Resolving Direct and Indirect Anaphora for Japanese Definite Noun Phrases

Naoya Inoue[†], Ryu Iida[‡], Kentaro Inui[†], Yuji Matsumoto[†]

[†]Nara Institute of Science and Technology [‡]Tokyo Institute of Technology

Anaphora resolution

Identifying the referent of a referring expression

<u>A new minivan</u> was released. <u>The vehicle</u> has a yellow body.

- Important process in NLP applications such as Information Retrieval and Machine Translation
- We deal with an anaphor which is definite NP:
 - kono (this) + NP, sono (the) + NP, ano (that) + NP

Anaphora resolution

Identifying the referent of a referring expression

- Important process in NLP applications such as Information Retrieval and Machine Translation
- We deal with an anaphor which is definite NP:
 - kono (this) + NP, sono (the) + NP, ano (that) + NP

Anaphora resolution

Identifying the referent of a referring expression

- Important process in NLP applications such as Information Retrieval and Machine Translation
- We deal with an anaphor which is definite NP:
 - kono (this) + NP, sono (the) + NP, ano (that) + NP

Three anaphora types

• In anaphora resolution, it is necessary to classify anaphora type as well as identifying an antecedent

A

B

C

- <u>A new CD</u> was released. He purchased <u>the CD</u>.
- The artist announced <u>her new song</u>. He purchased <u>the CD</u>.

I fell in love on that day.

- Anaphora type depends on the preceding context
- In anaphora resolution, it is necessary to classify anaphora type as well as identifying an antecedent

I fell in love on that day.

- Anaphora type depends on the preceding context
- In anaphora resolution, it is necessary to classify anaphora type as well as identifying an antecedent

Three anaphora types

- Anaphora type depends on the preceding context
- In anaphora resolution, it is necessary to classify anaphora type as well as identifying an antecedent

- Antecedent Selection (AS)
 - Identify an antecedent for given anaphor
- Anaphora Type Classification (ATC)
 - Classify given anaphor into direct anaphora, indirect anaphora or exophora

A new minivan was released. <u>The vehicle</u> has a yellow body.

- Antecedent Selection (AS)
 - Identify an antecedent for given anaphor
- Anaphora Type Classification (ATC)
 - Classify given anaphor into direct anaphora, indirect anaphora or exophora

- Antecedent Selection (AS)
 - Identify an antecedent for given anaphor
- Anaphora Type Classification (ATC)
 - Classify given anaphor into direct anaphora, indirect anaphora or exophora

Related Work

- Antecedent selection (direct anaphora)
 - NP coreference resolution has been studied intensively though the evaluation-oriented tasks (Soon et al., 2001; Ng, 2002; Yang et al., 2003; Bean et al. 2004)
- Antecedent selection (indirect anaphora)
 - Bridging Reference (Clark, 1977)
 - Resolving Mereological BDs (Poesio et al, 2004)
- Anaphora type classification
 - Definite Description Classification (Vieira, 2000)

Our research

In a learning-based anaphora resolution model, how can the two subtasks, antecedent selection and anaphora type classification, be best configured? (e.g. which task should be carried out before)

• Bridging Reference (Clark, 1977)

• Resolving Mereological BDs (Poesio et al, 2004)

mun eet anapi

- Anaphora type classification
 - Definite Description Classification (Vieira, 2000)

Our research

In a learning-based anaphora resolution model, how can the two subtasks, antecedent selection and anaphora type classification, be best configured? (e.g. which task should be carried out before)

<u>mu</u>n eet anap

Two approaches for antecedent selection

- Single Common Model Approach
 - Construct a single model which uses the information to identify an antecedent of both types
- Separate Model Approach
 - Construct two models; direct antecedent selection model (ASM) which uses the information to identify a direct-anaphoric antecedent, and indirect ASM which uses the information to identify an indirect-anaphoric antecedent

Single model and separate model

of direct anaphora

Single model and separate model

Training data of direct anaphora

Training data of indirect anaphora

Single model and separate model

Basic framework for AS: the tournament model

• Select the most likely antecedent by conducting one-on-one games in a step-ladder tournament (lida et al., 2004)

<u>Mariah Carey</u> came to <u>Japan</u>. <u>Her</u> <u>voice</u> attracted <u>many people</u> in <u>Japan</u>. <u>I</u> want to see <u>her</u>.

Basic framework for AS: the tournament model

• Select the most likely antecedent by conducting one-on-one games in a step-ladder tournament (lida et al., 2004)

Mariah Carey came to <u>Japan</u>. <u>Her</u> voice attracted <u>many people</u> in <u>Japan</u>. <u>I</u> want to see <u>her</u>.

Basic framework for AS: the tournament model

• Select the most likely antecedent by conducting one-on-one games in a step-ladder tournament (lida et al., 2004)

Mariah Carey came to <u>Japan</u>. <u>Her</u> voice attracted <u>many people</u> in <u>Japan</u>. <u>I</u> want to see <u>her</u>.

