Online Large-margin Weight Learning for First-order Logic-based Abduction

Naoya Inoue, Kazeto Yamamoto, Yotaro Watanabe, Naoaki Okazaki, and Kentaro Inui
Tohoku University

● Background

- **Abduction** is inference to the best explanation

 Given:
 - Observation: {get-gun(John), go-to-store(John)}
 - Background knowledge: (∀x) hunt(x) → get-gun(x)
 - (∀x) go-shopping(x) → go-to-store(x)

 Find:
 - The best explanation (=highest-score explanation)
 \[H_j: \{\text{hunt(John), go-shopping(John)}\} \]
 \[H_1: \{\text{rob(John)}\} \]
 \[H_2: \{\text{rob(John), hunt(John)}\} \]

 There are many applications: natural language processing, plan recognition etc.

- **Plan recognition**

 - **Training/Testing:**
 - **Dataset:**

 - **Publicly available at:**

 - **classifier reduces predictive loss**

- **T-21**

 - **Desiderata** for learning framework
 - **Scalability:** computationally cheap, good results in a short time
 - **Accurateness:** discriminative power
 - **Usability:** learn from partially observed dataset

 - **The learning framework**

 (1) Assume weighted linear scoring model:
 \[\text{score}(H; w) = w \cdot \Phi(H) \]
 (2) Learn \(w \) from training examples online, following the large-margin principle:

 \[T = \{(O_i, H_i)\} \]

 \[score(H_i) = 4.3 \]
 \[score(H_2) = 13.5 \]
 \[score(H_3) = 10.8 \]

 Tuning of score function relies on:
 - Manual tuning
 - Probabilistic logic-based learning
 (e.g. Markov Logic Networks [Richardson & Domingos 06])

- **Problem:** inference is not scalable; learning is even harder

- **Finding**

 - **Weight learning reduces predictive loss**
 - **Combining abductive reasoning with feature-based classifier reduces predictive loss**
 - **Generalization ability on unseen dataset**

 Publicly available at: http://github.com/naoya-i/henry-n700/

 ● Evaluation

 - **Q1:** Does learning have positive impact?
 - Task:
 - Plan recognition
 - Gold-standard: plan literals
 - Dataset:
 - Ng & Mooney [92]
 - Training/Testing:
 25 examples
 BK: 107 axioms
 - Findings:
 - **Weight learning reduces predictive loss**
 - **Combining abductive reasoning with feature-based classifier reduces predictive loss**
 - **Generalization ability on unseen dataset**

 - **Q2:** Does combining logic-based reasoning with existing classifier give better predictive performance?
 - Task:
 - Coreference resolution
 - Gold-standard:
 - equalities
 - Dataset:
 - CoNLL-2011 Shared Task
 - Training/Testing:
 100 documents
 BK: 300,000 axioms

 ● Future work

 - **Use k-best explanations for update**
 - **Comparison with feature-based classifier exploiting world knowledge as features**

 This work was partially supported by Grant-in-Aid for JSPS Fellows (22-0719), Grant-in-Aid for Scientific Research (23700157, 23240018), and JST, PRESTO.