
ILP-based Reasoning for Weighted Abduction

Naoya Inoue and Kentaro Inui
Graduate School of Information Sciences

Tohoku University
Aramaki Aza Aoba 09, Aoba-ku

Sendai 980-8579, Japan
{naoya-i, inui}@ecei.tohoku.ac.jp

Abstract

Abduction is widely used in the task of plan recognition,
since it can be viewed as the task of finding the best ex-
planation for a set of observations. The major drawback
of abduction is its computational complexity. The task
of abductive reasoning quickly becomes intractable as
the background knowledge is increased. Recent efforts
in the field of computational linguistics have enriched
computational resources for commonsense reasoning.
The enriched knowledge base facilitates exploring prac-
tical plan recognition models in an open-domain. There-
fore, it is essential to develop an efficient framework for
such large-scale processing. In this paper, we propose
an efficient implementation of Weighted abduction. Our
framework transforms the problem of explanation find-
ing in Weighted abduction into a linear programming
problem. Our experiments showed that our approach ef-
ficiently solved problems of plan recognition and out-
performs state-of-the-art tool for Weighted abduction.

1 Introduction
An agent’s beliefs and intention to achieve a goal is called
a plan. Plan recognition, is thus to infer an agent’s plan
from observed actions or utterances. Recognizing plans is
essential to natural language processing (NLP) tasks (e.g.,
story understanding, dialogue planning) as well as to ac-
quire richer world knowledge. In the NLP research field,
computational models for plan recognition have been stud-
ied extensively in the 1980s and 1990s (Allen and Per-
rault 1980; Carberry 1990; Charniak and Goldman 1991;
Ng and Mooney 1992; Charniak and Shimony 1994, etc.).
Yet, the models have not been tested on open data since
the researchers suffered from a shortage of world knowl-
edge, and hence it has not been demonstrated that they
are robust. In the several decades since, however, a num-
ber of methods for large-scale knowledge acquisition have
been proposed (Suchanek, Kasneci, and Weikum 2007;
Chambers and Jurafsky 2009; Poon and Domingos 2010;
Schoenmackers et al. 2010, etc.), and the products of their
efforts have been made available to the public. Now we are
able to tackle the problem of plan recognition in an open-
domain.

Copyright c© 2011, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Since the task of plan recognition can be viewed as find-
ing the best explanation (i.e., a plan) for an observation (i.e.,
utterances), most of the proposed methods have been based
on abduction, the inference process of generating hypothe-
ses to explain observations using background knowledge. It
is crucial to use large-scale background knowledge to per-
form abductive inference in a wider domain. However, as the
background knowledge is increased, the task of abductive
reasoning quickly becomes intractable (Blythe et al. 2011;
Ovchinnikova et al. 2011, etc.). Since most of models that
have been proposed up to the present have not been designed
for use with large-scale knowledge bases, we cannot receive
the full benefits of large-scale processing.

In this paper, we propose an efficient framework of ab-
duction that finds the best explanation by using the Integer
Linear Programming (ILP) technique. Our system converts
a problem of abduction into an ILP problem, and solves the
problem by using efficient existing techniques developed in
the ILP research community. Since our framework is based
on Hobbs et al. (1993)’s weighted abduction, our framework
is capable of evaluating the goodness of hypotheses based on
their costs.

The rest of this paper is organized as follows. In the
next section, we briefly review abduction and previous work
about abduction. In Section 2, we describe the framework of
weighted abduction, and then propose ILP formulation for
weighted abduction in Section 3. We then apply our models
to the existing dataset and demonstrate our approach outper-
forms state-of-the-art tool for weighted abduction in Section
5. Finally, the conclusion is presented along with possibili-
ties for further study.

2 Background
We briefly give a description of abductive inference, and
then review earlier work on abduction.

2.1 Abduction
Abduction is inference to the best hypothesis to explain
observations using background knowledge. Abduction is
widely used for a system that requires finding an explana-
tion to observations, such as diagnostic systems and plan
recognition systems. Formally, logical abduction is usually
defined as follows:

• Given: Background knowledgeB, observationsO, where
both B and O are sets of first-order logical formulae.

• Find: A hypothesisH such thatH∪B |= O,H∪B 6|=⊥,
where H is also a set of first-order logical formulae.

Typically, B is restricted to a set of first-order Horn
clauses, and both O and H are represented as an existen-
tially quantified clause that has a form of a conjunction of
ground positive literals. In general, there are a number of
hypotheses H that explains O. We call each hypothesis H
that explains O a candidate hypothesis, and a literal h ∈ H
as an elemental hypothesis. The goal of abduction is to find
the best hypothesis among candidate hypotheses by a spe-
cific evaluation measure. We call the best hypothesis H∗ the
solution hypothesis. Earlier work has used a wide range of
evaluation measures to find a solution hypothesis such as the
number of elemental hypotheses, the cost of a hypothesis or
probability of a hypothesis etc.

