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Introduction

¢ Goal: Plan recognition from natural
language texts

¢ Adopt abduction-based framework
— Hobbs et al. (93)’s Weighted abduction

¢ No tools available for large-scale problem



Scalability Problem

¢ Experiments with Mini-TACITUS (Mulkar-
Mehta 07) on Ng & Mooney (92)’s story
understanding dataset i o based

— How many problems were sol Reasonmg
minutes? How much did it take*
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Hobbs+ (93)’s Weighted Abduction

¢ Abduction-based framework of
natural language understanding

¢ “Interpreting sentences is to prove the logical
forms of the sentences.”
— Merging redundancies where possible
— Making assumptions where necessary

¢ Important features
— Best explanation is selected by assumability costs

— Evaluating both likelihood and specificity
appropriateness of the best explanation



Abduction

¢ Inference to the best explanation
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B, O, H: sets of logical formulae



Scheme of Weighted Abduction

AXIOM:
assumability weight is assigned

UNIFICATION:
smaller cost is taken

BACKCHAINED:
cost is propagated
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OBSERVATION:
assumability cost is assigned




Background knowledge: B
robbing!-* — get-gun
robbing!> — go-to-store
hunting!'! — get-gun
shopping!+ — go-to-store
poor!3 — robbing

hunting®!!

Hypothesis: H
{hunting®!!, shopping®'4}
{robbing®!?}
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Background knowledge: B
robbing!? — get-gun
robbing'> — go-to-store
hunting!'! — get-gun
shopping! 4 — go-to-store
poor!3 — robbing

Implementation Issue:
The combinatorial explosion of

candidate hypotheses.
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Naive approach ~

H, = {robbing®!?}
Ly H,= {poorsis)
H; = {hunting®!!, shopping®!4}
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Our solution: ILP-based Reacnning \
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Key ideas: A
¢ Assign 0-1 ILP variables over all literals Poer-qun Prunting Probbing -+
potentially included in the best hypothesis  "ger-oun Thunting Trobbing -+
for representing candidate hypotheses Uy obbingl,robbing2 -+

¢ Cost of hypothesis is represented asthe  C(H) =10 - &
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¢ There is efficient algorithms to find the arg min C(H)
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ILP formulation (h — r — w)
arghmin Z c(p)
pe{plpePhp=1}

¢ P: set of literals potentially included in hypothesis
¢ 121 1if literal p is included in hypothesis

H = {robbing®'?}

hunting®!'; 1, robbing®!% 4, robbing®'%; ; shopping®'#: /1
\= 0 / -0 \ -° / =0
get-gun’'; /1, go-to-store$10;;‘ higs
=1 =

P = {get-gun, go-to-store, hunting, robbingl, ...}
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ILP formulation (h = r — 1)
arg min Z c(p)

h,
" pe{plpeP,h,=1,r,=0}

¢ P: set of literals potentially included in hypothesis
¢ 1,211t literal p is included in hypothesis
¢ 1. 1ifliteral p doesn't pay its cost

H = {robbing®!?}

hunting®!': 1, r, robbi‘ng$12: h.,r, ro?bing$15; h. r, shopping$*:p_ r

\=0,0 / =1,0 \ =1,V =0,0

get-gun®% i, 1, go-to-store$10.‘é oo Ty
=1,1 =1,1

P = {get-gun, go-to-store, hunting, robbingl, ...}



ILP formulation (h > r — u)
arg min Z c(p)
" pe{plpe Php=1,r,=0}

¢ P: set of literals potentially included in hypothesis
¢ 1,211t literal p is included in hypothesis

¢ r,:1if literal p doesnt pay its cost

¢ u, 1 ifliteral p is unified with literal g

H = {robbing®!?}

hunting®!': 1, r, robbi‘ng$12: h.,r, rolgbing$15; h. r, shopping$*:p_ r

\: 0,0 / \‘\: L0 \ b V =0,0

get-gun®10; /s go-to-store$10.‘; hyy 1o
=1,1 =1,1

P = {get-gun, go-to-store, hunting, robbingl, ...}



ILP Constraints

Literals do not pay cost (r=1) only if they are

Literals can be unified (u=1) onl
(i) explained by another literal (h=1), or ( ) only

if they are hypothesized (h=1)

(ii) unified with another literal (u=1) of lesser cost
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get-gun®1%: A, 1o, go-to-store$10: A, 7y

Literals in observations must be
included in a hypothesis
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Evaluation

¢ How scalable is our approach?

— Plotted (depth, inference time)
* The depth limit of back-chaining
* Inference time averaged for all problems

¢ Dataset

— 50 problems in Ng & Mooney (92)’s story
understanding corpus



Results

T&EE®

¢ The increase of inference time is not exponential
to the number of candidate hypotheses

> Indicates the efficiency of our approach!



Summary

¢ Addressed the issue of scalability for
abductive reasoning

¢ Proposed ILP-based approach to Hobbs
et al. (93)’s weighted abduction

¢ Results of our experiments showed that:

— our approach efficiently finds the best
explanation

¢ Future work
— Exploring the semantics of weights, costs
— To handle negation in ILP-based approach

THANK YOU!



