18,498 0 0

UMLS.NAT 𝒯KG 988 25 2,382 294 264
𝒯text 715 20,663 21,595 0 0

tween them and at most two words before and after the mensuration were used as the textual
relation.

Datasets

We constructed two types of evaluation datasets based on the seed UGs described in the
previous section.

• UMLS.SYN: We sample triples from the seed UGs in such a way that the condition that
for a given KG relation, there exists a textual relation that shares the entity pair is
always satisfied.

• UMLS.NAT: Sample randomly to more closely resemble the actual knowledge graph
while loosely satisfying the condition UMLS.SYN.

Note that for each entity pair, there should be at most one KG relation connecting them.

Evaluation Protocol

The knowledge base 𝒯KG was divided into training, validation, and evaluation sets at a ratio
of 8:1:1 for evaluation. The data with textual triples 𝒯text added to the training set was
used to train the model. The use of textual triples only for training is a similar setup to that
of Toutanova et al. (2015). This means that by adding textual information to the existing
knowledge base, we are evaluating how well we can supplement the missing triples in the
knowledge base. In addition, we made sure that no unknown vocabulary in the training set
appears in the validation/evaluation set at the time of segmentation. The statistics of the
evaluation dataset are shown in Table 4.1.

The evaluation protocol follows the filtered setting of Bordes et al. (2013b); we compute
a score f(h, r, e) for all e except for entities e ∈ ℰ such that the triples are included in the
training, validation and evaluation set. The computed scores are converted to ranks along
with the scores f(h, r, t) for the gold triplets, and the evaluation index is obtained based on the
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Table 4.2 Predictive performance of knowledge graph completion on the UMLS.SYN dataset.

Valid Test
Model LM-pret MR MRR H10 MR MRR H10
Ks 287.3 0.167 0.311 305.1 0.155 0.300
Km 256.3 0.178 0.342 265.0 0.160 0.330
Us 51.6 0.383 0.699 54.3 0.346 0.617
Us ✓ 43.0 0.377 0.698 45.9 0.342 0.617
Um 65.7 0.368 0.683 61.2 0.338 0.638
Um ✓ 70.5 0.357 0.694 66.3 0.305 0.642

predicted rank for the gold entities t. The mean of the reciprocal of the predicted rank (Mean
Reciprocal Rank; MRR) and The proportion of gold entities ranked in the top k (Hits@k) is
reported.

We compare following four models:

• KG-single (Ks): samples only single-hop paths (paths of length one) from KG 𝒯KG.
This setting is equivalent to Bordes et al. (2013b).

• KG-multi (Km): samples single-hop and multi-hop paths (paths of length at least two)
from KG. This setting is equivalent to Guu et al. (2015b).

• UG-single (Us): samples only single-hop paths (paths of length one) from UG 𝒯KG ∪
𝒯text. This setting is equivalent to Toutanova et al. (2015).

• UG-multi (Um): samples single-hop and multi-hop paths (paths of length at least two)
from UG.

Pre-training of Language Models

As mentioned in Section 4.4, we believe that pre-training the language model is a promising
approach for better embedding of UGs. In this experiment, we pre-trained the Bi-LSTM lan-
guagemodel from about 200,000 textual relations, including the textual relations of UMLS.SYN
and UMLS.NAT. For the Us and Um models, we trained and evaluated them separately by (1)
randomly initializing the parameters in the Encoder part and (2) replacing them with the
pre-trained Bi-LSTM parameters.
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Table 4.3 Predictive performance of knowledge graph completion on the UMLS.NAT dataset.

Valid Test
Model LM-pret MR MRR H10 MR MRR H10
Ks 115.9 0.123 0.255 106.8 0.115 0.267
Km 76.7 0.141 0.274 70.6 0.125 0.269
Us 73.1 0.138 0.282 73.5 0.118 0.261
Us ✓ 75.5 0.155 0.330 77.8 0.122 0.273
Um 102.6 0.089 0.162 96.1 0.061 0.148
Um ✓ 91.8 0.089 0.184 84.1 0.075 0.184

Table 4.4 The types of paths that each model can sample.

Ks Km Us Um
Single-hop path consisting of KG relations ✓ ✓ ✓ ✓
Multi-hop path consisting of KG relations ✓ ✓
Single-hop path consisting of textual relations ✓ ✓
Multi-hop path with textual relations ✓

4.5.2 Results
Table 4.2 shows the performance of knowledge base completion for each model on the
UMLS.SYN dataset. First, the UG-based models (Us, Um) show a significant gain from the
KG-based models (Ks, Km). Since each KG relation in UMLS.SYN always has a textual rela-
tion that shares the head and tail entities, the textual relation is likely to be a powerful cue
in predicting the unknown KG triple. Therefore, the high performance of UMLS.SYN means
that it is able to learn so that the textual relation and the KG relation it implies are close in
vector space. On the other hand, we did not observe a consistent change in performance with
compositional training or pre-training of the language model.

Table 4.3 shows the performance of knowledge base completion for each model on the
UMLS.NAT dataset. Compared to the results for UMLS.SYN, the performance improvement by
UG is very small. In addition, Um performs worse than the most basic model Km in terms
of MRR and H10. This may reflect the inherent difficulty of learning relational paths in UG,
which is discussed in detail in 4.5.3.

Learning Strategy

In compositional training of knowledge graph embedding, single-hop paths and multi-hop
paths capture different aspects of the knowledge graph, so learning strategies such as which
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Table 4.5 Performance variation of knowledge graph completion by learning strategies on
the UMLS.NAT dataset.

