
22nd ITS World Congress, Bordeaux, France, 5–9 October 2015  

Paper number ITS-1432 

 

Recognizing Potential Traffic Risks 

through Logic-based Deep Scene Understanding 
 

 

Naoya Inoue1*, Yasutaka Kuriya2, Sosuke Kobayashi1, Kentaro Inui1 
1. Tohoku University, Japan 

6-6-05 Aramaki Aza Aoba, Aobaku, Sendai, Miyagi 980-8579, Japan 
Tel: +81-22-795-7091 / Email: naoya-i@ecei.tohoku.ac.jp 

2. DENSO CORPORATION, Japan 
 

 

Abstract 
Automatic recognition of risks in traffic scenes is a core technology of Intelligent Transporta-
tion Systems. While most of the existing work on traffic risk recognition has been done in the 
context of motion prediction of vehicles relying on directly observed information (e.g., veloc-
ity), exploiting implicit information inferable from observed information (e.g., the intention of 
pedestrians) has rarely been explored. This paper proposes a novel risk prediction model that 
uses abductive reasoning to infer implicit information from observations and jointly identifies 
the most-likely risks in traffic scenes. To evaluate our model, we create a novel benchmark 
dataset that contains a wide variety of risk prediction problems. Our experiments indicate that 
the abduction-based framework has a great potential for solving risk prediction problems. The 
developed dataset is made publicly available for research purposes. 
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1 Introduction 
There has been a growing interest in Advanced Driver Assistance Systems (ADASs), which 
provide drivers with safe driving [9, 14, 20]. Recent advances in the technology of car sensor 
devices (e.g., radar sensors, vision systems) and image recognition, the fundamental technol-
ogy of ADASs, accelerate the research and development of ADASs. ADASs are one of the 
core technologies of Intelligent Transportation Systems, which have received increasing at-
tention through competitions such as DARPA Grand and Urban Challenges. 
    In this paper, we develop an ADAS to automatically identify possible traffic accidents 
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several seconds before they may actu-
ally occur. We refer to such kind of 
dangerous events, implicit events that 
will occur within several seconds as 
potential risks. For example, the traffic 
scene shown in Figure 1 include the 
potential risk that there might be a child 
behind the left-hand-side wall and the child might rush out to follow the soccer ball. We ex-
pect to drastically decrease car accidents by notifying such potential risks to car drivers as 
early as possible. 
    Most of the existing work on traffic risk recognition has been done in the context of mo-
tion prediction of vehicles [1, 2, 3, 11]. However, the existing prediction models do not fully 
take into account implicit contextual information, which is not directly observed but can be 
inferred from observed information, such as the predicted future behavior of other traffic ob-
jects (e.g., backing up from a parking spot) and the existence of invisible objects (e.g., the in-
visible child behind the wall); see [9] for a detailed survey. Because traffic objects may sud-
denly change their future behavior in response to changes in the state of the surrounding con-
text (e.g., the vehicle in front changes lanes, nearby traffic lights change), ignorance of such 
contextual information makes it unreliable to predict long-range risk, which is important for 
potential risk prediction. Additionally, the existing work does not provide drivers with expla-
nations as to why the traffic scene is risky (e.g., who takes what action, why she/he takes that 
action). 
    In this paper, we propose a context-aware risk prediction model that exploits first-order 
logic-based abductive reasoning. Abduction is inference to the best explanation. In the field of 
artificial intelligence research, abduction is widely used for knowledge-based systems, such 
as diagnostic systems and plan recognition systems [5, 10]. An abductive framework allows 
us to predict long-range movements of traffic objects by using implicit contextual information, 
and simultaneously provides deeper explanations as to why the traffic scene has a risk. The 
declarative nature of abduction allows us to abstract away from the procedural process of in-
ferences, concentrating on describing relevant knowledge in a declarative fashion (see Sec. 
2.1). 
 
