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Abstract Abduction is inference to the best explanation. Abduction has long been studied in a wide range of

contexts and is used for modeling artificial intelligence systems, such as diagnostic systems and plan recognition

systems. However, less attention has been paid to how to automatically learn score functions, which rank expla-

nations in the order of their plausibility. In this paper, we propose a supervised learning approach for first-order

logic-based abduction. The contribution of this paper is the following: (i) we show how to formulate the machine

learning problem of abduction with the framework of online large-margin training, which has been shown to have

both predictive performance and scalability to larger problems; (ii) we extend the state-of-the-art abductive reason-

ing system [15] to model the score function with a weighted linear model, which is the groundwork for the online

large-margin training; (iii) we support partially-specified gold-standard explanations as training examples, where

the weights are learned to rank any explanation that includes the gold-standard explanation as the best explanation;

(iv) the all-in-one software package for inference and learning is made publicly available.

Key words Abduction, Logic-based reasoning, Online learning, Large-margin training, Structured learning, La-
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1. Introduction

Abduction is inference to the best explanation. Abduc-

tion has long been studied in a wide range of contexts.

For example, abduction has been viewed as a promising

framework for describing the mechanism of human percep-

tion [5], [12], [23], [32] etc. The key idea is that the declara-

tive nature of abduction enables us to infer the most plau-

sible, implicitly stated information combining several types

of inference, and pieces of explicitly observed information.

For instance, Hobbs et al. [12] showed the process of natu-

ral language interpretation can reasonably be described as

abductive inference; finding the lowest-cost abductive proof

provides the solutions to a broad range of natural language

pragmatics problems, such as word sense disambiguation,

anaphora, and metonymy resolution.

While the lack of world knowledge resources hampered

applying abduction to real-life problems in the 1980s and

1990s, a number of techniques that acquire world knowl-

edge resources have been developed in the last decade

[1], [4], [13], [30], [31] etc. In addition, the development of an

efficient inference technique of abduction warrant the ap-

plication of abduction with large knowledge bases to real-life

problems [15]. Consequently, several researchers have started

applying abduction to real-life problems, and exploiting large

knowledge bases. For instance, Ovchinnikova et al. [22] pro-

pose an abduction-based natural language processing frame-

work using forty thousands of axioms extracted from the pop-

ular ontological resources, WordNet [1] and FrameNet [30].

They evaluate their approach on the real-life natural lan-

guage processing task of Recognizing Textual Entailment

(RTE) [9].

However, less attention has been paid to how to automat-

ically learn a function, which rank candidate explanations

in order of their plausibility (henceforth, we call it the score

function). To apply abductive inference to a wide range of

tasks, this non-trivial issue needs to be addressed because the

criterion of plausibility is highly task-dependent. A notable

exception is a series of studies in the context of Statistical Re-

lational Learning [2], [17], [26], [33], where they emulate ab-

duction in the probabilistic deductive inference framework,

Markov Logic Networks (MLNs) [27], or Bayesian Logic Pro-

grams [16]. These approaches can exploit several choices of

machine learning methods originally developed for proba-

bilistic models [14], [18]. However, emulating abduction in

these approaches has severe overhead. For example, the em-
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ulation in MLNs requires special procedure to convert ab-

duction problems into deduction problems because MLNs

are deductive inference framework in nature. This conver-

sion process generates a large number of axioms, and hence

hampers the application of MLN-based approaches to larger

problems (see Sec. 5. for more detail). Since inference is a

subroutine of learning procedure, learning is also intractable

on large dataset, as reported in [33].

In this paper, we propose a supervised learning approach

for first-order logic-based abduction, extending the tractable

first-order abductive inference engine [15]. In order to apply

abduction to a wide range of tasks, we support two kinds

of gold-standard explanations as training examples: exactly-

specified, or partially-specified. Given exactly-specified gold-

standard explanations, our framework trains the score func-

tion so that it ranks the given explanation itself as the best

explanation. Given partially-specified gold-standard expla-

nations, on the other hand, the framework trains the score

function so that it ranks any explanation that includes the

gold-standard explanation as the best explanation. It is use-

ful to support partially-specified gold-standard explanations,

because one might want to use abduction for a specific task,

where the subset of the best explanation is used as the out-

put label of the task. In the case of plan recognition, for

example, one might want a system to output any explana-

tion that includes the correct plan literals, and does not care

about any other types of literals in the explanation.

We formulate these learning problems as discriminative

structured learning with latent variables. More specifically,

we model the score function as a weighted linear feature func-

tion, and then apply Passive Aggressive algorithm [7], an on-

line large-margin training algorithm, to tune the weights.