2.2 Related work
We review prior efforts on abduction in terms of two view-
points: evaluation measure and scalability.

Evaluation measure Previous work on the framework
of abductive inference can be grouped into two categories
in terms of the evaluation measure of hypothesis: cost-
based approaches and probabilistic approaches. In cost-
based approaches (Charniak and Shimony 1994; Hobbs et
al. 1993, etc.), the system tries to find a hypothesis that
has a minimum cost among other competing hypotheses,
and identifies it as the best hypothesis. Weighted abduc-
tion, which we adopted, belongs to this group. In probabilis-
tic approaches (Poole 1993b; Charniak and Goldman 1991;
Sato 1995; Charniak and Shimony 1994; Kate and Mooney
2009; Raghavan and Mooney 2010; Blythe et al. 2011,
etc.), the system identifies the highest probability hypoth-
esis as the best hypothesis. Charniak and Shimony (1994)
demonstrated that an abductive inference model that finds
the minimum-cost hypothesis is equivalent to one that finds
the maximum-a-posteriori assignment over a belief network
that represents the possible hypothesis space. However, to
the best of our knowledge, Hobbs et al (1993)’s weighted
abduction is only a framework that is shown to have the
mechanism that quantifies the appropriateness of hypothe-
sis specificity.

It is crucial to discuss how to evaluate the specificity of
hypotheses. Traditionally, two extreme modes of abduction
have been considered. The first is most-specific abduction.
In most-specific abduction, what we can explain from back-
ground knowledge is all explained, which is suitable for di-
agnostic systems. Some cost-based approaches and proba-
bilistic approach falls into this group (Charniak and Shi-
mony 1994; Raghavan and Mooney 2010, etc.). The second
is least-specific abduction. Literally, in this mode an expla-
nation is just assuming observations. In some cases of natu-
ral language understanding, we need this mode. With respect
to abduction for plan recognition, adopting only one of these
levels is problematic. For example, if we adopt most-specific
abduction, the plan recognition system yields too specific

explanation such as Bob took a gun because he would rob
XYZ bank using a machine gun which he had bought three
days ago. Conversely, if we adopt least-specific abduction,
the system assumes just observation, as in Bob took a gun
because he took a gun. We thus want to determine the suit-
able specificity during inference. Therefore, we adopt Hobbs
et al (1993)’s weighted abduction in order to represent the
specificity of hypotheses.

Scalability To perform plan inference in a broader do-
main, the size of the knowledge base is a crucial point.
However, as we increase its size, abductive inference mod-
els immediately suffer from the exponentially-growing com-
putational cost (Blythe et al. 2011; Ovchinnikova et al.
2011). Many researchers have tried to avoid this problem
by a range of methods from approximation (Poole 1993a;
Ishizuka and Matsuo 1998, etc.) to exact inference (San-
tos 1994, etc.). Santos (1994) formalized cost-based abduc-
tion (Charniak and Shimony 1994) as a linear constraint
satisfaction problem (LCSP), and efficiently obtained the
best hypothesis by solving the LCSP with a linear program-
ming (LP) technique. He converted propositions generated
during abductive inference into LP variables, and used the
sum-product of these variables and the costs as the LP ob-
jective function. Our approach also adopts LP formulation,
and performs a similar translation. However, his approach
is based on propositional logic, and is incapable of evaluat-
ing the specificity of a hypothesis. The comparison with our
approach is more detailed in Section 4.2

3 Weighted abduction
Hobbs et al. (1993) propose the framework of text under-
standing based on the idea that interpreting sentences is to
prove the logical form of the sentence. They demonstrated
that a process of natural language understanding, such as
word sense disambiguation or reference resolution, can be
described in the single framework based on abduction.

As mentioned before, abduction needs to select the best
hypothesis, and hence this framework also needs to select
the best interpretation based on some evaluation measure.
Hobbs et al. extended their framework so that it gives a
cost to each interpretation as the evaluation measure, and
chooses the minimum cost interpretation as the best inter-
pretation. This framework is called weighted abduction. In
weighted abduction, observations are given with costs, and
background axioms are given with weights. It then performs
backward-reasoning on each observation, propagates its cost
to the assumed literals according to the weights on the ap-
plied axioms, and merges redundancies where possible. A
cost of interpretation is then the sum of all the costs on el-
emental hypotheses in the interpretation. Finally, it chooses
the lowest cost interpretation as the best interpretation.

3.1 The basics
Following (Hobbs et al. 1993), we use the following rep-
resentations for background knowledge, observations, and
hypothesis in weighted abduction:
• Background knowledge B: a set of first-order logical

formulae whose literals in its antecedent are assigned pos-

itive real-valued weights. In addition, both antecedent and
consequent consist of a conjunction of literals. We use a
notation pw to indicate “a literal p has the weight w.”

• Observations O: an existentially quantified conjunction
of literals. Each literal has a positive real-valued cost. We
use a notation p$c to denote “a literal p has the cost c,” and
c(p) to denote “the cost of the literal p.”

• Hypothesis H: an existentially quantified conjunction of
literals. Each literal also has a positive real-valued cost.
The cost of H is then defined as c(H) =

∑
h∈H c(h).

In the Hobbs et al.’s framework, inference procedure is only
defined on the formats defined above, although neither for-
mats of B, O nor H are mentioned explicitly.

