SHAPE: Shifted Absolute Position Embedding for Transformers

Shun Kiyono1,2Sosuke KobayashiJun Suzuki1,211RIKEN2Tohoku University3Preferred Networks, Inc.

Absolute Position Embedding (APE)

Code

SHAPE is "Shifted" APE

Adding a single line of code is all you need

Code

pos_idx += self.training * torch.randint(0, K) pos_embed(pos_idx)

Absolute Position Embedding (APE)

- Represent each position with unique embedding
 - e.g., sinusoidal wave [Vaswani+2017]
- 😅 Simple, fast, and easy to implement
- 😰 Poor performance on **unseen lengths**
 - i.e., APE is bad at extrapolattion

Relative Position Embedding (RPE) [Shaw+2018]

- Consider distance between token pair in self-attention
- 😅 Robust to unseen length by **shift invariance**
- Computationally more expensive
- 😰 Incompatible with lightweight self-attention variants
 - Performer, Linformer, etc...

Can we achieve shift inariance while using APE?

EMNLP 2021

APE+Random Shift for Shift Invariance

- Shifted Absolute Position Embedding (SHAPE)
 - APE is randomly shifted by offset $k \sim \mathcal{U}(0, K)$
- Model cannot use absolute position to learn task
 - Instead learns to use relative position?

EMNLP 2021

SHAPE Learns Shift Invariance

- Compare cosine similarities of hidden states
- APE: each k produces different hidden states
- SHAPE: hidden states are invariant to k

SHAPE Learns Shift Invariance

- Compare cosine similarities of hidden states
- APE: each k produces different hidden states
- SHAPE: hidden states are invariant to k

SHAPE Learns Shift Invariance

- Compare cosine similarities of hidden states
- APE: each k produces different hidden states
- SHAPE: hidden states are invariant to k

Experimental Configuration

- Model: Transformer with APE, RPE, or SHAPE
- Task: Machine translation (MT)
- Training data
 - 1. Vanilla
 - WMT 2016 EnDe [Ott+2018]
 - 2. Extrapolate
 - Remove sequences longer than 50 subwords from Vanilla
 - 3. Interpolate
 - Concatenate neighboring sequences
- Details in paper or poster session 🔐
- Validation data: newstest2010-2013
- Test data: newstest2014-2016
- Evaluation: sacreBLEU

Machine Translation Experiment: Three Distinct Datasets

Why three? - To evaluate model performance on seen/unseen lengths

1) Vanilla: WMT EnDe 2016 Dataset [Ott+2018]

- Standard setting for MT
- Sanity check of baseline performance

2 Extrapolate: remove sequences longer than 50 subwords from Vanilla

- Evaluate if model can extrapolate
- i.e. is model robust to unseen lengths?

③ Interpolate: concatenate neighboring sequences (omitted)

EMNLP 2021

Result: RPE and SHAPE are Comparable

- On Extrapolate
 - Both RPE and SHAPE outperform APE
 - SHAPE is comparable to RPE
 - SHAPE is as fast as APE while RPE is not
- On Vanilla
 - All models achieve comparable performance
 - No risk of performance drop

Dataset	Model	Valid	Test	Speed
VANILLA	$egin{array}{c} APE^\dagger\\ RPE^\dagger\\ SHAPE^\dagger \end{array}$	23.61 23.67 23.63	30.46 30.54 30.49	x1.00 x0.91 x1.01
Extrapolate	APE RPE SHAPE	22.18 22.97 22.96	29.22 29.86 29.80	x1.00 x0.91 x0.99

Length Analysis: Better Extrapolation

Relative BLEU improvement from baseline (APE)

- RPE and SHAPE can better extrapolate than APE
- SHAPE and RPE have comparable extrapolation ability

Conclusion

- SHAPE : shifted absolute position embedding
 - APE with shift invariance
 - As fast as APE & comparable performance to RPE
 - Easy implementation
 - No risk of performance drop from APE

Take Home PyTorch Code

pos_idx += self.training * torch.randint(0, K) pos_embed(pos_idx)