Valid Test
Model LM-pret MR MRR H10 MR MRR H10
Noisy-to-clean
Um 102.6 0.089 0.162 96.1 0.061 0.148
Um-Us 73.8 0.150 0.313 82.4 0.104 0.258
Um-Us-Km 55.2 0.164 0.389 58.8 0.127 0.328
Um-Us-Km-Ks 55.8 0.166 0.383 59.8 0.129 0.337
Um ✓ 91.8 0.089 0.184 84.1 0.075 0.184
Um-Us ✓ 71.9 0.150 0.313 65.0 0.119 0.267
Um-Us-Km ✓ 57.4 0.168 0.379 53.8 0.131 0.331
Um-Us-Km-Ks ✓ 58.7 0.169 0.405 55.1 0.139 0.345
Us ✓ 75.5 0.155 0.330 77.8 0.122 0.273
Us-Km ✓ 61.2 0.173 0.371 62.7 0.137 0.318
Us-Km-Ks ✓ 63.1 0.178 0.374 63.2 0.139 0.331

Clean-to-noisy
Ks 115.9 0.123 0.255 106.8 0.115 0.267
Ks-Km 76.6 0.140 0.274 70.6 0.126 0.267
Ks-Km-Us 77.3 0.145 0.301 75.3 0.115 0.265
Ks-Km-Us-Um 76.9 0.144 0.298 74.9 0.115 0.263

path to sample more during the training phase is one important design choice that has not
been explored in detail in existing research. For example, Guu et al. (2015b) reported that
they pre-trained their model on data consisting of single-hop paths and then trained on multi-
hop paths, but they did not report the results of ablation experiments. Since relational paths
on a UG contain different types of relations, it is increasingly important to consider effective
learning strategies.

In this study, we consider a strategy based on the noisy nature of relational paths on KG
and UG. A noisy relational path means that the head entity and the tail entity connected by
the relational path do not have a meaningful relationship. A noisy relational path means
that the head and tail entities connected by the relational path do not have a meaningful
relationship. For example, the multi-hop path of the KG relation is likely to be noisy due
to the small-world nature of the knowledge graph. For example, the multi-hop path of the
KG relation is likely to be noisy due to the small-world nature of the knowledge graph, and
the single-hop path of the textual relation is conceptually the same as the noise in relation
extraction by far-field supervised learning. In this study, we order the relation paths from
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Table 4.6 MRR for each shortest path length.

Shortest Path Length
Model LM-pret 1 2 3 or more
Ks 0.175 0.184 0.041
Km 0.205 0.220 0.038
Us 0.226 0.149 0.041
Us ✓ 0.256 0.179 0.037
Um 0.130 0.096 0.043
Um ✓ 0.123 0.102 0.048
Um-Us-Km-Ks ✓ 0.292 0.162 0.041
Us-Km-Ks ✓ 0.317 0.157 0.040

noisy to noisy. Multi-hop paths containing the textual relation, single-hop paths consisting
of the textual relation a single-hop path consisting of textual relations, a multi-hop path
consisting of KG relation, a multi-hop path consisting of KG relation, and single-hop paths
consisting of and The Noisy-to-clean strategy, which proceeds from noisy to clean models,
and We compare the Noisy-to-clean strategy, which moves from a noisy model to a clean
model, and the Clean-to-noisy strategy, which does the opposite. Table 4.4 summarizes the
types of paths that can be sampled by each model. The models are considered to be more
susceptible to noisy paths in the order Ks, Km, Us, and Um.

Each time a model is trained, hyperparameters are searched for, and the parameters of
the model with the largest MRR in the validation set are inherited and re-trained.

The experimental results for UMLS.NAT are shown in Table 4.5. The “Um-Us” indicates
that Us was learned after Um. From the results, we can see that the Noisy-to-clean strategy
consistently improves the performance. We can also see that the performance of the final
state for each learning strategy outperforms that of the stand-alone learning strategy as shown
in Table 4.3. On the other hand, no performance improvement was observed for theClean-to-
noisy strategy due to prior learning. In other words, Ks-Km and Ks-Km-Us did not exceed
the performance of the final-state model alone, and Ks-Km-Us-Um actually recorded the
highest MRR in the first epoch and then continued to deteriorate its MRR. These results
suggest that the paradigm of fine-tuning to each task after prior learning in recent research
on language models may be effectively transferred to learning UG embeddings.
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4.5.3 Analysis
Evaluation by Shortest Path Length

In order to identify the source of the gain in the UG-based model, we In order to identify the
source of the gain of the UG-basedmodel, we partitioned the validation data of the UMLS.NAT
dataset into subsets based on the properties of the graph. The MRR was calculated for each
partition. As a partitioningmethod, we used the shortest path length in the entity pair training
data.

Table 4.6 shows the evaluation results. The UG-based model, except for Um, shows
significantly higher performance in the subset with the shortest path length of 1 than the
KG-based model. In the case where the shortest path length is 1, the construction method
described in Section 4.5.1 indicates that the path will always consist of a single-hop path with
a textual relation. Thus, the high performance of the subset with the shortest path length of 1
is a consequence of the Therefore, the high performance of the subset with the shortest path
length of 1 means that it is able to learn the textual relation and its implied KG relation to be
close in vector space.

In the subset where the shortest path length is 3 or more, the performance of all models is
low and there is no difference between models. The difficulty of prediction in this subset can
be explained as follows. In other words, in order for a knowledge-based embedding model to
make correct predictions, it must The entity pairs in the vector space must be geometrically
correctly aligned. When the shortest path of an entity pair is long, correct placement of
the entity pair requires If the shortest path of an entity pair is long, in order to place them
correctly, it must be learned so that the composition of the relational paths it traverses along
the way represents the relationship between the entity pairs. A possible solution is to bias
the learning to sample longer paths. However, this would mean that the learning would be
more sensitive to noise in the relational paths. This suggests that we need a mechanism to
reduce the noise of the paths involved in order to improve the performance in the future.