2 Background 
2.1 Related Work 
Much research on risk prediction in traffic scenes has been done in the context of motion/path 
planning of vehicles [1, 2, 3, 11]. The main interest of the community is in how to correctly 
predict the trajectory of vehicles based on directly observed information such as position, 
speed and the state of traffic lights. For example, Broadhurst et al. [1] predict the potential 
future trajectories of an ego-vehicle and other traffic objects based on kinematic models to 

Fig 1. Example potential risks in traffic scenes. 
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detect a collision between traffic objects. Ortiz et al. [11] estimate the sequence of future 
driver maneuvers of an ego-vehicle with a Multi-Layer Perceptron, where the features include 
the physical state of the vehicle (e.g., position, speed), driver behavior (e.g., head movement), 
and surrounding contextual information (e.g., the state of nearby traffic lights).  
    On the other hand, implicit information inferable from observed information such as the 
intention of traffic objects and the existence of invisible objects is also an important clue for 
risk prediction, but has rarely been explored. One notable exception can be seen in [7]. 
Lattner et al. [7] propose a theorem proving-based approach. Similar to our work, Lattner et al. 
[7] use a logical knowledge base to prove the risk in traffic scenes from observed information, 
inferring implicit information on qualitative knowledge representation such as the type of 
traffic objects and the discretized speed of pedestrians in a traffic scene. 
    However, since a theorem prover only checks if the risk is provable or not, the quality of 
proof is not taken into account, unlike in our model. Moreover, they report the evaluation of 
their model on one classic example of a traffic scene. In contrast, our model evaluates the 
goodness of risk proofs in terms of evidentiality seen in a traffic scene and is tested on a much 
wider variety of risk prediction problems; see Sec. 3 and Sec. 4 for further details. 
 
2.2 Grounding technology 
Grounding technologies, including image/motion recognizers and radars, are recently making 
significant advances. For object recognizers, a number of benchmark datasets are publicly 
available [17, 18, 19], and they have been extensively studied over the years. Benenson et al. 
[17] compare around 40 pedestrian detectors on the Caltech pedestrian detection benchmark, 
and report that the best method, Katamari-v1, achieves a 22.5% miss rate. In fact, these tech-
nologies have already been applied to traffic scene understanding [16]. Regarding other 
grounding technologies, such as radar and vision cameras, extensive research has also been 
done; see [20] for a good overview. 

Obviously, in real-life applications, the whole system needs to be grounded to the real 
world by means of high-resolution cameras, accurate image recognizers, physics simulators, 
etc. In addition, we clearly need additional effort to calibrate our risk prediction system with 
possible noisy inputs. However, exploring the use of implicit information in risk prediction is 
a big research issue in itself. Therefore, we leave the integration of these technologies into our 
system for future work. 
 
2.3 Abduction 
Abduction is inference to the best explanation. Abduction is widely used in knowledge-based 
systems, such as diagnostic systems and plan recognition systems [5, 10]. Formally, 
first-order logical abduction is defined as follows: 

Given: Background knowledge B, and observations O, where B is a set of first-order logi-
cal formulae, and O is a set of literals or substitutions. 
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Find: An explanation H such that 𝐻 ∪ 𝐵 ⊨ 𝑂,𝐻 ∪ 𝐵 ⊭⊥, where H is a set of literals or 
substitutions. Each element in H is called an elemental explanation. Throughout the paper, 
⊨,⊥  means logical entailment and logical contradiction, respectively. 

In this paper, we assume that all variables occurring in a logical form of background knowl-
edge are universally quantified with the widest possible scope, unless it is explicitly stated as 
existentially quantified. On the other hand, we assume that variables occurring in an explana-
tion and observation are existentially quantified implicitly. 
    Typically, given observations O, we have more than one explanation H that explains O. 
We call each of them a candidate explanation, and denote a set of candidate explanations of 
O given B as C(O, B). The goal of abduction is to find the best explanation among candidate 
explanations by a specific evaluation measure. In this paper, we formulate abduction as the 
task of finding the maximum-score explanation H* among C(O, B). Formally, we find H* = 
arg  max!  ∈!(!,!) 𝑠𝑐𝑜𝑟𝑒(𝐻), where score is a function that maps each H in C(O, B) to a real 
number, which is called the abductive score function. In the literature, several kinds of score 
functions have been proposed, including cost-based and probability-based [2, 5, 13]. We 
elaborate our score function in Sec. 3.5. 
 