The contribution of this paper is as follows:

(i) we show how to formulate the machine learning prob-

lem of abduction with the framework of online large-margin

training, which has been shown to have both predictive per-

formance and scalability to larger problems;

(ii) we extend the state-of-the-art abductive reasoning

system [15] to model the score function with a weighted lin-

ear model, which makes it possible for the formulation of

learning problem to work;

(iii) we support partially-specified explanations, meaning

that the framework learns a weight vector that outputs any

explanation that includes the given explanation;

(iv) the all-in-one software package for inference and learn-

ing is made publicly available.

This paper is organized as follows. We first give a brief re-

view of abduction and the abductive reasoning system [15]

(Sec. 2). We then generalize the score function with a

weighted linear model, and formally define the learning prob-

lem (Sec. 3. 1). We show how to efficiently perform abduc-

tion with the weighted linear model (Sec. 3. 2), and then

present our learning framework, starting with the simple case

where exactly-specified gold-standard explanations are given.

(Sec. 3. 3). We then extend the learning framework to learn

weights from partially-specified gold-standard explanations

(Sec. 3. 4). Finally, we demonstrate that our learning al-

gorithm successfully improve predictive performance in two

applications (Sec. 4.).

2. Background

2. 1 Abduction

Abduction is inference to the best explanation. We use

function-free first-order logic for the representation language

of abduction?1. Formally, first-order logical abduction is de-

fined as follows:

• Given: Background knowledge B, and observations

O, where B is a set of first-order logical formulae, and O is

a set of literals or substitutions.

• Find: An explanation (or hypothesis) H such that

H ∪ B |= O, H ∪ B 6|=⊥,?2 where H is a set of literals or

substitutions. Each element in H is called an elemental ex-

planation.

We define substitution to be the form x = y (positive sub-

stitution) or x 6= y (negative substitution), where x and y

are either variables or constants. The semantics is that en-

tities indicated by variables or constants are (not) the same

(i.e. {p(x), p(y), x = y} is identical to {p(x)}). We say that

p is hypothesized if H ∪ B |= p, and that p is explained if

there exists a set Q of literals such that Q ∪ B → p and

H ∪ B |= Q. In this paper, we assume that all variables

occurring in a logical form of background knowledge are uni-

versally quantified with the widest possible scope, unless it

is explicitly stated as existentially quantified. On the one

hand, we assume that variables occuring in an explanation

and observation are existentially quantified implicitly.

Typically, several explanations H explaining O exist. We

call each of them a candidate explanation, and represent a set

of candidate explanations of O given B as HO,B . The goal

of abduction is to find the best explanation among candidate

explanations by a specific evaluation measure. In this paper,

we formulate abduction as the task of finding the maximum-

score explanation Ĥ among HO,B . Formally, we find Ĥ =

arg max
H∈HO,B

score(H), where score is a function HO,B → R,

which is called the score function. In the literature, several

kinds of score functions have been proposed, including cost-

based and probability-based [5], [12], [24], [26], [33] etc. As

shown in Sec. 3., we generalize the score function with a

weighted linear model in this paper.

Finally, let us describe the task of abduction with a toy

example. Given B = {p(x, y) ∧ q(x) → r(x), s(x) →
r(x)}, O = {r(z)}, we have four candidate explanations:

H1 = {r(z)}, H2 = {p(z, w), q(z)}, H3 = {s(z)}, and

H4 = {p(z, w), q(z), s(z)}. The task of abduction is to select

the best explanation among them in terms of score. Suppose

score(H1) = 5.5, score(H2) = 12.25, score(H3) = 10.8, and

?1: We consider the case of finite domains.

?2: Throughout the paper, |=, ⊥ means logical entailment and logical

contradiction respectively.
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score(H4) = 7.13. The correct prediction is then H2.

2. 2 Integer Linear Programming Formulation of

First-order Logic-based Abduction

The problem of best explanation finding is computation-

ally expensive; the number of candidate explanations grows

exponentially to the size of observation and knowledge base.

To perform efficient inference, we adopt the Integer Linear

Programming (ILP)-based formulation of first-order logic-

based abduction [15]. This approach is efficient because (i)

the abductive reasoning problem on first-order logic is di-

rectly performed on first-order level, similarly to the resolu-

tion principle in theorem proving [29], and (ii) the state-of-

the-art ILP optimization technique is exploited. This section

gives a brief description of the solution as a preparation of

Sec. 3. 2; see [15] for more details.