3.2 Procedure of weighted abductive inference
Like logical abduction, H is abductively inferred from O
and B, and the costs of elemental hypotheses in H are
passed back from O multiplying the weights on the applied
axioms in B. When two elemental hypotheses are unified,
the smaller cost is assigned to the unified literal. Let us il-
lustrate how these procedure works taking the following ax-
ioms and observations as an example:

B = {∀x(p(x)0.3 ∧ q(x)0.9 ⇒ r(x)), (1)

∀x∃y(p(y)1.3 ⇒ b(x)), (2)

O = ∃a(r(a)$20 ∧ b(a)$10) (3)

A candidate hypothesis that immediately arises is simply
assuming O, i.e., H1 = ∃a(r(a)$20 ∧ b(a)$10), where
c(H1) = $20 + $10 = $30. If we perform backward infer-
ence on r(a)$20 using axiom (1), we get H2 = ∃a(p(a)$6 ∧
q(a)$18 ∧ b(a)$10) and c(H2) = $34. As we said, the
costs are passed back from r(a)$20 multiplying the weights
on axiom (1), and hence c(p(a)) = $20 · 0.3 = $6 and
c(q(a)) = $20 · 0.9 = $18.

If we perform backward inference on both r(a) and b(a)
by using axiom (1) and (2), we get another candidate hy-
pothesis H3 = ∃a, b(p(a)$6 ∧ q(a)$18 ∧ p(b)$13), in which
p(a)$6 is unifiable with p(b)$13 assuming that a and b
to be identical. In weighted abduction, since the cost of
unified literal is given by the smaller cost, H3 is refined
as ∃b(q(b)$18 ∧ p(a)$6), and c(H3) = $24. Considering
only these three candidate hypotheses, a solution hypothe-
sis H∗ = H3, which has a minimum cost c(H3) = $24.

We mentioned that weighted abduction is able to evaluate
the specificity of a hypothesis in Section 2.2. The mecha-
nism of specificity evaluation is accomplished by the prop-
agation of costs. We can see the working example of this
mechanism in the toy problem above: comparing c(H1) with
c(H2) means determining if r(a) should be explained more
specifically or not.

4 ILP-based reasoning for weighted
abduction

Now we describe our approach to perform weighted ab-
duction using ILP. Our approach, similar to a typical ab-
ductive inference system, takes a set of logical formulae as

B = {r1.3 ⇒ p,
t1.1 ⇒ q,

 t1.2 ⇒ r}

p$20 ∧ q$10	

r$26 t2
$11
	

t1
$31.2 	

H	
 P	
 c(H)	

p	
 q	
 r	
 t1	
 t2	

H1	
 p∧q	
 ●	
 ●	
 $30	

H2	
 p∧t2	
 ●	
 ○	
 ●	
 $31	

H3	
 r∧q	
 ○	
 ●	
●	
 $36	

H4	
 r∧t2	
 ○	
 ○	
 ●	
 ●	
 $37	

H5	
 t1∧q	
 ○	
 ●	
○	
●	
 $41.2	

H6	
 t1∧t2	
 ○	
 ○	
 ○	
●	
 ●	
 $42.2	

H7	
 t2	
 ○	
 ○	
 ○	
○	
 ●	
 $11	

Background knowledge:	

O = p$20 ∧q$10	

Potential elemental hypotheses:

P = {p, q, r, t1, t2}	

Observations:

Candidate hypotheses:	

← H*	

* t1 and t2 are unified in H7.	

Figure 1: The combinatorial representation of candidate hy-
potheses by set P of potential elemental hypotheses. The
black circle indicate that a proposition is in Hi, while
the white circle indicate that a proposition is explained by
Hi ∪B.

background knowledge, and a conjunction of ground literals
as observations. Our system finally outputs an existentially
quantified conjunction of literals as a solution hypothesis.

In this section, we first show candidate hypotheses in
weighted abduction can be generated by applying three sim-
ple operations. Secondly, we then formulate weighted ab-
duction as an optimization problem based on these opera-
tions.

4.1 Operations for hypotheses generation
Let B be background knowledge, O be observations and

H = {H1, H2, ...Hn} be a set of candidate hypotheses, each
of which is defined in Section 3.1. In order to enumerate can-
didate hypothesisHi, we can execute the following three op-
erations an arbitrary number of times (except Initialization).

Initialization

H ← O (4)

Backward reasoning∧n
i=1 p

wi
i ⇒ q ∈ B, q$cq ⊆ H∧n

i=1 p
$wi·cq

(5)

H ← H ∧
n∧

i=1

p
$wi·cq
i (6)

Unification

p(X)$cx ∈ H, p(Y)$cy ∈ H,∃θ(p(X)θ = p(Y)θ)

X = Y
(7)

H ← H \ p(X)max($cx,$cy) (8)