3 Recognizing Potential Risks with Logic-based Deep Scene Understanding 
3.1 Task definition 
We define the problem of traffic risk prediction with respect to a driver d at time t as follows:  

Given: An image description sd,t of a traffic scene from a driver d's viewpoint at time t, 
where sd,t is a set of literals in first-order predicate logic,  

Find: A set R of potential risks, where each potential risk ri consists of an object-action tu-
ple (oi, ai). 

We elaborate on the representation language of an image description in Sec. 3.3. Roughly, the 
image description includes a set of qualitatively-represented first-order logical atoms that de-
scribe both physical information and symbolic information (e.g., {wall(Wall), ball(Ball), 
car(RedCar), left-front-of(Now, Wall, Me), ...}). In this paper, we simply assume that the log-
ical forms are correctly obtained from sensors such as LIDAR or vision cameras. (See Sec. 
2.2 for the validity of this assumption.) 
 
3.2 Risk prediction as abduction 
One simple approach to solving this task is to directly model a mapping between the combi-
nations of observed ground-level clues and potential risks. For example, one could create a 
straightforward rule like: “if (i) there is a child x, (ii) x is in left front of the ego-vehicle and 
(iii) x has an umbrella, then x might rush out.” This kind of rule could be implemented in a 
production system or a knowledge-based system (a.k.a. expert systems), or could be learned 
by feature-based machine learning algorithms. However, such approaches to directly mapping 
observable clues to risks may not be robust enough to deal with a large variety of unseen 
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cases in real-life applications. 
    The main idea of our approach is as follows. We keep the prediction rules as general as 
possible, and try to find the best explanation for the condition of general prediction rules 
based on multiple pieces of evidence at different levels of abstraction. One can view the pro-
cess of finding the best explanations as the projection of observed information onto a latent 
space of features useful for risk prediction. Introducing a latent feature space has been proved 
effective for a wide range of AI tasks [4, 8]. 
    In our task, the latent information we particularly consider useful includes the beliefs, 
desires, and intentions (BDI) of each traffic object appearing in a given traffic scene. If the 
BDI information of objects is available, it can then be used to predict their next actions, which 
leads to a better prediction of potential risks. BDI information is not observable, but may 
sometimes be inferable from the observable behavior of the object and the observable infor-
mation on the traffic environment. 
    Our overall framework is shown in Figure 2. To formulate the above idea, we regard the 
task of potential risk prediction as the task of abductive theorem proving. This is analogous to 
the spirit of abductive text understanding [5, 12]; however, our work is the first work to apply 
abduction to the task of potential risk prediction. That is, given an image description s, we try 
to prove a proposition “there exist some risks” from s, using a background knowledge base. 
More specifically, we perform abductive reasoning, regarding an input image description and 
the “risk”' proposition as observation O. For background knowledge B, we use three kinds of 
knowledge bases: (a) causality (e.g., “a pedestrian must stop when the traffic signal is red,” “a 
pedestrian who does not recognize the ego-vehicle rushes out”), (b) ontological knowledge 
(e.g., “trucks and buses are both large vehicles”), and (c) risk patterns (e.g., “a person can rush 
out”). 

Let us illustrate the reasoning process with one possible explanation shown in Figure 2. 
The explanation is generated with the following reasoning processes: (A) given the input sce-
ne, we hypothesize that there is a person X who does not recognize me and who would rush 
out, using (c) the knowledge about potential risks; (B) hypothesize X to be the child who fol-
lows a ball Y, using (a) the knowledge about causality; (C) hypothesize the ball Y to be iden-
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tical to the ball in the observed ground-level information; (D) hypothesize there is a person Z 
behind the wall who does not recognize me; (E) hypothesize Z to be a child; (F) hypothesize 
Z and X to be identical. Based on this explanation, we identify “a child who follows the ob-
served soccer ball behind the wall and who will rush out.” as a risky object-action tuple. 

