Evaluation of Similarity-based Explanations

Kazuaki Hanawa^{1,2}, Sho Yokoi^{2,1}, Satoshi Hara³, Kentaro Inui^{2,1}

¹RIKEN AIP, ²Tohoku University, ³Osaka University

Background: Similarity-based Explanation

• Explanation by "presenting similar examples" [Charpiat+, 2019; Barshan+, 2020]

Present a similar training instance as the reason for the prediction

Can existing methods provide reasonable explanations?

The reason for "predicting this image to be a frog" is ...

Can existing methods provide reasonable explanations?

The reason for "predicting this image to be a frog" is ...

The instance obtained by Method B (truck) will not be convincing.

- Evaluate the similarity-based explanation with three tests from two perspectives
- Explanations need to be plausible and faithful [Jacovi & Goldberg, 2020].

- Evaluate the similarity-based explanation with three tests from two perspectives
- Explanations need to be plausible and faithful [Jacovi & Goldberg, 2020].
 - Perspective 1: Plausibility [Lei+, 2016; Lage+, 2019; Strout+, 2019]
 - Explanation must be convincing to humans.
 - Test 1: Identical class test
 - Test 2: Identical subclass test

- Evaluate the similarity-based explanation with three tests from two perspectives
- Explanations need to be plausible and faithful [Jacovi & Goldberg, 2020].
 - Perspective 1: Plausibility [Lei+, 2016; Lage+, 2019; Strout+, 2019]
 - Explanation must be convincing to humans.
 - Test 1: Identical class test
 - Test 2: Identical subclass test
 - Perspective 2: Faithfulness [Adebayo+, 2018; Lakkaraju+, 2019; Jacovi & Goldberg, 2020]
 - Explanation must reflect the underlying inference process.
 - Test 3: Randomization test

- Evaluate the similarity-based explanation with three tests from two perspectives
- Explanations need to be plausible and faithful [Jacovi & Goldberg, 2020].
 - Perspective 1: Plausibility [Lei+, 2016; Lage+, 2019; Strout+, 2019]
 - Explanation must be convincing to humans.
 - Test 1: Identical class test
 - Test 2: Identical subclass test
 - Perspective 2: Faithfulness [Adebayo+, 2018; Lakkaraju+, 2019; Jacovi & Goldberg, 2020]
 - Explanation must reflect the underlying inference process.
 - Test 3: Randomization test

Identical Class Test

- Check if the predicted class and the presented class are the same
- Evaluate the plausibility of the explanation

Example of CIFAR-10

Results of Identical Class Test

Measure the percentage of the most similar instance in the same class

Results of Identical Class Test

Measure the percentage of the most similar instance in the same class

Results of Identical Class Test

Measure the percentage of the most similar instance in the same class

Why Are Dot Product-based Metrics Not Successful?

• Some instances are judged as similar to various test instances due to the large norm.

Example of **Dot product of gradients** $\langle g_{\text{test}}, g_i \rangle$ [Charpiat et al., 2019]

 g_{test} : Gradient of the test instance

 g_i : Gradient of the *i*-th training instance

Norms for the entire training data

Norms for selected training instances

Test instance

Explanation

Why Are Dot Product-based Metrics Not Successful?

Some instances are judged as similar to various test instances due to the large norm.

Example of **Dot product of gradients** $\langle g_{\text{test}}, g_i \rangle$ [Charpiat et al., 2019]

 g_{test} : Gradient of the test instance

 g_i : Gradient of the *i*-th training instance

Norms for the entire training data

Norms for selected training instances

Test instance

Explanation

Summary

- Evaluated the appropriateness of the **similarity-based explanation**
 - Perspective 1: Plausibility [Lei+, 2016; Lage+, 2019; Strout+, 2019]
 - Test 1: Identical class test
 - Test 2: Identical subclass test
 - Perspective 2: Faithfulness [Adebayo+, 2018; Lakkaraju+, 2019; Jacovi & Goldberg, 2020]
 - Test 3: Randomization test
- The results of the evaluation are as follows:
 - Cosine similarity of the gradients performs best.
 - Dot product-based methods do not meet minimal requirements.
- Expect that our work will help select/design better explanation methods