B = {s0.4∧r0.7 ⇒ p,
t1.1 ⇒ q,

 t1.2 ⇒ r}

p$20 ∧ q$10	

s$8 ∧ r$14 t2
$11
	

t1
$16.8 	

H	
 P	
 c(H)	

hp	
 rp	
 hq	
 rq hr rr hs	
 rs ht1	
 rt1 ht2	
 rt2	
 ut1,t2	

H1	
 p∧q	
 1	
 0	
 1	
 0	
 0	
 0	
 0	
 0	
 0	
 0	
 0	
 0	
 0	
 $30	

H2	
 p∧t2	
 1	
 0	
 1	
 1	
 0	
 0	
 0	
 0	
 0	
 0	
 1	
 0	
 0	
 $31	

H3	
 s∧r∧q	
 1	
 1	
 1	
 0	
 1	
 0	
 1	
 0	
 0	
 0	
 0	
 0	
 0	
 $32	

H4	
 s∧r∧t2	
 1	
 1	
 1	
 1	
 1	
 0	
 1	
 0	
 0	
 0	
 1	
 0	
 0	
 $33	

H5	
 s∧t1∧q	
 1	
 1	
 1	
 0	
 1	
 1	
 1	
 0	
 1	
 0	
 0	
 0	
 0	
 $34.8	

H6	
 s∧t1∧t2	
 1	
 1	
 1	
 1	
 1	
 1	
 1	
 0	
 1	
 0	
 1	
 0	
 0	
 $35.8	

H7	
 s∧t2	
 1	
 1	
 1	
 1	
 1	
 1	
 1	
 0	
 1	
 1	
 1	
 0	
 1	
 $19	

Background knowledge:	

O = p$20 ∧q$10	

Potential elemental hypotheses:

P = {p, q, r, s, t1, t2}	

Observations:

Candidate hypotheses:	

Example of constraints:	

C1: hp=1, hq=1
C2: rp≤hs+hr, hs = hr・1

 rt1 ≤ ut1,t2
C3: ut1,t2 ≤ ½ (ht1+ht2)

unifiable	

Figure 2: ILP representation for the space of candidate hypotheses in the case for propositional logic

Our central idea of ILP formulation follows. Once we
enumerate all elemental hypotheses that would be generated
by operations above (henceforth we call potential elemental
hypotheses), candidate hypotheses can be represented as an
arbitrary combination of potential elemental hypotheses. We
use P to denote a set of potential elemental hypotheses. This
idea is illustrated in Figure 1. Firstly set P of potential ele-
mental hypotheses is initialized by observation O and enu-
merated by backward reasoning on these hypotheses, and fi-
nally we get P = {p, q, r, t1, t2}. We give an unique assign-
ment to each literal generated by backward chaining, since a
hypothesis where unifiable literals are unified as in H7 can
be different from another where they are not as in H6 in the
case of predicate logic as a consequence of variable substitu-
tion. That is why we leave two literals t1 and t2 in P for the
back-chained proposition t, and consider distinct two candi-
date hypotheses.

Based on this idea, it is quite easy to extend hypothesis
finding to an optimization problem. For each p ∈ P , if we
had a 0-1 state variable that represents whether or not the
elemental hypothesis is included in a candidate hypothesis,
as in Figure 1, all possible H ∈ H can be expressed as the
combination of these state variables. Since our goal is to find
a hypothesis that has a minimum cost, this representation is
immediately used to formulate weighted abduction as an op-
timization problem which finds the assignment of state vari-
ables that minimizes the cost function. Note that the number
of candidate hypotheses is O(2n), where n is the number of
potential elemental hypotheses. We immediately see that the
approach which finds a minimal hypothesis by evaluating all
the candidate hypotheses intractable.

4.2 ILP-based formulation
First of all, we show how candidate hypotheses are ex-
pressed in ILP variables. We start with the simplest case,
i.e., B, O and H are restricted to propositional logic formu-
lae. We describe our ILP variables and constraints by using
a toy problem illustrated in Figure 2.

Hypothesis inclusion We introduce an ILP variable h ∈
{0, 1} defined as follows:

hp =

{
1 if p ∈ H or H ∪B |= p

0 otherwise
for each p ∈ P

For example,H2 in Figure 2 holds hp = 1, hq = 1, where
p is included in H2, and q is explained by t2 (i.e., H2 ∪
B |= q). Note that the state h = 1 is corresponding to the
black circle and white circle in Figure 1.

Zero cost switching If we perform backward reasoning on
elemental hypotheses, the back-chained literals are ex-
plained by the newly abduced literals, which means that
these elemental hypotheses do not pay its cost any more.
In addition, when two elemental hypotheses are unified,
the bigger cost of the elemental hypothesis is excluded.
This also implies that this elemental hypothesis does not
pay its cost. We thus introduce an ILP variable r ∈ {0, 1}
defined as follows:

rp =

{
1 if p does not pay its cost
0 otherwise

for each p ∈ P

In Figure 2, rq in H2 is set to 1 since q is explained by t2.
State of unification We prepare an ILP variable u ∈ {0, 1}

for expressing whether or not two elemental hypotheses
p ∈ P and q ∈ P are unified:

up,q =

{
1 if p is unified with q
0 otherwise

for each p, q ∈ P

In Figure 2, ut1,t2 in H7 is set to 1 since t1 and t2 are
unified.

Now that we can define c(H) by the sum of the costs for
p ∈ P such that p is included in a candidate hypothesis (i.e.,
hp = 1) and is not explained (i.e., rp = 0), which is the
objective function of our ILP problem:

minimize c(H) =
∑

p∈{p|p∈P,hp=1,rp=0}

c(p), (9)

where c(p) is the cost of a literal p passed back from obser-
vations according to backward-reasoning operation in Sec-
tion 4.1 when all potential elemental hypotheses are enu-
merated in advance. However, a possible world represented
by these ILP variables up to now includes an invalid can-
didate hypothesis (e.g., an elemental hypothesis might not
pay its cost even though it is neither unified nor explained).
Accordingly, we introduce constraints that limit a possible
world in ILP representation to only valid hypothesis space.