Weighting of Learning Rates

Since the encoding method is different between the KG relation and the textual relation, the
amount of movement in the vector space for each parameter update received from the loss
function is also different. Since the learning cycle of Us and Um includes both the update
of ΘKG, a parameter related to the vectors in the KG relation, and the update of Θtext, a
parameter related to the vectors in the textual relation, preliminary experiments have shown
that the difference in the amount of movement leads to instability in learning. Therefore, in
this study, we set separate initial learning rates for ΘKG and Θtext.
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Table 4.7 Performance impact of weighting the learning rate on the UMLS.SYN dataset.

w MRR
101 0.184 ± 0.161
100 0.256 ± 0.104
10–1 0.319 ± 0.010
10–2 0.329 ± 0.039
10–3 0.291 ± 0.023

Table 4.8 Examples of nearest neighbor for KG relations.

Relation Pseudo target Dist
may_treat - 0.000
“, cefotaxime or [ENT] should be used for the empiric
treatment suspected severe [ENT] childhood .”

- 0.669

“were treated with [ENT] a parenteral cephalosporin
antibiotic for 45 episodes of [ENT] by a variety”

may_be_treated_by–1 0.677

“, statins , [ENT] , and LDL-apheresis , the patient de-
veloped symptomatic [ENT] the age of”

may_treat 0.689

“, were given [ENT] ( AMK ) for suspected [ENT]” may_prevent 0.693
“potassium clavulanate and [ENT] were compared in
a clinical trial 78 hospitalized patients with [ENT]”

may_treat 0.693

Ablation experiments were conducted to confirm the stabilizing effect of setting differ-
ent initial learning rates. When the initial learning rate for ΘKG is set as 𝛼KG, the initial
learning rate for Θtext is 𝛼text for 𝛼text using the weight w as 𝛼text ∶= w𝛼KG. 𝛼KG =
{10–1, 10–2, 10–3, 10–4}, w = {101, 100, 10–1, 10–2, 10–3}, grid search in the range The mean
and standard deviation of MRR were calculated for each w. The data is UMLS.SYN and the
model is Us.

The results are shown in Table 4.7. Compared to the case where the initial learning rate
is not weighted (w = 100) Reducing the initial learning rate for Θtext (w = 10–1, 10–2) It can
be seen that reducing the initial learning rate for Θtext (w = 10–1, 10–2) stabilizes learning
and improves performance. In practice, since w is a value that depends on the architecture
of the model In practice, since w is a value that depends on the architecture of the model,
there is no need to perform the hyperparameter search again with different data.
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4.6 Related Works

4.6.1 Using Multi-hop Paths in Knowledge Graph Completion
In the field of knowledge base completion, various attempts to adopt multi-hop paths on the
knowledge base for learning have been reported. For example, Yang et al. (2014) and Guu
et al. (2015b) have proposed compositional embedding methods, and Sun et al. (2019) have
used complex spaces to achieve compositionality. An approach that estimates the reliability
of paths and collects only useful paths (Lin et al., 2015b), and an approach that adopts rein-
forcement learning for multi-hop path exploration (Das et al., 2018; Lin et al., 2018; Xiong
et al., 2017). However, all of these studies only focus on the embedding of KGs alone, and
do not cover the embedding of UGs integrated with textual information. As reported in this
chapter, our UG embedding aims to embed KG edges and text edges, which are very differ-
ent in nature, in the same space, and we need to solve new problems that have not been seen
in KG embedding.

4.6.2 Using Textual Information in Knowledge Graph Completion
The problem of extracting relational knowledge from a set of texts and extending the KG
has been actively studied as tasks such as relation extraction and Knowledge Base Popula-
tion (An et al., 2018,?; Cao et al., 2017; Das et al., 2017b; Fu et al., 2019; Han et al., 2016;
Mousselly-Sergieh et al., 2018; Neelakantan et al., 2015b; Toutanova et al., 2016b; Wang
et al., 2019; Xie et al., 2016). However, all of these studies target the problem of predict-
ing the relationship between two given entities (relational prediction problem), and take the
approach of collecting relevant textual and KG information about the input entity pairs and
using them as features for prediction. In other words, our approach is essentially different
fromUG embedding in that we need to refer to UG or equivalent resources to collect relevant
information during prediction. This difference is important when considering large-scale KG
extensions. The approach that attributes the extension of KG to a relational prediction prob-
lem requires solving a relational prediction problem of the order of the square of the number
of entities in the KG, which limits the scalability. On the other hand, an approach that em-
beds the entire UG in the vector space has the potential to solve this problem, since it does
not need to refer to the UG during prediction. As mentioned in Section 4.1, to the best of our
knowledge, there is no other report on UG embedding except for the work of Toutanova et al.
(2015). In contrast, in this chapter, as the first study to investigate the properties of UGE, we
empirically analyze the behavior of the basic model of UGE from three new perspectives:
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(1) learning strategies, (2) extension to relational paths, and (3) integration with pre-trained
language models.

4.7 Conclusion and Future Work
In this chapter, we empirically analyze the behavior of KGE models in terms of (1) learning
strategies, (2) extension to relational paths, and (3) integration with pre-trained language
models in order to gain insight into UGE. We empirically analyzed the behavior of KGE
models from the following three perspectives. (1) In the learning strategy, the Noisy-to-
clean strategy provides additional gain, (2) the extension to relational paths suggests that
noise in the relational paths needs to be reduced, and (3) the integration with pre-trained
language models does not have a significant effect on a small dataset and model like this
one. (3) Integration with pre-trained language models did not have a significant effect on
small datasets and models such as this one. In the future, we plan to expand the evaluation
dataset and models, train UGE and language models simultaneously, and deal with the noise
in the relation paths.
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Chapter 5

Conclusions

We discussed machine learning approaches in two problem settings for multi-hop reasoning
over relational knowledge: predicate logic and propositional logic. Even in the simpler prob-
lem setting of relational reasoning, knowledge graph completion, where the tail prediction
of the given triple, there are still many issues that need to be addressed. The integration of
structured and unstructured data is useful not only in knowledge graph completion but also
in any problem setting. In order to make the experimental setup closer to reality, the whole
community needs to make efforts.