Given B and O, the framework first enumerates a set P

of potential elemental explanations (atomic assumptions),

which are possible constituents of candidate explanations

(i.e. literals or substitutions). It initializes P with O, and

iteratively adds new literals through backward-inference on

P with axioms in B. For example, the set of potential ele-

mental explanations of the toy problem in Sec. 2. 1 is rep-

resented by {r(z), p(z, w), q(z), s(z)}. Then, the framework

generates ILP variables and constraints based on this set to

represent all possible candidate explanations through value

assignments to the ILP variables. The two main ILP vari-

ables are hp ∈ {0, 1}, and sx=y ∈ {0, 1}, where p is a poten-

tial elemental explanation and x, y are variables or constants

used in P . hp is used to represent whether p is hypothesized

(hp = 1) or not (hp = 0). sx=y is used to represent whether

x = y (sx=y = 1) or not (sx=y = 0).

The score function of this framework is the sum of scores of

each elemental explanation p, each of which has two terms:

(i) cost of p being hypothesized, and (ii) reward of p being

explained by other elemental explanations. The framework

thus introduces new ILP variables rp ∈ {0, 1} to represent

whether p is rewarded (i.e., is explained, rp = 1) or not

(rp = 0). The ILP objective function is as follows:

max. score(H) =
X

p∈P

[hp · −cost(p) + rp · cost(p)], (1)

where cost(p) is a cost of hypothesizing p. It assumes that

cost(p) is given by a user, and does not address how to auto-

matically learn the value of cost(p). The framework finds the

value assignment that optimizes this function, with several

constraints to ensure the value assignments to be candidate

explanations (e.g. O must be explained).

3. Online Large-margin Weight Learning
for First-order Logic-based Abduction

In this section, we propose a machine learning framework

for first-order logic-based abduction. We first formalize the

abductive reasoning problem as a structured prediction with

a weighted linear model, and then define the weight learning

problem (Sec. 3. 1). We show how to use the weighted linear

feature function in the ILP-based formulation (Sec. 3. 2),

and then show how to learn the weights by instantiating

Passive Aggressive algorithm [7]. We start with the simple

case where exactly-specified gold-standard explanations are

given (Sec. 3. 3), and then describe a learning framework for

partially-specified gold-standard explanations (Sec. 3. 4)

3. 1 Problem Formulation

We first generalize the score function with a weighted

linear model. Let Φ(H) = {φ1(H), φ2(H), ..., φn(H)} be

a n-dimensional feature vector of an explanation H, and

w = {w1, w2, ..., wn} be a n-dimensional weight vector. We

then define the score function as follows:

score(H;w) = w · Φ(H) =

n
X

i=1

wi · φi(H) (2)

We refer to w as the parameter of score function. We assume

each element φi(H) to be the following:

φi(H) =

8

<

:

Vi if H ∪ B |= Ci;

0 otherwise,
(3)

where Vi is a real-valued constant, and Ci is a first-order log-

ical formula where each element is a literal or substitution

included in H. We call Vi the feature value, φi(H) the feature

function, and Ci the feature condition. The feature vector is

designed by a user. For example, one might create a feature

function φi such that (Vi, Ci) = (1, x = y ∧ cat(x)∧ dog(y)).

The task of abductive reasoning is then formalized as follows:

H = arg max
H∈HO,B

score(H;w) = arg max
H∈HO,B

w · Φ(H) (4)

Notice that this formulation is equivalent to a structured pre-

diction problem (or multi-class classification problem), where

the input is O, B, and the set of possible output structures

(or classes) is HO,B . We find the best H in the modified ILP-

based framework, which is described in the next section.

Let us formalize the supervised learning problem of first-

order logic-based abduction. Let D = {(Oi, Hi)}n
i=1 be a set

of training examples, where Oi is an observation (i.e. input)

and Hi is either exactly-specified, or partially-specified gold-

standard explanation for Oi. Based on the definition in Sec.

2. 1, we assume that Oi and Hi are given by a set of literals

or substitutions. The goal of supervised learning is to learn

score(H;w), which has minimal prediction errors on D. To

achieve this goal, we estimate a weight vector w that min-

imizes the value
Pn

i=1 ∆(Ĥi, Hi), where Ĥi is the best ex-

planation for Oi inferred by the system, and ∆(Ĥi, Hi) is a

non-negative function that measures the difference between

Ĥi and Hi. Henceforth, we call ∆(Ĥi, Hi) the loss func-

tion. Because the definition of loss is task-dependent, the

loss function is designed by the user. The simple example of

loss function for exactly-specified gold-standard explanations

is the following (a.k.a 0-1 loss function):

∆(Ĥi, Hi) =

8

<

:

1 if Ĥi 6= Hi;

0 otherwise (i.e. Ĥi = Hi)
(5)
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In this paper, we assume that there is enough knowl-

edge to infer the gold-standard explanation for each problem

(the knowledge completeness assumption). If this assump-

tion were not satisfied, which means that the gold-standard

explanation is not included in the candidate explanations,

then we could not infer the gold-standard explanation even

if we change the weight vector.

irrespectively of parameters.