Basic framework for AS: the tournament model

• Select the most likely antecedent by conducting one-on-one games in a step-ladder tournament (lida et al., 2004)

Mariah Carey came to <u>Japan</u>. <u>Her</u> <u>voice</u> attracted <u>many people</u> in <u>Japan</u>. I want to see her.

- Antecedent Selection (AS)
 - Identify an antecedent for given anaphor
- Anaphora Type Classification (ATC)
 - Classify given anaphor into direct anaphora, indirect anaphora or exophora

• Antecedent Selection (AS)

Identify an anteced Second, going with ... hor

• Anaphora Type Classification (ATC)

• Classify given anaphor into direct anaphora, indirect anaphora or exophora

Possible five models in anaphora type classification Order of ATC

Possible five models in anaphora type classification

Before

After

Order of ATC

Contextual Information Contextual Information

Classify-then-Select

Select-then-Classify

Classify-then-Select

Select-then-Classify

Classify-then-Select model I. anaphor-Classify-then-Select (aC/S)

Anaphor

2. candidate-Classify-then-Select (cC/S)

2. candidate-Classify-then-Select (cC/S)

2. candidate-Classify-then-Select (cC/S)

2. indrect-Select-then-Classify (iS/C)

Anaphor

3. parallel-Select-then-Classify (pS/C)

3. parallel-Select-then-Classify (pS/C)

	Anaphor	All candidates	Candidate selected by direct ASM	Candidate selected by indirect ASM
I.aC/S				
2. cC/S				
3. dS/C				
4. iS/C				
5. pS/C				

	Anaphor	All candidates	Candidate selected by direct ASM	Candidate selected by indirect ASM
I.aC/S	\checkmark			
2. cC/S				
3. dS/C				
4. iS/C				
5. pS/C				

	Anaphor	All candidates	Candidate selected by direct ASM	Candidate selected by indirect ASM
I.aC/S	\checkmark			
2. cC/S	\checkmark	\checkmark		
3. dS/C				
4. iS/C				
5. pS/C				

	Anaphor	All candidates	Candidate selected by direct ASM	Candidate selected by indirect ASM
I.aC/S	\checkmark			
2. cC/S	\checkmark	\checkmark		
3. dS/C	\checkmark		\checkmark	
4. iS/C	\checkmark			\checkmark
5. pS/C				

	Anaphor	All candidates	Candidate selected by direct ASM	Candidate selected by indirect ASM
I.aC/S	\checkmark			
2. cC/S	\checkmark	\checkmark		
3. dS/C	\checkmark		\checkmark	
4. iS/C	\checkmark			\checkmark
5. pS/C	\checkmark		\checkmark	\checkmark

Review of the issues

- Issue I: The distinction of information in AS
 - Should separate models with different information be used for each anaphora type or can a single model effectively apply all available information?
- Issue 2: Encoding contextual information in ATC
 - How should the contextual information be encoded for anaphora type classification?

Experiments

- Annotated 1,698 instances in 869 broadcast articles of the NAIST Text Corpus (lida et al., 2007)
 - direct: 572 / indirect: 878 / exophora: 248
 - I0-fold cross-validation
 - Including verbal-predicate antecedents
- Three-way classification: one-versus-rest
- Binary classification: SVMs (Vapnik, 1995)
 - SVM^{light} with a polynomial kernel of degree 2

Feature set for antecedent selection

- Lexical, syntactic, positional features
 - Head word, POS proper noun type, etc.
 - Case particle, Distance between an anaphor and its candidate, etc.
- Semantic relation features (for an anaphor and antecedent)
 - String match, Distributional similarity (direct ASM)
 - Dictionary-based synonym, hyponym detection (direct ASM)
 - Co-occurrence measure PMI, based on phrase patterns "A of B" or (NP (PRED X) Y) (indirect ASM)

Feature set

for anaphora type classification

- Classify-then-Select
 - Lexical, syntactic features of Anaphor
 - Existence of candidates of each anaphora type (Following Vieira et al. 2000's work)
 - String-matched candidate exists or not, etc.
- Select-then-Classify
 - Lexical, syntactic features of Anaphor
 - Information of selected antecedent
 - Use the same feature set as used ASM

Results of antecedent selection

	Single Model	Separate Model
Direct anaphora	63.3% (362/572)	65.4% (374/572)
Indirect anaphora	50.5% (443/878)	53.2% (467/878)
Overall	55.2% (801/1,450)	58.0% (841/1,450)

Separate Model achieved the best accuracy

 The information of direct and indirect-selection should be distinguished for each anaphora type (Answer to the issue I)

Madal	Classify-then-Select		Sele	Select-then-Cla		
Inodel	aC/S	cC/S	dS/C	iS/C	pS/C	
Accuracy	75.4%	73.6%	78.7%	74.6%	78.4%	

- The S/C model achieved the best accuracy
 - Selected candidate provides useful contextual information for ATC (Answer to the issue 2)
- The accuracy of the cC/S model is lower
 - The candidate information used in the previous literature (Vieira et al. 2000; etc) is not informative