51



References
(1999). Kiken-yosoku-master. Chubu Nippon Driver School.

Althoff, M., Stursberg, O., and Buss, M. (2009). Model-based probabilistic collision detec-
tion in autonomous driving. IEEE Trans. Intelligent Transportation Systems, 10(2):299–
310.

Ambardekar, A., Nicolescu, M., Bebis, G., and Nicolescu, M. N. (2014). Vehicle classifica-
tion framework: a comparative study. EURASIP J. Image and Video Processing, 2014:29.

An, B., Chen, B., Han, X., and Sun, L. (2018). Accurate text-enhanced knowledge graph
representation learning. In Proceedings of the 2018 Conference of the North American
Chapter of the Association for Computational Linguistics: Human Language Technolo-
gies, Volume 1 (Long Papers), pages 745–755.

Armand, A., Filliat, D., and Guzman, J. I. (2014). Ontology-based context awareness for
driving assistance systems. In 2014 IEEE Intelligent Vehicles Symposium Proceedings,
Dearborn, MI, USA, June 8-11, 2014, pages 227–233.

Auer, S., Bizer, C., Kobilarov, G., Lehmann, J., Cyganiak, R., and Ives, Z. G. (2007). Dbpe-
dia: A nucleus for a web of open data. In The Semantic Web, 6th International Semantic
Web Conference, 2nd Asian Semantic Web Conference, ISWC 2007 + ASWC 2007, Busan,
Korea, November 11-15, 2007., pages 722–735.

Bengler, K., Dietmayer, K., Färber, B., Maurer, M., Stiller, C., andWinner, H. (2014). Three
decades of driver assistance systems: Review and future perspectives. IEEE Intell. Trans-
port. Syst. Mag., 6(4):6–22.

Berant, J., Chou, A., Frostig, R., and Liang, P. (2013). Semantic parsing on Freebase from
question-answer pairs. In Proceedings of the 2013 Conference on Empirical Methods in
Natural Language Processing, pages 1533–1544, Seattle, Washington, USA. Association
for Computational Linguistics.

Bollacker, K. D., Evans, C., Paritosh, P., Sturge, T., and Taylor, J. (2008). Freebase: a
collaboratively created graph database for structuring human knowledge. In Proceedings
of the ACM SIGMOD International Conference on Management of Data, SIGMOD 2008,
Vancouver, BC, Canada, June 10-12, 2008, pages 1247–1250.

Bordes, A., Usunier, N., García-Durán, A., Weston, J., and Yakhnenko, O. (2013a). Trans-
lating embeddings for modeling multi-relational data. In Advances in Neural Information

52



References

Processing Systems 26: 27th Annual Conference on Neural Information Processing Sys-
tems 2013. Proceedings of a meeting held December 5-8, 2013, Lake Tahoe, Nevada,
United States., pages 2787–2795.

Bordes, A., Usunier, N., Garcia-Duran, A., Weston, J., and Yakhnenko, O. (2013b). Trans-
lating embeddings for modeling multi-relational data. In Burges, C. J. C., Bottou, L.,
Welling, M., Ghahramani, Z., and Weinberger, K. Q., editors, Advances in Neural Infor-
mation Processing Systems 26, pages 2787–2795. Curran Associates, Inc.

Bottou, L. (2012). Stochastic gradient descent tricks. In Neural Networks: Tricks of the
Trade, pages 421–436. Springer.

Broadhurst, A., Baker, S., and Kanade, T. (2005). Monte carlo road safety reasoning. In
Intelligent Vehicles Symposium, 2005. Proceedings. IEEE, pages 319–324.

Cao, Y., Huang, L., Ji, H., Chen, X., and Li, J. (2017). Bridge text and knowledge by learning
multi-prototype entity mention embedding. In Proceedings of the 55th Annual Meeting
of the Association for Computational Linguistics (Volume 1: Long Papers), pages 1623–
1633.

Dai, Q., Inoue, N., Reisert, P., Ryo, T., and Inui, K. (2019a). Incorporating chains of rea-
soning over knowledge graph for distantly supervised biomedical knowledge acquisition.
In Proceedings of the 33nd Pacific Asia Conference on Language, Information and Com-
putation (PACLIC33), pages 19–28, Hakodate, Japan. Waseda Institute for the Study of
Language and Information.

Dai, Q., Inoue, N., Reisert, P., Takahashi, R., and Inui, K. (2019b). Distantly supervised
biomedical knowledge acquisition via knowledge graph based attention. In Proceedings
of the Workshop on Extracting Structured Knowledge from Scientific Publications, pages
1–10, Minneapolis, Minnesota. Association for Computational Linguistics.

Das, R., Dhuliawala, S., Zaheer, M., Vilnis, L., Durugkar, I., Krishnamurthy, A., Smola,
A., and McCallum, A. (2018). Go for a walk and arrive at the answer: Reasoning over
paths in knowledge bases using reinforcement learning. In International Conference on
Learning Representations.

Das, R., Neelakantan, A., Belanger, D., andMcCallum, A. (2017a). Chains of reasoning over
entities, relations, and text using recurrent neural networks. In Proceedings of the 15th
Conference of the European Chapter of the Association for Computational Linguistics:
Volume 1, Long Papers, pages 132–141, Valencia, Spain. Association for Computational
Linguistics.