The main advantage of using abduction is characterized as its declarative nature. We can 
abstract away from the process of inferences, concentrating on creating a sophisticated 
knowledge base in the declarative fashion. For example, we do not specify the order of rea-
soning processes (A) through (F) in Figure 2 beforehand; an abductive inference engine finds 
the best way to apply the inference rules in a knowledge base. In contrast, procedural model-
ing additionally requires us to specify when, where, and how to use the knowledge base. This 
may not be a promising approach in cases where we want to combine several kinds of infer-
ences. For those who are not familiar with the notion of declarative and procedural modeling, 
see Sec. 2.1 for further descriptions. 
    We have another important advantage in using abduction for potential risk prediction, 
which is that the latent information inferred by abduction is interpretable by a human. As de-
scribed in Sec. 1, it is important for potential risk prediction systems to provide car drivers 
with deeper explanations as to why the system derives a potential risk. To fulfill this require-
ment, we can exploit the inferred latent information as the explanation for a potential risk. For 
example, in the above example, we can provide “children are playing with the soccer ball be-
hind the wall” as the explanation for the potential risk “an invisible child will rush out.” In 
contrast, other machine-learning techniques using latent information such as deep neural net-
works do not produce interpretable latent information. 
 
3.3 Knowledge representation 
The first-order language we use for representing our background knowledge is the following. 
One may think of some other alternative ways of knowledge representation. We leave the 
further exploration of the issue of knowledge representation to future work. 

Constants. Throughout all traffic scenes, the following constants are used: Me: the 
ego-vehicle, MyLane: the current own lane, OppositeLane: the opposite lane, MyWalking-
Lane: the walking lane on the ego-vehicle side, OppositeWalkingLane: the walking lane on 
the opposite side of the ego-vehicle. Now: the current time, Future: sometime in the future. 
Also, all the objects in a traffic scene are represented by constants (e.g., RedCar, MotorCy-
cle). 
Predicates. To describe properties of objects (e.g., type) and the relation between objects 
(e.g., relative position) in a traffic scene, our language includes the following predicates: 
l Type of object: one-place predicate representing a concept type of object. We enumer-

ate about 50 typical types of traffic objects from material for driving lessons. For exam-
ple, signal(x) means that x is a signal. 

l State of object: one-place predicate. We define the following predicates: wet(x), icy(x), 
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muddy(x), snowy(x). 
l Time-sensitive state of object: two-place predicate representing the state of an object at 

a certain time. We define about 20 types of predicates to represent states. For example, 
left-head-lamp-on(t,x) means that a head lamp of x is turned on at time t. The time is 
represented by either Now or Future as defined above. 

l Intention of object: one-place predicate representing the intention of an intentional ob-
ject. The predicates include will-rush-out(x), will-avoid(x), will-go-front(x), etc. The 
main task of potential risk prediction is to infer the intentions of objects. 

l Relative position between objects: more than one-place predicate representing the rela-
tive position between objects at a certain time. We define about 15 predicates. For ex-
ample, in-front-of(t, x, y) means that x is in front of y at time t. 

l Potential risk: risk(r,p) representing that there exists risk r for traffic object p. 
 
3.4 Background knowledge 
Using the knowledge representation above, we encode our commonsense knowledge as logi-
cal axioms. Our background knowledge consists of three kinds of knowledge. 