3. 2 ILP-based Abduction with Weighted Linear

Model

In order to exploit the weighted linear feature function as

the score function, we replace the ILP-based objective func-

tion (1) with equation (6). We introduce new ILP variables

fi ∈ {0, 1} such that fi = 1 if and only if the feature condi-

tion Ci is entailed by H∪B; fi = 0 otherwise. The extended

ILP objective function is as follows:

max. score(H;w) =

n
X

i=1

wi · (Vi · fi) (6)

Following the definition of fi above, we associate the fea-

ture condition Ci with the assignment of fi by introducing

new ILP constraint so that fi = 1 ⇔ H ∪ B |= Ci. In gen-

eral, however, this association cannot be represented as a

single ILP constraint. Therefore, we first decompose Ci into

a Conjunctive Normal Form CNF(Ci), a set of disjunctive

clause, and then introduce ILP constraints for each disjunc-

tive clause.

Let Dj
i be the j-th disjunctive clause in CNF(Ci). For all

j ∈ {1, 2, ..., |CNF(Ci)|}, we first introduce new ILP variable

f j
i ∈ {0, 1} such that f j

i = 1 ⇔ H ∪ B |= Dj
i . To allow to

set f j
i = 1 iff H ∪ B |= Dj

i , we impose the following ILP

constraint:

0 <= |l(Dj
i )|f

j
i − [

X

L∈l(D
j
i )

I(L)] <= |l(Dj
i )| − 1, (7)

where l(Dj
i ) is a set of literals or substitutions in Dj

i , and

I(L) is a function that returns hL if L is a literal; sL if L is

a positive substitution; 1−sL if L is a negative substitution.

On the most-right of the term, we add −1 because at least

one L ∈ l(Dj
i ) must be hypothesized (remember that Dj

i is

a disjunctive clause) when f j
i = 1.

Finally, to ensure that fi = 1 iff f j
i = 1 for all j ∈ {1, 2, ...,

|CNF(Ci)|}, we introduce the following ILP constraint:

−|CNF(Ci)| + 1 <= |CNF(Ci)|fi −
|CNF(Ci)|

X

j=1

f j
i

<= 0 (8)

Note that we are able to use a constant instead of fi in

equation (6) when the value of feature is decidable from ob-

servations (i.e. O |= Ci). In this case, the constraints (7),

(8) need not be introduced.

Let us describe the ILP constraints (7), (8) with an ex-

ample. Suppose that we have the feature condition Ck =

¬p(x) ∧ (p(y) ∨ q(y) ∨ x 6= y) for k-th feature. The CNF of

this formula is {¬p(x), p(y)∨q(y)∨x 6= y}. We thus introduce

two ILP variables for each clause: f1
k , f2

k ∈ {0, 1}, and then

Algorithm 1 learnExact(training examples D, background

knowledge B, int N , double C)

1: w← 0

2: for n = 1 to N do

3: for all (Oi, Hi) ∈ D do

4: Ĥ ← arg max
H∈HOi,B

score(H;w)

5: if Ĥ 6= Hi then

6: τ ← min(C,
score(Hi;w)−score(Ĥ;w)+∆(Ĥ,Hi)

||Φ(Ĥ)−Φ(Hi)||2
)

7: w← w + τ(Φ(Hi)−Φ(Ĥ))

8: end if

9: end for

10: end for

11: return w

introduce the ILP constraints f1
k −h¬p(x) = 0 (i.e. f1

k = 1 ⇔
H∪B |= ¬p(x)), and 0 <= 3f2

k − [hp(y) +hq(y) +(1−sx,y)] <= 2

(i.e. f2
k = 1 ⇔ H ∪ B |= [p(y) ∨ q(y) ∨ x 6= y]). Fi-

nally, we introduce −1 <= 2fk − (f1
k + f2

k ) <= 0 to ensure

that fk = 1 ⇔ f1
k = 1 ∧ f2

k = 1.