Das, R., Neelakantan, A., Belanger, D., andMcCallum, A. (2017b). Chains of reasoning over
entities, relations, and text using recurrent neural networks. In Proceedings of the 15th
Conference of the European Chapter of the Association for Computational Linguistics:
Volume 1, Long Papers, pages 132–141, Valencia, Spain. Association for Computational
Linguistics.

Dettmers, T., Pasquale, M., Pontus, S., and Riedel, S. (2018). Convolutional 2d knowledge
graph embeddings. In Proceedings of the 32th AAAI Conference on Artificial Intelligence.

53



References

Dollár, P., Wojek, C., Schiele, B., and Perona, P. (2009). Pedestrian detection: A benchmark.
In 2009 IEEE Computer Society Conference on Computer Vision and Pattern Recognition
(CVPR 2009), 20-25 June 2009, Miami, Florida, USA, pages 304–311.

Dollár, P., Wojek, C., Schiele, B., and Perona, P. (2012). Pedestrian detection: An evaluation
of the state of the art. IEEE Trans. Pattern Anal. Mach. Intell., 34(4):743–761.

Duchi, J. C., Hazan, E., and Singer, Y. (2011). Adaptive subgradient methods for online
learning and stochastic optimization. Journal of Machine Learning Research, 12:2121–
2159.

Enzweiler, M. and Gavrila, D. M. (2009). Monocular pedestrian detection: Survey and
experiments. IEEE Trans. Pattern Anal. Mach. Intell., 31(12):2179–2195.

Erhan, D., Bengio, Y., Courville, A. C., Manzagol, P., Vincent, P., and Bengio, S. (2010).
Why does unsupervised pre-training help deep learning? Journal of Machine Learning
Research, 11:625–660.

Ess, A., Leibe, B., Schindler, K., and Gool, L. J. V. (2008). Amobile vision system for robust
multi-person tracking. In 2008 IEEE Computer Society Conference on Computer Vision
and Pattern Recognition (CVPR 2008), 24-26 June 2008, Anchorage, Alaska, USA.

Fu, C., Chen, T., Qu, M., Jin, W., and Ren, X. (2019). Collaborative policy learning for open
knowledge graph reasoning. arXiv preprint arXiv:1909.00230.

Geiger, A., Lenz, P., and Urtasun, R. (2012). Are we ready for autonomous driving? the
KITTI vision benchmark suite. In 2012 IEEEConference on Computer Vision and Pattern
Recognition, Providence, RI, USA, June 16-21, 2012, pages 3354–3361.

Gutmann, M. and Hyvärinen, A. (2012). Noise-contrastive estimation of unnormalized sta-
tistical models, with applications to natural image statistics. Journal of Machine Learning
Research, 13:307–361.

Guu, K., Miller, J., and Liang, P. (2015a). Traversing knowledge graphs in vector space. In
Proceedings of the 2015 Conference on Empirical Methods in Natural Language Process-
ing, pages 318–327, Lisbon, Portugal. Association for Computational Linguistics.

Guu, K., Miller, J., and Liang, P. (2015b). Traversing knowledge graphs in vector space. In
Proceedings of the 2015 Conference on Empirical Methods in Natural Language Process-
ing, pages 318–327, Lisbon, Portugal. Association for Computational Linguistics.

Han, X., Liu, Z., and Sun, M. (2016). Joint representation learning of text and knowledge
for knowledge graph completion. arXiv preprint arXiv:1611.04125.

Hayashi, K. and Shimbo, M. (2017). On the equivalence of holographic and complex em-
beddings for link prediction. In Proceedings of the 55th Annual Meeting of the Associa-
tion for Computational Linguistics (Volume 2: Short Papers), pages 554–559, Vancouver,
Canada. Association for Computational Linguistics.

54



References

Hixon, B., Clark, P., and Hajishirzi, H. (2015). Learning knowledge graphs for question
answering through conversational dialog. In Proceedings of the 2015 Conference of the
North American Chapter of the Association for Computational Linguistics: Human Lan-
guage Technologies, pages 851–861, Denver, Colorado. Association for Computational
Linguistics.

Hobbs, J. R., Stickel, M. E., Appelt, D. E., and Martin, P. A. (1993). Interpretation as
abduction. Artif. Intell., 63(1-2):69–142.

Inoue, N., Kuriya, Y., Kobayashi, S., and Inui, K. (2015). Recognizing Potential Traffic
Risks through Logic-based Deep Scene Understanding. In Proceedings of the 22nd ITS
World Congress.

Joachims, T. (2002). Optimizing search engines using clickthrough data. In Proceedings of
the Eighth ACM SIGKDD International Conference on Knowledge Discovery and Data
Mining, July 23-26, 2002, Edmonton, Alberta, Canada, pages 133–142.

Kadlec, R., Bajgar, O., and Kleindienst, J. (2017). Knowledge base completion: Baselines
strike back. In Proceedings of the 2nd Workshop on Representation Learning for NLP,
pages 69–74, Vancouver, Canada. Association for Computational Linguistics.

Lefèvre, S., Vasquez, D., and Laugier, C. (2014). A survey on motion prediction and risk
assessment for intelligent vehicles. Robomech Journal, 1(1):1.

Lin, X. V., Socher, R., and Xiong, C. (2018). Multi-hop knowledge graph reasoning with
reward shaping. arXiv preprint arXiv:1808.10568.

Lin, Y., Liu, Z., Luan, H., Sun, M., Rao, S., and Liu, S. (2015a). Modeling relation paths for
representation learning of knowledge bases. In Proceedings of the 2015 Conference on
Empirical Methods in Natural Language Processing, pages 705–714, Lisbon, Portugal.
Association for Computational Linguistics.

Lin, Y., Liu, Z., Luan, H., Sun, M., Rao, S., and Liu, S. (2015b). Modeling relation paths
for representation learning of knowledge bases. In Proceedings of the 2015 Conference
on Empirical Methods in Natural Language Processing, pages 705–714.