Causality. To infer intentions of objects, we encode a relation between states and intentions 
in background knowledge. For instance, we write for all x,y: large-vehicle(x) & 
in-front-of(Now, x, y) → will-avoid(y) to represent the knowledge that if large vehicle x 
(e.g., truck) is in front of vehicle x, y is likely to avoid x. Note that the knowledge is not in-
tended to express a 100% rigid logical implication. 
Ontological knowledge. We encode a conceptual hierarchy and disjointedness between 
concepts in background knowledge. For instance, we write for all x: bicycle(x) → vehi-
cle(x) to represent the fact that a bicycle is one kind of vehicle. We write for all x: car(x) & 
bicycle(x) →  ⊥ to represent the fact that something cannot be a car and a bicycle simulta-
neously. 
Risk pattern. Based on observed information and implicit information inferred by the 
knowledge above, we define a mapping between a traffic scene and potential risks. For 
example, we write for all x, y: in-front-of(Now, x, y) & will-stop(y) → risk(r, y) to represent 
that if something x would stop in front of vehicle y, that will be a potential risk to y. 

In our experiment, we manually construct a knowledge base, which consists of 32 causal rela-
tions, 2,077 entries for ontological knowledge (51 conceptual hierarchy, 2,026 conceptual 
disjointedness) and 11 risk patterns. The knowledge construction process is all done on the 
training data mentioned in Sec. 4.2. 
 
3.5 Score function 
As described in Sec. 2.3, we model the abductive score function as the weighted linear feature 
function w·f(H), where w is a real-valued weight vector and f is a feature function of a hy-
pothesis. In this paper, we design the feature function based on the following intuition: a hy-
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pothesis is (un)reliable if the axioms used to derive it are (un)reliable. More specifically, we 
define the feature function as follows: f(H) = fe(h1) + fe(h2) + ... + fe(hn), where hi is an ele-
ment of assumptions(H), and assumptions(H) is a set of elemental hypotheses that are not ex-
plained by H, B, and O. That is, we characterize the hypothesis H with a set of unexplained 
literals. Moreover, we decompose the feature function of unexplained elemental hypothesis 
fe(h) as follows: fe(h) = fa(a1) + fa(a2) + ... + fa(an), where ai is an element of axioms(h), and 
axioms(h) is a set of axioms used for hypothesizing h. 
    For fa(a), we simply introduce binary functions for each axiom, namely fa(a) = {1 if a is 
“for all x, y: in-front-of(Now, x, y) & will-stop(y) → risk(r, y)”; 0 otherwise, 1 if a is “all x: 
bicycle(x) → vehicle(x)”; 0 otherwise, ...}. One can design another type of feature function; 
for example, fa(a) = {1 if a is an axiom about risk pattern; 0 otherwise, 1 if a is an axiom 
about causality; 0 otherwise, ...}, which shares the weights across axioms. Because the per-
formance of risk prediction is sensitive to the design choice of the feature function, we will 
explore the proper design of the feature function in our future work. 
    In order to tune the weight vector w, we adopt the machine-learning framework for ab-
duction from [21], replacing the weight update algorithm with Soft Exact Confi-
dence-Weighted Learning [22], the state-of-the-art online machine-learning algorithm. Intui-
tively, the weight learner finds the weight vector that minimizes the risk prediction error on a 
training dataset. In our feature design, it learns the importance of the reliability of axioms for 
representing the reliability of an unexplained hypothesis. Through the learning process, the 
axioms useful for discriminating risky events from non-risky events are given higher weights, 
while the axioms not contributing to the risky/non-risky discrimination are given lower 
weights. This enables the prediction model to be more robust for redundancy or inconsistency 
between inference rules in the knowledge base. 
 
4 Evaluation 
In our experiments, we compared our abduction-based model against a simple machine learn-
ing-based baseline model that relies only on directly observed ground-level information, using 
the dataset described in Sec. 4.1. The goal is to estimate how useful the inference of implicit 
information is for potential risk prediction. 
 