Constraint 1 Observation literals are always included in or
explained by a candidate hypothesis.

hp = 1 for each p ∈ O (10)

Constraint 2 An elemental hypothesis p ∈ P does not have
to pay its cost (i.e., rp = 1) only if it is explained or
unified. Namely, in order to set rp = 1, at least one literal
e such that explains p is included in or explained by a
candidate hypothesis (i.e., he = 1), or p is unified with at
least one literal q such that c(q) < c(p) (i.e., up,q = 1).
This can be expressed as the following inequality:

rp ≤
∑

e∈expl(p)

he +
∑

q∈sml(p)

up,q for each p ∈ P , (11)

where expl(p) = {e | e ∈ P, {e} ∪ B |= p}, and
sml(p) = {q | q ∈ P, c(q) < c(p)}. In Figure 2,
rp ≤ hs+hr is created to condition that q may not pay its
cost only if q is explained by s ∧ r. The constraint for t1,
rt1 ≤ ut1,t2 , states that t1 may not pay its cost only if it is
unified with t2. Note that this constraint is not generated
for t2 since c(t1) > c(t2).
Furthermore, if literals q1, q2, ..., qi obtained by expl(p)
are the form of conjunction (i.e., q1∧q2∧ ...∧qi), we use
an additional constraint to force their inclusion states are
consistent with the others (i.e., hq1 = hq2 = ... = hqi).
This can be expressed as the following inequality:

∑
a∈and(p)

ha = hp · |and(p)| for each p ∈ P, (12)

where and(p) denotes a set of a ∈ P such that a is con-
joined with p by conjunction. In Figure 2, hs = hr · 1 is
generated to represent that s and r are literals conjoined
by logical and. We need this constraint since inequality
(11) allows reducing even when one of literals obtained
by expl(p) is included in or explained by a candidate hy-
pothesis.

Constraint 3 Two elemental hypotheses p, q ∈ P can be
unified (i.e., up,q = 1) only if both p and q are included in
or explained by a candidate hypothesis (i.e., hp = 1 and
hq = 1).

up,q ≤
1

2
(hp + hq) for each p, q ∈ P (13)

For example, in Figure 2, ut1,t2 ≤ 1
2 (ht1 + ht2) is gener-

ated for the condition of unification of t1 and t2.

B = {∀x∃y(q(y)1.2 ⇒ p(x)) }

p(A)$20 ∧ q(B)$10 ∧ q(C)$15	

∃z q(z)$24
	

Background knowledge:	

O = p(A)$20∧q(B)$10∧q(C)$15	

Potential elemental hypotheses:

P = {p(A), ∃z q(z), q(B), q(C)}	

Observations:

State of variable substitution and unification:	

unifiable	

sz,B	
 sz,C	
 uq(z),q(B)	
 uq(z),q(C)	

-	
 0	
 0	
 0	
 0	

z=B	
 1	
 0	
 1	
 0	

z=C	
 0	
 1	
 0	
 1	

Example of constraints:	

C4: uq(z),q(B) ≤ sz,B
C5: sz,B + sz,C ≤ 1

unifiable	

Figure 3: Unification in ILP framework for the case for first-
order logic

Now we move on to the slightly more complicated case
where first-order logic is used in B, O and H . The sub-
stantial difference from the case of propositional logic
is that we must account for variable substitution to con-
trol the unification of elemental hypotheses. For exam-
ple, if we observed wife of(John,Mary) ∧man(John)
and had a knowledge ∀x∃y(wife of(x, y) ⇒ man(x)),
we could generate the potential elemental hypothesis
∃z(wife of(John, z)), where John is a non-skolem con-
stant, and z is existentially quantified variable. Then the hy-
pothesis ∃z(wife of(John, z)) could only be unified with
wife of(John,Mary) if we assume z = Mary. In or-
der to take variable substitution into account, we introduce
new variables. Hereafter, we use V to denote a set of exis-
tentially quantified variables in P , and C to denote a set of
non-skolem constants in P .1 We use Figure 3 as an example.

Variable substitution When two literals are unified, a vari-
able x ∈ V in the literals is substituted for a constant or
variable y ∈ {C ∪ V }. We introduce the new variable
s ∈ {0, 1} defined as:

sx,y =

{
1 if x is substituted for y
0 otherwise

For example, sz,C in Figure 3 is set to 1 since the variable
z is substituted for the constant C when q(z) and q(C)
are unified.

We also use additional constraints that limits unification so
that the framework checks the states of variable substitutions
needed for the unification, and consistency of substitutions:

Constraint 4 Two literals p, q ∈ P are allowed to be uni-
fied (i.e., up,q = 1) only when all variable substitu-
tions x/y involved by the unification are activated (i.e.,

1Henceforth, we use the terms “variable” and “constant” to rep-
resent an existentially quantified variable and non-skolem constant
for convenience.

sx,y = 1).

up,q ≤
∑

(x,y)∈usub(p,q) sx,y

|usub(p, q)|
for each p, q ∈ P, (14)

where usub(p, q) denotes a set of variable substitutions
that are required to unify p and q. In Figure 3, the con-
straint uq(z),q(B) ≤ sz,B is generated since z needs to be
substituted for B when q(z) and q(B) are unified.