3. 3 Learning from Exactly-specified Explanations

In order to train the weight vector w, we employ Passive-

Aggressive (PA) algorithm [7], which is a supervised large-

margin online learning algorithm applicable to a wide range

of linear classifiers ranging from binary classifiers to struc-

tured predictors. The motivation is that (i) an online learn-

ing makes our framework scalable, and (ii) it has been empir-

ically shown that large-margin approaches demonstrate a su-

perior generalization ability on unseen datasets. In this sec-

tion, we consider the simplest setting where exactly-specified

explanations are given as training examples. The framework

learns the score function so that it ranks the given explana-

tion itself as the best explanation.

Algorithm 1 depicts our learning algorithm. Every time

we receive a training instance (Oi, Hi) from a set D of train-

ing instances, we first find the highest-score explanation Ĥ

given the current weight vector (line 4). If the current predic-

tion has a prediction error, we train the weight vector (line

5–8). A new weight vector w should satisfy the following

conditions: (i) score(Hi;w) is greater than score(Ĥ;w) by

at least a margin ∆(Ĥ, Hi), and (ii) the difference between

the current weight vector w′ and the new weight vector w

is minimal. In line 6, we calculate how much w should be

corrected, where C is a parameter of PA algorithm, meaning

the aggressiveness of weight updates. Intuitively, the more

different Ĥ and Hi are, the larger an ensured margin is.

3. 4 Learning from Partially-specified Explana-

tions

Let us consider the case where we use abduction for a spe-

cific task, and the subset of the best explanation is used as

the output label of the task. In plan recognition, for example,

one might use only plan literals (i.e. literals that represent

a plan) in the best explanation to decide the system output,

and might not care about any other types of literals in the
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Algorithm 2 learnPartial(training examples D, back-

ground knowledge B, int N , double C)

1: Initialize w

2: for n = 1 to N do

3: for all (Oi, Hi) ∈ D do

4: Ĥ ← arg max
H∈HOi,B

score(H;w)

5: if Hi 6 ⊂=Ĥ then

6: H ← arg max
H∈HOi,B

score(H;w) subject to Hi⊂=H

7: τ ← min(C,
score(H;w)−score(Ĥ;w)+∆(H,Hi)

||Φ(Ĥ)−Φ(H)||2
)

8: w← w + τ(Φ(H)−Φ(Ĥ))

9: end if

10: end for

11: end for

12: return w

explanation. In this situation, the learning framework is re-

quired to have the capability of learning the score function

from partially-specified gold-standard explanations: training

a weight vector that can rank any explanation that includes

the gold-standard explanation as the best explanation, be-

cause one wants the system to output any explanation that

includes the correct plan literals. Of course, one could ex-

haustively give all explanations that include the correct plan

literals as exactly-specified explanations, but it is intractable

in many cases due to the exponential growth of the number

of candidate explanations.

Therefore, in this section, we extend the learning algo-

rithm in the previous section to allow the setting where Hi is

partially-specified gold-standard explanation. We formulate

the learning problem as a discriminative structured learning

with latent variables [6], [10], [37] etc., where the output label

is a set of literals that are specified in Hi, and the rest are

regarded as latent variables.

Algorithm 2 depicts the extended learning algorithm. The

key extensions from Algorithm 1 are two folds: (i) we up-

date the weight vector if the partially-specified gold-standard

explanation Hi is not included in the current prediction Ĥ

(line 5–9), and (ii) we perform latent variable completion, the

inference to complete the unspecified part of the partially-

specified gold-standard explanation Hi (line 6). We refer

to the completed explanation as the pseudo exactly-specified

explanation. Note that one can use k-best completed expla-

nations as pseudo exactly-specified explanations, instead of

using one completed explanation. In future, we will compare

the performance of the k-best explanations approach with

the 1-best explanation approach.

In order to infer H in latent variable completion, we fol-

low Yamamoto et al. [36]’s learning framework for abduction,

where H is the highest-score explanation among candidate

explanations that are the super set of Hi. To find such H,

we perform abduction with (Oi, B), satisfying the following

two constraints: (i) for all literal L ∈ Hi, there exists a literal

U and a set of substitutions θ in H such that Uθ = L (i.e.