Lin, Y., Liu, Z., Sun, M., Liu, Y., and Zhu, X. (2015c). Learning entity and relation em-
beddings for knowledge graph completion. In Proceedings of the Twenty-Ninth AAAI
Conference on Artificial Intelligence, January 25-30, 2015, Austin, Texas, USA., pages
2181–2187.

Lindberg, D. A. B., Humphreys, B. L., and McCray, A. T. (1993). The unified medical
language system. Methods of information in medicine, 32 4:281–91.

McInnes, L. and Healy, J. (2018). UMAP: UniformManifold Approximation and Projection
for Dimension Reduction. ArXiv e-prints.

Mikolov, T., Yih, W.-t., and Zweig, G. (2013). Linguistic regularities in continuous space
word representations. In Proceedings of the 2013 Conference of the North American
Chapter of the Association for Computational Linguistics: Human Language Technolo-
gies, pages 746–751, Atlanta, Georgia. Association for Computational Linguistics.

55



References

Miller, G. A. (1995). Wordnet: A lexical database for english. Commun. ACM, 38(11):39–
41.

Mohammad, M. A., Kaloskampis, I., Hicks, Y., and Setchi, R. (2015). Ontology-based
framework for risk assessment in road scenes using videos. In 19th International Con-
ference in Knowledge Based and Intelligent Information and Engineering Systems, KES
2015, Singapore, 7-9 September 2015, pages 1532–1541.

Mousselly-Sergieh, H., Botschen, T., Gurevych, I., and Roth, S. (2018). A multimodal
translation-based approach for knowledge graph representation learning. In Proceedings
of the Seventh Joint Conference on Lexical and Computational Semantics, pages 225–234.

Nair, V. and Hinton, G. E. (2010). Rectified linear units improve restricted boltzmann ma-
chines. In Proceedings of the 27th International Conference onMachine Learning (ICML-
10), June 21-24, 2010, Haifa, Israel, pages 807–814.

Neelakantan, A., Roth, B., and McCallum, A. (2015a). Compositional vector space mod-
els for knowledge base completion. In Proceedings of the 53rd Annual Meeting of the
Association for Computational Linguistics and the 7th International Joint Conference on
Natural Language Processing (Volume 1: Long Papers), pages 156–166, Beijing, China.
Association for Computational Linguistics.

Neelakantan, A., Roth, B., and McCallum, A. (2015b). Compositional vector space mod-
els for knowledge base completion. In Proceedings of the 53rd Annual Meeting of the
Association for Computational Linguistics and the 7th International Joint Conference on
Natural Language Processing (Volume 1: Long Papers), pages 156–166.

Neumann, M., King, D., Beltagy, I., and Ammar, W. (2019). ScispaCy: Fast and Robust
Models for Biomedical Natural Language Processing. In Proceedings of the 18th BioNLP
Workshop and Shared Task, pages 319–327, Florence, Italy. Association for Computa-
tional Linguistics.

Nguyen, D. Q., Sirts, K., Qu, L., and Johnson, M. (2016). Stranse: a novel embedding
model of entities and relationships in knowledge bases. In Proceedings of the 2016 Con-
ference of the North American Chapter of the Association for Computational Linguistics:
Human Language Technologies, pages 460–466, San Diego, California. Association for
Computational Linguistics.

Nickel, M., Murphy, K., Tresp, V., and Gabrilovich, E. (2016a). A review of relational
machine learning for knowledge graphs. Proceedings of the IEEE, 104(1):11–33.

Nickel, M., Rosasco, L., and Poggio, T. A. (2016b). Holographic embeddings of knowl-
edge graphs. In Proceedings of the Thirtieth AAAI Conference on Artificial Intelligence,
February 12-17, 2016, Phoenix, Arizona, USA., pages 1955–1961.

Nickel, M., Tresp, V., and Kriegel, H.-P. (2011). A three-way model for collective learning
on multi-relational data. In Proceedings of the 28th International Conference on Interna-
tional Conference on Machine Learning, ICML’11, pages 809–816, USA. Omnipress.

Pawar, S., Palshikar, G. K., and Bhattacharyya, P. (2017). Relation extraction : A survey.
ArXiv, abs/1712.05191.

56



References

Pujara, J., Augustine, E., and Getoor, L. (2017). Sparsity and noise: Where knowledge graph
embeddings fall short. In Proceedings of the 2017 Conference on Empirical Methods in
Natural Language Processing, pages 1751–1756, Copenhagen, Denmark. Association for
Computational Linguistics.

Qiu, D., Zhang, Y., Feng, X., Liao, X., Jiang, W., Lyu, Y., Liu, K., and Zhao, J. (2019). Ma-
chine reading comprehension using structural knowledge graph-aware network. In Pro-
ceedings of the 2019 Conference on Empirical Methods in Natural Language Processing
and the 9th International Joint Conference on Natural Language Processing (EMNLP-
IJCNLP), pages 5895–5900, Hong Kong, China. Association for Computational Linguis-
tics.

Reimers, N. and Gurevych, I. (2019). Sentence-BERT: Sentence embeddings using Siamese
BERT-networks. In Proceedings of the 2019 Conference on Empirical Methods in Nat-
ural Language Processing and the 9th International Joint Conference on Natural Lan-
guage Processing (EMNLP-IJCNLP), pages 3982–3992, Hong Kong, China. Association
for Computational Linguistics.

Rendon-Velez, E., Horváth, I., and Opiyo, E. (2009). Progress with situation assessment
and risk prediction in advanced driver assistance systems: A survey. In Proceedings of
the 16th ITS World Congress.