Constraint 5 When a variable x can be substituted for
multiple constants A = {a1, a2, ..., ai} (i.e., sx,a1

=
1, sx,a2

= 1, ..., or sx,ai
= 1), the variable x can be sub-

stituted for only one constant ai ∈ A (i.e., at most one
sx,ai

can be 1). This can be expressed as follows:∑
ai∈ucons(x)

sx,ai
≤ 1 for each x ∈ V, (15)

where ucons(x) denotes a set of constants which can be
bound to a variable x. In Figure 3, since two constants
B and C can be bound to the variable z, the constraint
sz,B + sz,C ≤ 1 is created.

Constraint 6 The binary relation over (x, z) ∈ V×{V ∪C}
must be transitive (i.e., sx,z must be 1 if sx,y = 1 and
sy,z = 1 for all y ∈ V ∪C). This can be expressed as the
following constraints:

sx,y + sy,z ≤ 2 · sx,z (16)
sx,z + sy,z ≤ 2 · sx,y (17)
sx,y + sx,z ≤ 2 · sy,z (18)

Although this increases the number of constraints in
O(|V ∪ C|3), it is practical enough to consider the tran-
sitive relation over (x, y, z) ∈ Ve × Ve × Ce in a cluster
e = {Ve, Ce} ∈ E formed by an equivalence class of
such variables Ve and constants Ce for which are poten-
tially substituted (i.e., possibly used to unify some liter-
als), which typically produces more compact constraints.
Moreover, considering the transitivity over clusters avoids
the unnecessary growth of the number of constraints for
two cases: a cluster has less than 2 constants. If a cluster
had no constant, it would be unnecessary to enforce the
transitivity since we would be able to regard all the vari-
ables in the cluster as one single unknown entity. Simi-
larly, if a cluster had exactly one constant, all the vari-
ables in the cluster would be bound to the constant. Thus,
we create the above three constraints for each (x, y, z) ∈
Ve × Ve × Ce for each cluster e ∈ {e | e ∈ E, 2 ≤ |Ce|}.
Our approach is different from Santos (1994)’s LP for-

mulation in terms that our approach is capable of evaluat-
ing the specificity of hypotheses, as mentioned in Section
2.2. Specifically, explaining a literal p to reduce its cost (i.e.,
rp = 1) by a literal q forces us to pay another cost for q in-
stead (i.e., hq = 1, see Constraint 2). Therefore, usually this
new hypothesis q is meaning-less and is not favored since the
cost of explanation does not change largely (i.e., less specific
explanation is favored as in H1 and H3 in Figure 1). How-
ever, once we get a good hypothesis such that explains other
hypotheses at the same time (i.e., unified with other literals),

it is then favored as a result of drastic decrease of the expla-
nation cost, as in H7 in Figure 1 (i.e., more specific explana-
tion is favored). In our framework, the specificity evaluation
is successfully controlled by using the ILP variable h, r, u.

Another difference from Santos (1994)’s approach is that
his approach does not take unification into account in infer-
ence process, while our work dynamically makes unification
decision of literals. Our approach can express a literal in-
volving undetermined arguments in B,O,H , and can eval-
uate the goodness of variable substitution during inference
process at the same time. For example, suppose we have
B = {∀x, y(hate(x, y) ∧ hasBat(x) ⇒ hit(x, y))}, O =
∃z(hit(z,Bob) ∧ hate(Mary,Bob) ∧ hate(Kate,Bob) ∧
hasBat(Kate)). Back-chaining on hit(z,Bob) yields
the elemental hypotheses ∃z(hate(z,Bob) ∧ hasBat(z)),
where we can consider two variable substitutions: z =
Mary or z = Kate. If we take z = Mary, we do not
need to pay the cost for hate(Mary,Bob) since it is unified
with the observation. If we take z = Kate, we do not need
to pay the costs for hate(Kate,Bob) and hasBat(Kate)
since they are unified with the observations. Therefore, we
want to choose the cost-less hypothesis that assumes the
variable substitution z = Kate as the best hypothesis. In
our framework, this choice is efficiently expressed through
the ILP variables u, s and their constraints.

5 Evaluation
We evaluated the efficiency of our ILP-based framework for
weighted abduction by analyzing how the inference time
changes as the complexity of abduction problems increases.
In order to simulate the diversity of the complexity, we in-
troduced a parameter for the setting of experiment d, which
limits the depth of backward inference chain. If we set d = 1
and had p in observation, the framework would apply back-
ward inference to p only once, i.e., it would not apply back-
ward inference to the abduced literals p′ any more. We also
compared the performance with Mini-TACITUS2 (Mulkar,
Hobbs, and Hovy 2007), which is the state-of-the-art tool of
weighted abduction. To the best of our knowledge, Mini-
TACITUS is only a tool of weighted abduction available
for now. We have investigated (i) how many problems in
our testset Mini-TACITUS could solve in 120 seconds, and
(ii) the average of its inference time for solved problems.
For solving ILP, we have a range of choices from non-
commercial solvers to commercial solvers. In our experi-
ments, we adopted SCIP3, which is the fastest solver among
non-commercial solvers. SCIP solves ILP problems using
the branch-cut-and-price method.