H |= Hi), and (ii) for all substitution x = y ∈ Hi, x = y must

be hypothesized in H i.e. (H |= x = y). These constraints

ensure that the best explanation for Oi entails Hi. To im-

pose constraint (i), we create the feature function ΦL(H) for

all L ∈ Hi, which returns −∞ if none of the literals unifiable

with L are hypothesized:

ΦL(H) =

8

<

:

−∞ if H 6|=
W

L′∈H(UNIF(L, L′) ∧ L′);

0 otherwise,
(9)

where UNIF(L, L′) is true only if L ≡ p(x1, x2, ..., xn) and

L′ ≡ q(y1, y2, ..., yn) are unifiable (i.e. p ≡ q and x1 =

y1 ∧ x2 = y2 ∧ ... ∧ xn = yn); false otherwise. For constraint

(ii), we add the following ILP constraints: sx=y = 1 for all

x = y ∈ Hi, and sx=y = 0 for all x 6= y ∈ Hi. Note that the

score of H will be −∞ when knowledge complete assump-

tion is not satisfied. We skip the weight update if the score

is −∞.

4. Evaluation

In this section, we evaluate our online large-margin learn-

ing algorithm in two applications to answer the following

questions: (i) does the weight vector trained by partially-

specified explanations indeed give predictive performance

better than the untuned weight vector does? (ii) can ma-

chine learning-based abductive reasoning be combined with

the powerful existing feature-based classifiers (e.g. Support

Vector Machines [35]) for boosting predictive performance?

For all experiments, we run our own implementation for the

extended version of ILP-based reasoner shown in Sec. 3. 2.

The implementation is made publicly available on the web.?3

We used a 12-core Opteron 6174 (2.2GHz) 128 GB RAM ma-

chine. We used Gurobi optimizer 5.0?4as an ILP solver, and

8 cores for solving ILP problems in parallel processing. The

parameter C of PA algorithm is set to 1.0 in the experiments.

To make the framework more scalable, we implemented the

training algorithm in a distributed structure learning frame-

work, following [19].

4. 1 Story Understanding

The task of story understanding is to abductively infer the

top-level plans of characters from observed actions. For ex-

ample, given “Bill went to the liquor-store. He pointed a gun

at the owner,” we need to infer Bill ’s plan, e.g. Bill is rob-

bing at the liquor store. By evaluating our algorithm on this

task, we want to empirically check whether our algortihm

has the capability to learn the signals of “good” explanation

from partially-specified gold-standard explanations or not.

We used [20]’s story understanding dataset, which is

widely used for evaluation of abductive plan recognition

systems [17], [26], [33]. The dataset consists of develop-

ment set and test set, each of which includes 25 pairs

of observed actions and its gold-standard plan.?5 In the

?3: http://github.com/naoya-i/henry-n700/

?4: http://www.gurobi.com/

?5: To the best of our knowledge, this dataset is a only public dataset

— 5 —



Table 1: Feature set used for abductive story understanding.

Feature Description

Predicates Hypothesized a set of predicate names of literals that are hypothesized.

Predicates Explained a set of predicate names of literals that are explained by at least one set of literals.

Predicates Unified a set of predicate names of literals that have at least one equivalent literal in a explanation.

Axioms Satisfied a set of names of axioms that are satisfied by a explanation.

Table 2: Performance of plan recognition in two settings.

Logical Abduction Trained

Loss P R F Loss P R F

Closed Test 0.24 0.20 0.40 0.27 0.12 0.35 0.69 0.46

Open Test 0.26 0.18 0.44 0.25 0.18 0.28 0.57 0.37

dataset, the actions and gold-standard plans are given

by a set of first-order literals (e.g. {inst(get2, getting),

agent get(get2, bob2), name(bob2, bob)}). The dataset con-

tains on average 12.6 literals in the actions, and 12.0 lit-

erals in the gold-standard plans. The dataset also pro-

vides the background knowledge base, which contains 107

first-order logical Horn clauses (e.g. inst(R, robbing) ∧
get weapon step(R, G) → inst(G, getting)). We use the de-

velopment set for training, and the test set for measuring

predictive performance. We gave the gold standard plan

literals as partially-specified gold-standard explanations for

training.

To perform plan recognition, we apply abduction with the

background knowledge base, giving the observed actions as

observations. We summarize the feature vector used for this

setting in Table 1. To capture the feature of explanations,

we introduce a feature that represents what kinds of literals

are included (Predicates Hypothesized), and explained

(Predicates Explained) in an explanation. We also in-

corporate the information of axioms satisfied by an expla-

nation (Axioms Satisfied). Predicates Unified feature

captures the following intuition: the information that is sup-

ported by many observations (i.e. the situation where the

same kind of literal is hypothesized from multiple observa-

tions) is more reliable. All the features are encoded by 0-1

features, and each one represents whether each element is

included in an explanation.