Madal	Classify-then-Select		Sele	ct-then-Classify	
	aC/S	cC/S	dS/C	iS/C	pS/C
Accuracy	75.4%	73.6%	78.7%	74.6%	78.4%

- The S/C model achieved the best accuracy
 - Selected candidate provides useful contextual information for ATC (Answer to the issue 2)

Madal	Classify-then-Select		Sele	Select-then-Cla		
Inodel	aC/S	cC/S	dS/C	iS/C	pS/C	
Accuracy	75.4%	73.6%	78.7%	74.6%	78.4%	

- The S/C model achieved the best accuracy
 - Selected candidate provides useful contextual information for ATC (Answer to the issue 2)
- The accuracy of the cC/S model is lower
 - The candidate information used in the previous literature (Vieira et al. 2000; etc) is not informative

Madal	Classify-then-Select		Select-then-Classify		
	aC/S	cC/S	dS/C	iS/C	pS/C
Accuracy	75.4%	73.6%	78.7%	74.6%	78.4%

- The accuracy of the cC/S model is lower
 - The candidate information used in the previous literature (Vieira et al. 2000; etc) is not informative

Madal	Classify-then-Select		Sele	Select-then-Cla		
Inodel	aC/S	cC/S	dS/C	iS/C	pS/C	
Accuracy	75.4%	73.6%	78.7%	74.6%	78.4%	

- The S/C model achieved the best accuracy
 - Selected candidate provides useful contextual information for ATC (Answer to the issue 2)
- The accuracy of the cC/S model is lower
 - The candidate information used in the previous literature (Vieira et al. 2000; etc) is not informative

Results of overall anaphora resolution

Madal	Classify-then-Select		Select-then-Classify		
	aC/S	cC/S	dS/C	iS/C	pS/C
Accuracy	47.3%	46.3%	50.6%	46.3%	50.4%

• The dS/C model also outperformed the other models in overall anaphora resolution task

Error analysis of antecedent selection for direct anaphora Selected by our model

I don't know good knowledge of <u>movies</u>, but still know of <u>Frankenstein</u>. I think <u>this movie</u> is a great masterpiece.

- Confusion of semantic category (60%) Correct antecedent
 - A wrong candidate which belongs to the same semantic category as correct antecedent is likely to be chosen
 - It is necessary to recognize saliency and/or concept-instance use in addition to the semantic similarity

Error analysis of antecedent selection for indirect anaphora

Mariah Carey came to Japan. Her

voice attracted many people in

- Japan. I want to hear the voice.
- Most of wrongly selected antecedents are not associated with the anaphor
- Additional evaluation with the feature of association measure disabled shows that 51.4 % of accuracy (No statistical difference from the original model)
- More useful linguistic knowledge is required to improve the performance

Selected by our model

Results of anaphora type classification for each type (F-measures)

	Direct anaphora	Indirect anaphora	Exophora
aC/S	70.9	83.7	48.9
cC/S	71.4	80.7	39.4
dS/C	77.1	84.4	55.7
iS/C	71.1	82.9	42.9
pS/C	76.1	84.3	57.2

• The identification of exophoric instances is more difficult than the others

Results of anaphora type classification for each type (F-measures)

	Direct anaphora	Indirect anaphora	Exophora
aC/S	70.9	83.7	48.9
cC/S	71.4	80.7	39.4
dS/C	77.1	84.4	55.7
iS/C	71.1	82.9	42.9
pS/C	76.I	84.3	57.2

• The identification of exophoric instances is more difficult than the others

 The typical error is the anaphor of temporal expressions such as 日 (the day), 期間 (the period)

- The typical error is the anaphor of temporal expressions such as 日 (the day), 期間 (the period)
 - Resolving the anaphor of a temporal expression is hard; the selection error provided wrong contextual information

- The typical error is the anaphor of temporal expressions such as 日 (the day), 期間 (the period)
 - Resolving the anaphor of a temporal expression is hard; the selection error provided wrong contextual information
 - It's potentially difficult to judge the anaphora type of a temporal expression (often occurred as direct or indirect)

- The typical error is the anaphor of temporal expressions such as 日 (the day), 期間 (the period)
 - Resolving the anaphor of a temporal expression is hard; the selection error provided wrong contextual information
 - It's potentially difficult to judge the anaphora type of a temporal expression (often occurred as *direct* or *indirect*)
 - It is required to recognize event-event relations specified by temporal expressions precisely

Conclusion

- Investigated the following two issues by decomposing anaphora resolution into antecedent selection (AS) and anaphora type classification (ATC)
- Issue I. The distinction of information in AS
 - The information effective for identifying an antecedent of each anaphora type should be incorporated separately
- Issue 2. Encoding contextual information in ATC
 - Selected candidate provides contextual information useful for classifying anaphora type

Future work

- Precise recognition of temporal expressions
 - Integrating temporal relation identification system
- Capturing saliency of discourse entity and/or recognizing concept-instance use
- Knowledge acquisition for indirect anaphora resolution