5.1 Dataset
Our test set was extracted from the dataset originally de-
veloped for Ng and Mooney (1992)’s abductive plan recog-
nition system ACCEL. We extracted 50 plan recognition
problems and 107 background axioms from the dataset. The
plan recognition problems provide agents’ partial actions as

2http://www.rutumulkar.com/
3http://scip.zib.de/

0!
20!
40!
60!
80!
100!
120!
140!
160!
180!

d=1! d=2! d=3! d=4! d=5!

Av
er

ag
ed

 n
um

be
r o

f!
 p

ot
en

tia
l e

le
m

en
ta

l h
yp

ot
he

se
s	

Depth parameter d	

Figure 4: The complexity of each problem setting

a conjunction of literals. For example, in the problem t2, the
following observation literals are provided:
(1) inst(get2, getting) ∧ agent get(get2, bob2) ∧

name(bob2, bob) ∧ patient get(get2, gun2) ∧
inst(gun2, gun) ∧ precede(get2, getoff2) ∧
inst(getoff2, getting off) ∧
agent get off(getoff2, bob2) ∧
patient get off(getoff2, bus2) ∧ inst(bus2, bus) ∧
place get off(getoff2, ls2) ∧ inst(ls2, liquor store)

This logical form denotes a natural language sentence “Bob
got a gun. He got off the bus at the liquor store.” The plan
recognition system requires to infer Bob’s plan from these
observations using background knowledge. The background
knowledge base contains Horn-clause axioms such as:
(2) inst(R, robbing) ∧ get weapon step(R,G) ⇒

inst(G, getting)

From this dataset, we created two types of testsets: (i)
testset A: Ng and Mooney’s original dataset, (ii) testset B:
a modified version of testset A. For both testsets, we as-
signed uniform weights to antecedents in background ax-
ioms so that the sum of those equals 1, and assigned $20
to each observation literal. We created testset B so that
the background knowledge base does not contain a con-
stant in its arguments since Mini-TACITUS does not al-
low us to use constants in background knowledge axiom.
Specifically, we converted the predicate inst(X,Y) that de-
notes X is a instance of Y into a form of inst Y (X) (e.g.,
inst(get2, getting) is converted into inst getting(get2)
). We also converted an axiom involving a constant in
its arguments into neo-Davidsonian style. For example,
occupation(A, busdriver), where busdriver is a constant,
is converted to busdriver(X) ∧ occupation(A,X). These
two conversions did not affect the complexity of the prob-
lems substantially.

5.2 Results and discussion
We first show the complexity of abduction problems in

our testset A. Figure 4 shows the number of potential el-
emental hypotheses, P described in Section 4.2, averaged
for 50 problems. As d increases, the number of elemental
hypotheses increases constantly. Recall that the number of

0!

500!

1000!

1500!

2000!

2500!

d=1! d=2! d=3! d=4! d=5!

Av
er

ag
ed

 n
um

be
r o

f!
va

ria
bl

es
/c

on
st

ra
in

ts
	

Depth parameter d	

variables!
constraints!

Figure 5: The complexity of each ILP problem

0.000	

0.200	

0.400	

0.600	

0.800	

1.000	

1.200	

1.400	

1.600	

1.800	

2.000	

d=1	
 d=2	
 d=3	
 d=4	
 d=5	

In
fe
re
nc
e	

(m

e	

[s
ec
on

ds
]	

Depth	
 parameter	
 d	

ILP	

prepare	

Figure 6: The efficiency of the ILP-based formulation
“prepare” and “ILP” denote the time required to convert a
weighted abduction problem to ILP problem, and the time

required to solve the ILP problem respectively.

candidate hypotheses is O(2n), where n is the number of
potential elemental hypotheses. Therefore, in our testset, we
roughly have 2160 ≈ 1.46 · 1048 candidate hypotheses for a
propositional case if we set d = 5. Figure 5 illustrates the
number of variables and constraints of a ILP problem for
each parameter d, averaged for 50 problems. Although the
complexity of the ILP problem increases, we can rely on an
efficient algorithm to solve a complex ILP problem.

The results of inference time in our framework on test-
set A is given in Figure 6 in the two distinct measures: (i)
the time of conversion to ILP problem, and (ii) the time
ILP technique had took to find an optimal solution. Figure 6
demonstrates that our framework is capable of coping with
larger scale problems, since the inference can be performed
in polynomial time to the size of the problem.