4.1 Dataset 
An important issue for ADASs is how to deal robustly with a wide variety of traffic scenes. 
However, to the best of our knowledge, there is no existing standard benchmark dataset that 
includes a wide variety of traffic scenes. Prior researchers on risk prediction evaluate their 
models only on a severely limited variety of scenes. 
    To create such a benchmark dataset, we collected potential risk prediction problems from 
the textbook published by Chubu-Nippon-Driver-School [24] and Web materials for driving 
lessons (http://www.honda.co.jp/safetyinfo/kyt/training; http://www.jaf.or.jp/eco-safety/safe 
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ty/danger; http://www.bridgestone.co.jp/csr/tiresafety/training; http://www.nasva.go.jp/fuse 
gu/). The materials cover a wide range of risky situations, from pedestrians rushing out at a 
crossing to slipping on icy roads. Each problem consists of an illustrated traffic scene from 
the driver's viewpoint and one or a few typical risks in the traffic scene annotated by a human. 
    For each problem, we manually convert the traffic scene into a logical form and specify 
the object-action tuples that are described as a potential risk in the problem description. As a 
result, we extract 93 problems from Chubu-Nippon-Driver- School [24] as training data, and 
100 unseen problems randomly sampled from the web materials as test data. The dataset con-
tains 14 traffic objects, 1.6 risky object-action tuples per scene on average, and 4 types of 
risky actions in total: rushing out, sudden slowdown, taking control of someone, and passing 
by. To the best of our knowledge, no previous work has evaluated the proposed systems on 
such a wide variety of risk prediction problems. We plan to make our dataset publicly availa-
ble so that it can be used as a shared benchmark in the research community to compare across 
different ADASs. 
 
4.2 Setting 
As an evaluation measure, we use Precision@k and Recall@k which are defined as follows: 
Precision@k = NCPs(k)/NOs(k); Recall@k = NCPs(k)/NOLs, where NCPs(k) is the number 
of correct predictions in k-best outputs, NOs(k) is the number of output object-action tuples in 
k-best outputs, and NOLs is the number of labels in the test set. We do not require each sys-
tem to infer the types of invisible objects (e.g., it suffices to infer that something behind the 
wall might rush out in Figure 1). We also use F-measure@k, which is the harmonic mean of 
Precision@k and Recall@k. 

To obtain k-best explanations, we follow [15]. We perform abductive reasoning k times, 
imposing a constraint that the best explanation found in the n-th turn should not include the 
potential risks found in 1, 2, ..., (n-1)-th turns. For example, if the best explanation contains 
the potential risk (Car1, will-rush-out), we find the second-best explanation under the con-
straint that (Car1, will-rush-out) is not included in the best explanation. 
 For learning and inference, we have extended Phillip (https://github.com/kazeto/phillip), an 
efficient open-source abductive inference engine that runs on first-order logic [23]. By default, 
we initialized the weights of axioms with -1 to penalize backward inference. This enables the 
abductive score function to prefer minimal explanations that can infer annotated potential 
risks. We also tried the zero-initialization of weights, but it gave worse results. 
    To evaluate our model, we performed 10-fold cross validation on the test data, where we 
also used the training data for learning the weights. We emphasize that the training data used 
for knowledge construction is not included in the test partition of the 10-fold cross validation. 
 
4.3 Baseline model 
In order to understand the difficulty of potential risk prediction, we created (i) a baseline 
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model that randomly chooses a risky object from a scene and then randomly outputs a risky 
action from the 4 types of risky action candidates, and (ii) one that simply predicts that all the 
people and cars in a scene will rush out, which is the major source of potential risks in the 
training data. 
    Secondly, we built a baseline model that directly models a mapping between observed 
information and potential risks. Given an image description, the baseline model enumerates 
all the possible candidate potential risks (object-action tuples) and ranks them to output k-best 
risks. We use Ranking SVM [6] to train the ranking model, where all the features are binary 
features encoding (i) literals describing a ranked object and action (prefixed with “obj” and 
“action_'”) and (ii) literals describing the other traffic objects in a traffic scene (prefixed with 
“context_)”). Since the combinations of features are considered important for risk prediction, 
we used a polynomial kernel of degree 2.  
 