For the loss function, we want to measure the difference

between predicted explanation H and the gold-standard ex-

planation H, in terms of plan literals. We used the following

function:

∆(H, H) = |H| − |H ∩ H| + n(H), (10)

where n(H) is the number of plan literals in H that are not

included in H. We considered 10 types of literals as plan

literals, following [33]. It is clear that this function is a non-

negative, and its value is zero iff (i) H⊂
=H, and (ii) H includes

plan literals only specified in H.

For evaluating the prediction performance of our system,

that provides a complete test environment for abduction, although it

is small. We plan to create the bigger dataset for future evaluation.

we focused on how well the system infers plan literals, in-

cluding their role fillers, following [33]. More specifically, we

use precision (ratio of inferred literals that are correct), recall

(ratio of correct literals that are inferred by the system), and

F-measure (harmonic mean of precision and recall), because

the gold data often has multiple plan literals.

Results and discussion: To see the effect of weight

learning, we show the value of loss function averaged for all

the problems, and predictive performances for closed test and

open test in Table 2. We consider two settings here. In Log-

ical Abduction setting, we try to simulate classical logical

abduction that favors the fewer number of elemental explana-

tions: we thus set -1.0 to Predicates Hypothesized, and

1.0 to Predicates Explained and Predicates Unified,

and do not tune the weights. In Trained setting, we used

our learning procedure for tuning a weight vector.?6 In both

tests, Table 2 indicates that the training algorithm reduced

the loss value than classical logical abduction did, so that

it improved the predictive performance. The results of open

test also reveal that our learning algorithm shows the gener-

alization ability to unseen data.

4. 2 NP Coreference Resolution

Noun-phrase (NP) coreference resolution is the task of

identifying the group of NPs that refer to the same entity

in the world. For example, in the sentence “Tim shouted

at Ed because he was angry.”, we need to identify the group

{he, Tim}. On the other hand, in the sentence “Tim shouted

at Ed because he crashed the car.”, we need to identify the

group {he, Ed}. As the reader can see, coreference resolu-

tion requires commonsense reasoning using world knowledge,

such as causal relations of events, and synonymous relations

of words, etc.

The question here is: what benefits could we receive from

the development of machine learning framework for abduc-

tion? Our hypothesis is that combining the learning of logical

inference with the existing powerful feature-based classifier

(e.g. Support Vector Machines [35]) would improve the per-

formance of knowledge-intensive tasks such as coreference

resolution. Therefore, we compare the predictive perfor-

mance of feature-based classifier with a machine learning-

based abductive reasoning procedure combined with the ex-

isting feature-based classifiers, using coreference resolution

as a test bed. To simulate the feature-based classifiers, we

created a feature function for each pair of literals that rep-

resent NPs, following the feature set proposed by Soon et

al. [34], which is widely used as the simple baseline model of

?6: A weight vector is initialized with the zero vector.
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Table 3: Performance of NP coreference resolution, provided

by feature-based classifier and abductive reasoner com-

bined with feature-based classifier.

Setting System Pairwise Loss

Closed Test Soon 0.40

Soon+Abduction 0.29

Open Test Soon 0.55

Soon+Abduction 0.48

coreference resolution. Henceforth, we call it Soon system.

To solve coreference problems with abduction using world

knowledge, we adopt the idea of Interpretation as Abduc-

tion [12]. The idea is that the interpretation of sentences is

an abductive explanation to the logical forms (LFs) of sen-

tences, where substitutions correspond to the identification

of coreference relations. We thus perform abduction with

world knowledge, giving the LFs of text as an observation.

We then extract substitutions from the best explanation for

identifying the coreference relations. For combining the ab-

ductive reasoning with Soon system, we use the feature set

summarized in Table 1 and the feature set of Soon system

simultaneously in the score function. The resulting system

is called Soon+Abduction.

We use the CoNLL-2011 shared task dataset [25].?7 We

used 100 documents of training dataset for training, and 100

documents from development dataset for testing. We con-

vert the dataset into the logical forms, and encode the gold-

standard coreference annotations as substitutions. We then

give the substitutions as partially-specified gold-standard ex-

planations. We used Boxer semantic parser [3] for the logi-

cal form conversion. As a world knowledge, we used Word-

Net [1] and FrameNet [30]. We convert the world knowledge

to the form of axioms, such as synsetX(s) → dog(s), follow-

ing Ovchinnikova [21].