Riedel, S., Yao, L., McCallum, A., andMarlin, B.M. (2013). Relation extraction with matrix
factorization and universal schemas. In Proceedings of the 2013 Conference of the North
American Chapter of the Association for Computational Linguistics: Human Language
Technologies, pages 74–84, Atlanta, Georgia. Association for Computational Linguistics.

Rubinstein, R., Bruckstein, A. M., and Elad, M. (2010). Dictionaries for sparse representa-
tion modeling. Proceedings of the IEEE, 98(6):1045–1057.

Schlichtkrull, M. S., Kipf, T. N., Bloem, P., van den Berg, R., Titov, I., and Welling,
M. (2017). Modeling relational data with graph convolutional networks. CoRR,
abs/1703.06103.

Shen, Y., Huang, P.-S., Chang, M.-W., and Gao, J. (2017). Modeling large-scale structured
relationships with shared memory for knowledge base completion. In Proceedings of the
2nd Workshop on Representation Learning for NLP, pages 57–68, Vancouver, Canada.
Association for Computational Linguistics.

Shi, B. and Weninger, T. (2017). Proje: Embedding projection for knowledge graph com-
pletion. In Proceedings of the Thirty-First AAAI Conference on Artificial Intelligence,
February 4-9, 2017, San Francisco, California, USA., pages 1236–1242.

Silberer, C. and Lapata, M. (2014). Learning groundedmeaning representations with autoen-
coders. In Proceedings of the 52nd Annual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pages 721–732, Baltimore, Maryland. Association
for Computational Linguistics.

Socher, R., Chen, D., Manning, C. D., and Ng, A. Y. (2013). Reasoning with neural tensor
networks for knowledge base completion. In Advances in Neural Information Processing
Systems 26: 27th Annual Conference on Neural Information Processing Systems 2013.

57



References

Proceedings of a meeting held December 5-8, 2013, Lake Tahoe, Nevada, United States.,
pages 926–934.

Socher, R., Pennington, J., Huang, E. H., Ng, A. Y., and Manning, C. D. (2011). Semi-
supervised recursive autoencoders for predicting sentiment distributions. In Proceedings
of the 2011 Conference on Empirical Methods in Natural Language Processing, pages
151–161, Edinburgh, Scotland, UK. Association for Computational Linguistics.

Souza, C. R. C. and Santos, P. E. (2011). Probabilistic logic reasoning about traffic scenes. In
Towards Autonomous Robotic Systems - 12th Annual Conference, TAROS 2011, Sheffield,
UK, August 31 - September 2, 2011. Proceedings, pages 219–230.

Sun, X., Matsuzaki, T., Okanohara, D., and Tsujii, J. (2009). Latent variable perceptron
algorithm for structured classification. In IJCAI, volume 9, pages 1236–1242.

Sun, Z., Deng, Z.-H., Nie, J.-Y., and Tang, J. (2019). Rotate: Knowledge graph embedding
by relational rotation in complex space. arXiv preprint arXiv:1902.10197.

Takahashi, R., Tian, R., and Inui, K. (2018). Interpretable and compositional relation learn-
ing by joint trainingwith an autoencoder. InProceedings of the 56th AnnualMeeting of the
Association for Computational Linguistics (Volume 1: Long Papers), pages 2148–2159,
Melbourne, Australia. Association for Computational Linguistics.

Tian, R., Okazaki, N., and Inui, K. (2016). Learning semantically and additively composi-
tional distributional representations. In Proceedings of the 54th Annual Meeting of the
Association for Computational Linguistics (Volume 1: Long Papers), pages 1277–1287,
Berlin, Germany. Association for Computational Linguistics.

Titov, I. and Khoddam, E. (2015). Unsupervised induction of semantic roles within a
reconstruction-error minimization framework. In Proceedings of the 2015 Conference
of the North American Chapter of the Association for Computational Linguistics: Human
Language Technologies, pages 1–10, Denver, Colorado. Association for Computational
Linguistics.

Toutanova, K. and Chen, D. (2015). Observed versus latent features for knowledge base and
text inference. In Proceedings of the 3rd Workshop on Continuous Vector Space Models
and their Compositionality, pages 57–66, Beijing, China. Association for Computational
Linguistics.

Toutanova, K., Chen, D., Pantel, P., Poon, H., Choudhury, P., and Gamon, M. (2015). Repre-
senting text for joint embedding of text and knowledge bases. In Proceedings of the 2015
Conference on Empirical Methods in Natural Language Processing, pages 1499–1509,
Lisbon, Portugal. Association for Computational Linguistics.

Toutanova, K., Lin, V., Yih, W.-t., Poon, H., and Quirk, C. (2016a). Compositional learn-
ing of embeddings for relation paths in knowledge base and text. In Proceedings of the
54th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long
Papers), pages 1434–1444, Berlin, Germany. Association for Computational Linguistics.

58



References

Toutanova, K., Lin, V., Yih, W.-t., Poon, H., and Quirk, C. (2016b). Compositional learn-
ing of embeddings for relation paths in knowledge base and text. In Proceedings of the
54th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long
Papers), pages 1434–1444, Berlin, Germany. Association for Computational Linguistics.

Trouillon, T., Welbl, J., Riedel, S., Gaussier, É., and Bouchard, G. (2016). Complex em-
beddings for simple link prediction. In Proceedings of the 33nd International Conference
on Machine Learning, ICML 2016, New York City, NY, USA, June 19-24, 2016, pages
2071–2080.

van derMaaten, L. and Hinton, G. (2008). Visualizing data using t-SNE. Journal of Machine
Learning Research, 9:2579–2605.

Vrandečiundefined, D. and Krötzsch, M. (2014). Wikidata: A free collaborative knowledge-
base. Commun. ACM, 57(10):78–85.

Wang, Q., Mao, Z., Wang, B., and Guo, L. (2017). Knowledge graph embedding: A survey
of approaches and applications. IEEE Trans. Knowl. Data Eng., 29(12):2724–2743.