4.4 Results 
The results of our experiment are shown in Table 1. The random baseline models indicate 
poor performance because we have 14 traffic objects per scene on average and 4 risky action 
candidates (i.e., the probability of the output being correct is 1/56=1.8%). The simple majority 
baseline achieved F measures of 32.7, although the prediction rule is very simple. 
    Both SVM and abduction models performed better than the simple baseline models in 
k=3 and k=2, respectively. Contrary to what we expected, the abduction-based model did not 
outperform the SVM baseline model that relies on only directly observed information. 

To understand the potentiality of our abduction-based model more deeply, we analyzed 
the improved examples. An example is shown in Figure 4. The correct answer for this 
problem is that the left-hand-side woman might rush out because her dog suddenly starts to 
run. While the baseline model ranked the correct risk in 2nd place, our abduction-based model 
ranks it in 1st place. The best explanation for this problem, an output from the visualization 
module provided by Phillip, is shown in the bottom of Figure 4. Although our abduc-
tion-based model could not obtain a significant gain in the overall performance, we believe 
that abduction-based modeling has great potential for potential risk-oriented ADASs because 

Table 1. Results of potential risk prediction. 
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Fig 4. Example inference results. 

Model Precision@k Recall@k F 

Baseline (random) 1.0 (1/100) 0.6 (1/161) 1.1 

Baseline (majority) 22.6 (95/420) 59.0 (95/161) 32.7 

Baseline (SVM, k=1) 30.0 (30/100) 18.6 (30/161) 23.1 

Baseline (SVM, k=2) 30.5 (61/200) 37.9 (61/161) 33.9 

Baseline (SVM, k=3) 28.0 (84/300) 52.2 (84/161) 36.5 

Abduction (k=1) 31.5 (39/124) 24.2 (36/161) 27.4 

Abduction (k=2) 30.3 (59/195) 36.6 (69/161) 33.1 

Abduction (k=3) 22.5 (62/276) 38.5 (78/161) 28.4 

 



Recognizing Potential Traffic Risks through Logic-based Deep Scene Understanding 

11 

interpretable explanations are produced. 
 

4.5 Error analysis 
We analyzed 30 randomly-sampled error instances and found that in 29 instances the correct 
risks are at least included in candidate explanations. To understand why these 29 correct risks 
are ranked lower, we further manually checked whether top-ranked wrong risks are inferred 
via reasonable inference rules. We found that the majority of the erroneous potential risks are 
derived via unreasonable inference rules, which is caused by a lack of physical information 
such as the precise positions and directions of traffic objects. 

For example, the system needed to understand that a man is facing a bus stop in order to 
board a bus and therefore the man is more likely to rush out than other people in the same 
traffic scene. Similarly, the system needed to understand that the woman is leaving the bus 
stop, and she is not facing the road. This inference requires the system to perform reasoning 
about physical information such as the direction of the pedestrian, the position of the bus stop, 
etc. The current qualitative representation loses such precise information. In future work, we 
plan to integrate a physics simulator with the current risk prediction system to cope with such 
quantitative information properly. 
 
5 Conclusions 
While previous work on traffic risk recognition has mostly relied on directly observed infor-
mation, we have explored a context-aware logical abduction-based risk prediction model that 
exploits implicit information inferable from observed information. Our experiments have 
shown that the abduction-based model is still not mature compared with a simple machine 
learning-based model, but indicates that the abduction-based framework has a good potential 
for solving risk prediction problems. The benchmark dataset and axiomatized knowledge base 
are to be made publicly available for research purposes. 
    Clearly, as revealed by the error analysis, our abduction-based model needs 
non-discretized quantitative information representing physical information of traffic scenes, 
such as the positions and shapes of traffic objects. Our future directions include exploring the 
integration of symbolic inference into physics-based simulation, using first-order logic as the 
interface. At the same time, we also explore the integration of our prediction system with the 
grounding technologies such as sensor devices and vision cameras through a road test in a 
more practical situation. To extend our problem setting, we will also continue to develop our 
benchmark dataset so as to evaluate the discriminative ability of risky vs. non-risky situations 
of risk prediction systems. For a more practical evaluation, we also plan to use the video traf-
fic scenes recorded via drive recorders as the benchmark dataset. 
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