For the loss function, we used a pairwise loss function

∆P (H, H) = WO/TO, where TO is the number of pairs of

variables in the observation and WO is the number of sub-

stitutions for observed variables (i.e. variables representing

NPs) in H that disagrees with H. The pairwise loss func-

tion is also used for supervised clustering-based coreference

resolution [11]. Again, it is clear that this function is a non-

negative, and its value is zero iff there are no disagreement.

Results and discussion: Table 3 shows the values of

pairwise loss function in closed test and open test setting.

For Soon+Abduction, we initialized the weight vector with

the same value as Logical Abduction setting in the story

understanding setting, and then trained the weights. In both

settings, the loss of Soon+Abduction system is less than

Soon system. This indicates that combining the learning

of logical inference using the world knowledge with feature-

based classifier has a positive impact to the predictive per-

formance of feature-based classifier. In our future work, we

will conduct an additional experiment to check the best way

to exploit the world knowldge: comparing the results with

?7: http://conll.cemantix.org/2011/.

the performance of feature-based classifier using the world

knowledge as a feature.

5. Related Work

Probabilistic logical abduction has been studied in the con-

text of Statistical Relational Learning [2], [17], [26], [33] etc.

They assume to use the standard learning algorithms of prob-

abilistic models (e.g. EM) for learning the score function.

However, the inference of probabilistic models for first-order

logical inference is computationally expensive, because the

inference is performed on a propositional level. Due to the

intractability of inference, some work report that they could

not learn weights on large dataset [2], [33]. Raghavan and

Mooney [26] propose Bayesian Abductive Logic Programs,

which constructs a Bayesian Network by using the backward-

chaining procedure similar to the ILP-based approach, but

they use a task-specific heuristic rule to unify literals to re-

duce the computational complexity of inference during the

construction of the network. Given much larger and dataset

in general domain, their framework would not be a scal-

able solution. Other researchers [2], [17], [33] employ Markov

Logic Networks (MLNs) [27] to emulate abductive inference.

MLNs provide well-studied software packages of inference

and learning; however, MLN-based approaches require spe-

cial procedures to convert abduction problems into deduction

problems because of the deductive nature of MLNs. The pi-

oneering work of MLN-based abduction [17] converts back-

ground axioms into MLN logical formulae by (i) reversing

implication and (ii) constructing axioms representing mu-

tual exclusiveness of explanation (e.g. the set of background

knowledge axioms {p1 → q, p2 → q, p3 → q} is converted into

the following MLN formulae: q → p1 ∨ p2 ∨ p3, q → ¬p1 ∨¬p2,

q → ¬p1 ∨ ¬p3 etc.). As the readers can imagine, MLN-

based approach suffers from the inefficiency of inference due

to the increase of converted axioms. In addition, the current

solution of MAP inference for MLNs, which is needed for

the best explanation finding, works on a propositional level.

Therefore, learning would not scale to larger problems due

to the severe overhead [15]. Singla and Mooney [33] report

that their MLN-based abduction models cannot be trained

on larger dataset.

As mentioned in Sec. 3. 4, Yamamoto et al. formulate

the learning problem of first-order logic abduction as the

framework similar to us. The key difference is that they use

score function that is non-linear in terms of weights, and

thus use a different optimization strategy for optimizing the

weights. Comparing the performance of our work with them

is interesting and important future direction. Our work is

also related to a structured learning approaches that exploit

latent variables, which demonstrate a superior performance

in many tasks ranging from natural language processing to

graphical processing. For example, Latent Support Vector

Machines, a variant of structured learning model with latent

variables, is widely used [6], [10], [37] etc. for many classifica-

tion tasks, and shown to outperform the existing systems.
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6. Conclusion

We have proposed a supervised approach for learning the

score function of weighted abduction. We formulated the

learning procedure in the framework of structured learning

with latent variables. Our approach enables us to learn the

score function from partially-specified gold-standards, which

is a useful feature in real-life tasks. In our evaluation, we

found that our learning procedure can reduce the loss, and

improve predictive performance of story understanding tasks

in both open test and closed test. We also explored the

potential use of machine learning-based abductive reason-

ing, i.e. the integration of learning of logical inference and

feature-based classifiers. The experiments showed that the

integration of these two approaches is promising.

Our future direction includes improving the training time,

where the bottleneck of training is inference procedure. We

thus need to develop more efficient inference method that

returns high-quality solution in a short time. We are plan-

ning to apply Cutting Plane Inference for Markov Logic Net-

works [28], which gradually instantiates logical formulae in

knowledge base on the fly. Another direction is extending

our learning framework. As mentioned in Sec. 3. 4, we plan

to start with incorporating the k-best update into our frame-

work such as [8].
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