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Background: Similarity-based Explanation

* Explanation by “presenting similar examples” [charpiat+, 2019; Barshan+, 2020]

S e —
. » ? -
'y v ;
', L | .
[\ } .
1 ¢ N
e 0N "
o M » P A
i N yA -y
'. ’ 3 ,‘1.. Yeaad
el a ¥
h W\ Ay
In ut RATP- o ] N
d l‘(
R )
o
-
et g —=
i ;
v
A\ Y| 4 '\ w1
ik ot

Prediction o
- > Lapwing
— )
Explanation
Train Data \J> =
N— ——

Lapmﬁng

Present a similar training instance
as the reason for the prediction




Can existing methods provide reasonable explanations?
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Can existing methods provide reasonable explanations?
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 The instance obtained by Method B (truck) will not be convincing.




Contributions: Investigating appropriate explanation methods

* Evaluate the similarity-based explanation with three tests from two perspectives

* Explanations need to be plausible and faithful pacovi & Goldberg, 2020].
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* Perspective 2: Faithfulness [Adebayo+, 2018; Lakkaraju+, 2019; Jacovi & Goldberg, 2020]
* Explanation must reflect the underlying inference process.

e Test 3: Randomization test
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ldentical Class Test

* Check if the predicted class and the presented class are the same

e Evaluate the plausibility of the explanation

Example of CIFAR-10

Test instance Training instance
\/ ‘ is cdt. Because l is cat.
Test instance Training instance

X ‘ is cdtl. Because ﬂ is dog.




Results of Identical Class Test

Measure the percentage of the most similar instance in the same class
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Results of Identical Class Test

 Measure the percentage of the most similar instance in the same class

Cosine similarity of the gradients
performs best.
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[Charpiat et al., 2019]

Cosine similarity of gradients




Results of Identical Class Test

 Measure the percentage of the most similar instance in the same class

Dot product-based methods do not
meet this minimal (easy) requirement.
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Why Are Dot Product-based Metrics Not Successful ?

 Some instances are judged as similar to various test instances due to the large norm.

Example of Dot product of gradients (g..;, g;) [Charpiat et al., 2019]

Jiest: Gradient of the test instance
g;: Gradient of the i-th training instance

Norms for selected training instances

Norms for the entire training data : I
i =
0 20
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Why Are Dot Product-based Metrics Not Successful ?

 Some instances are judged as similar to various test instances due to the large norm.

Example of Dot product of gradients (g..;, g;) [Charpiat et al., 2019]

Jiest: Gradient of the test instance
g;: Gradient of the i-th training instance

0.7
Norms for the entire training data : I
i =
0 20

Freq

Norms for selected training instances
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frog ship

lgill, = 131.3




Summary

 Evaluated the appropriateness of the similarity-based explanation

* Perspective 1: Plausibility [Lei+, 2016; Lage+, 2019; Strout+, 2019]
e Test 1:
e Test 2:

* Perspective 2: Faithfulness [Adebayo+, 2018; Lakkaraju+, 2019; Jacovi & Goldberg, 2020]

e Test 3:

e The results of the evaluation are as follows:
 Cosine similarity of the gradients performs best.

Dot product-based methods do not meet minimal requirements.

* Expect that our work will help select/design better explanation methods