Then we show the inference time of Mini-TACITUS on
testset B. The complexity of the testset was quite similar
to the testset A since the modification affecting the origi-
nal complexity occurred in only 2 axioms. On testset B, we
have confirmed that our framework had solved the 100%
of the problems for 1 ≤ d ≤ 5, and it took 1.16 seconds
when averaged for the 50 problems of d = 5. The results

Table 1: The results of weighted abduction on Mini-
TACITUS

% of solved Avg. of inference times [sec.]
d = 1 28.0% (14/50) 8.3
d = 2 20.0% (10/50) 10.2
d = 3 20.0% (10/50) 10.1

“% of solved” indicates that the ratio of problems
Mini-TACITUS could solve in 120 seconds to all the 50
problems. “Avg. of inference times” denotes the inference
time averaged for the solved problems.

of abductive reasoning on Mini-TACITUS is shown in Table
1. The results show that the 72% of the problems (36/50)
could not be solved in 120 seconds for the easiest setting
d = 1. For the slightly complex setting d ≥ 2, 80% of
the problems (40/50) could not be solved in 120 seconds.
We found that no additional axioms were applied in the 10
solved problems for d ≥ 3: the search space did not change.
This indicates that Mini-TACITUS is sensitive to the depth
parameter, which means the growth rate of inference time
is very large. This becomes a significant drawback for ab-
ductive inference using large-scale background knowledge.
Note that the inference time could not be directly compared
with our results since our implementation is C++, whereas
Mini-TACITUS is Java-based.

6 Conclusions
We have addressed the scalability issue of abductive rea-
soning. Since recent efforts on computational linguistics
study have facilitated large-scale commonsense reasoning,
the scalability issue is a significant problem. We have pro-
posed an ILP-based framework for weighted abduction,
which maps weighted abduction to a linear programming
problem and efficiently finds an optimal solution. We have
demonstrated that our approach efficiently solved the prob-
lems of abduction, and is promising compared with the state-
of-the-art tool for weighted abduction. Future work includes
extending our framework to use rich semantic representa-
tion in B, O and H . Our first plan is to incorporate a logical
negation operator (¬), which means that contradiction would
also be expressed in our framework. The major advantage of
an ILP-based framework is that most of the logical operators
can be expressed through simple inequalities. Our future di-
rection also includes incorporating forward chaining opera-
tion into our framework, where the entailment relation (⇒)
is also represented as an inequality straightforwardly.

7 Acknowledgments
This work was supported by Grant-in-Aid for JSPS Fellows
(22-9719).

References
Allen, J. F., and Perrault, C. R. 1980. Analyzing intention
in utterances. Artificial Intelligence 15(3):143–178.

Blythe, J.; Hobbs, J. R.; Domingos, P.; Kate, R. J.; and
Mooney, R. J. 2011. Implementing Weighted Abduction
in Markov Logic. In IWCS.
Carberry, S. 1990. Plan Recognition in Natural Language
Dialogue. MIT Press.
Chambers, N., and Jurafsky, D. 2009. Unsupervised Learn-
ing of Narrative Schemas and their Participants. In ACL,
602–610.
Charniak, E., and Goldman, R. P. 1991. A Probabilistic
Model of Plan Recognition. In AAAI, 160–165.
Charniak, E., and Shimony, S. E. 1994. Cost-based abduc-
tion and map explanation. Artificial Intelligence 66(2):345–
374.
Hobbs, J. R.; Stickel, M.; Appelt, D.; and Martin, P. 1993.
Interpretation as Abduction. Artificial Intelligence 63:69–
142.
Ishizuka, M., and Matsuo, Y. 1998. SL Method for Com-
puting a Near-optimal Solution using Linear and Non-linear
Programming in Cost-based Hypothetical Reasoning. In
PRCAI, 611–625.
Kate, R. J., and Mooney, R. J. 2009. Probabilistic Abduction
using Markov Logic Networks. In PAIRS.
Mulkar, R.; Hobbs, J. R.; and Hovy, E. 2007. Learning
from Reading Syntactically Complex Biology Texts. In The
8th International Symposium on Logical Formalizations of
Commonsense Reasoning.
Ng, H. T., and Mooney, R. J. 1992. Abductive Plan Recogni-
tion and Diagnosis: A Comprehensive Empirical Evaluation.
In KR, 499–508.
Ovchinnikova, E.; Montazeri, N.; Alexandrov, T.; Hobbs,
J. R.; McCord, M. C.; and Mulkar-Mehta, R. 2011. Abduc-
tive Reasoning with a Large Knowledge Base for Discourse
Processing. In IWCS.
Poole, D. 1993a. Logic Programming, Abduction and Prob-
ability: a top-down anytime algorithm for estimating prior
and posterior probabilities. New Generation Computing
11(3-4):377–400.
Poole, D. 1993b. Probabilistic Horn abduction and Bayesian
networks. Artificial Intelligence 64 (1):81–129.
Poon, H., and Domingos, P. 2010. Unsupervised Ontology
Induction from Text. In ACL, 296–305.
Raghavan, S., and Mooney, R. J. 2010. Bayesian Abductive
Logic Programs. In STARAI, 82–87.
Santos, E. 1994. A linear constraint satisfaction approach to
cost-based abduction. Artificial Intelligence 65 (1):1–27.
Sato, T. 1995. A statistical learning method for logic pro-
grams with distribution semantics. In ICLP, 715–729.
Schoenmackers, S.; Davis, J.; Etzioni, O.; and Weld, D.
2010. Learning First-order Horn Clauses from Web Text.
In EMNLP, 1088–1098.
Suchanek, F. M.; Kasneci, G.; and Weikum, G. 2007. Yago:
A Core of Semantic Knowledge. In WWW. ACM Press.