Wang, X., Gao, T., Zhu, Z., Liu, Z., Li, J., and Tang, J. (2019). Kepler: A unified
model for knowledge embedding and pre-trained language representation. arXiv preprint
arXiv:1911.06136.

Wang, Z., Zhang, J., Feng, J., and Chen, Z. (2014a). Knowledge graph and text jointly
embedding. In Proceedings of the 2014 Conference on Empirical Methods in Natural
Language Processing (EMNLP), pages 1591–1601, Doha, Qatar. Association for Compu-
tational Linguistics.

Wang, Z., Zhang, J., Feng, J., and Chen, Z. (2014b). Knowledge graph and text jointly
embedding. In Proceedings of the 2014 Conference on Empirical Methods in Natural
Language Processing (EMNLP), pages 1591–1601, Doha, Qatar. Association for Compu-
tational Linguistics.

Wang, Z., Zhang, J., Feng, J., and Chen, Z. (2014c). Knowledge graph embedding by trans-
lating on hyperplanes. In Proceedings of the Twenty-Eighth AAAI Conference on Artificial
Intelligence, July 27 -31, 2014, Québec City, Québec, Canada., pages 1112–1119.

Xiao, H., Huang, M., and Zhu, X. (2016). From one point to a manifold: Knowledge graph
embedding for precise link prediction. In Proceedings of the Twenty-Fifth International
Joint Conference on Artificial Intelligence, IJCAI 2016, New York, NY, USA, 9-15 July
2016, pages 1315–1321.

Xie, Q., Ma, X., Dai, Z., and Hovy, E. (2017). An interpretable knowledge transfer model for
knowledge base completion. In Proceedings of the 55th Annual Meeting of the Associa-
tion for Computational Linguistics (Volume 1: Long Papers), pages 950–962, Vancouver,
Canada. Association for Computational Linguistics.

Xie, R., Liu, Z., Jia, J., Luan, H., and Sun, M. (2016). Representation learning of knowledge
graphs with entity descriptions. In Thirtieth AAAI Conference on Artificial Intelligence.

59



References

Xiong, W., Hoang, T., andWang, W. Y. (2017). Deeppath: A reinforcement learning method
for knowledge graph reasoning. In Proceedings of the 2017 Conference on Empirical
Methods in Natural Language Processing, pages 564–573.

Yamamoto, K., Inoue, N., Inui, K., Arase, Y., and Tsujii, J. (2015). Boosting the efficiency
of first-order abductive reasoning using pre-estimated relatedness between predicates. In-
ternational Journal of Machine Learning and Computing, 5(2):114.

Yang, A., Wang, Q., Liu, J., Liu, K., Lyu, Y., Wu, H., She, Q., and Li, S. (2019). Enhancing
pre-trained language representations with rich knowledge for machine reading comprehen-
sion. In Proceedings of the 57th Annual Meeting of the Association for Computational
Linguistics, pages 2346–2357, Florence, Italy. Association for Computational Linguistics.

Yang, B., Yih, W.-t., He, X., Gao, J., and Deng, L. (2014). Embedding entities and relations
for learning and inference in knowledge bases. arXiv preprint arXiv:1412.6575.

Yang, B., Yih, W.-t., He, X., Gao, J., and Deng, L. (2015). Embedding Entities and Relations
for Learning and Inference in Knowledge Bases. In Proceedings of the 3rd International
Conference on Learning Representations, pages 1–12.

Zhang, S., Benenson, R., Omran, M., Hosang, J. H., and Schiele, B. (2016). How far are we
from solving pedestrian detection? CoRR, abs/1602.01237.

Zhao, L., Ichise, R., Yoshikawa, T., Naito, T., Kakinami, T., and Sasaki, Y. (2015). Ontology-
based decision making on uncontrolled intersections and narrow roads. In 2015 IEEE
Intelligent Vehicles Symposium, IV 2015, Seoul, South Korea, June 28 - July 1, 2015,
pages 83–88.

60


	Table of contents
	List of figures
	List of tables
	1 Introduction
	2 Explaining Potential Risks in Traffic Scenes by Combining Logical Inference and Physics Simulation
	2.1 Introduction
	2.2 Background
	2.2.1 Related Work
	2.2.2 Abduction

	2.3 Task Definition
	2.4 Proposed Approach
	2.4.1 Action Recognition as Abduction
	2.4.2 Action-based Physics Simulations

	2.5 Evaluation
	2.5.1 Task Setting
	2.5.2 Dataset
	2.5.3 Models
	2.5.4 Evaluation Results

	2.6 Conclusions

	3 Interpretable and Compositional Relation Learning by Joint Training with an Autoencoder
	3.1 Introduction
	3.2 Base Model
	3.3 Joint Training with an Autoencoder
	3.4 Optimization Tricks
	3.4.1 Training the Base Model

	3.5 Related Works
	3.6 Experiments
	3.6.1 KBC Results
	3.6.2 Intuition and Insight
	3.6.3 Losses and Gains

	3.7 Conclusion

	4 Universal Graph Embedding: An Empirical Analysis
	4.1 Introduction
	4.2 Knowledge Graph Completion
	4.2.1 Relation Paths in Knowledge Graph Embedding
	4.2.2 Joint Representation Learning of Text and Knowledge Graph

	4.3 Universal Graph
	4.4 Model
	4.4.1 Training

	4.5 Experiments
	4.5.1 Settings
	4.5.2 Results
	4.5.3 Analysis

	4.6 Related Works
	4.6.1 Using Multi-hop Paths in Knowledge Graph Completion
	4.6.2 Using Textual Information in Knowledge Graph Completion

	4.7 Conclusion and Future Work

	5 Conclusions
	References

