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Satisfiability Testing	

•  Input: set of clauses (tp. CNF)!
– e.g., {¬rainy ∨ wet, ¬sprinkler ∨ wet, 

¬rainy ∨ ¬sprinkler} 
• c.f. equivalent to {rainy → wet, sprinkler → 

wet, ¬rainy ∨ ¬sprinkler} 
• Output: world that satisfies all input 

clauses!
– world: truth assignment to propositions!
– e.g., {rainy=T, wet=T, sprinkler=F} 

• c.f., (*) {rainy=T, wet=T, sprinkler=T}	
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Markov Logic: Intuition 

l  A logical KB is a set of hard constraints 
on the set of possible worlds 

l  Let’s make them soft constraints: 
When a world violates a formula, 
It becomes less probable, not impossible 

l  Give each formula a weight 
(Higher weight  ⇒  Stronger constraint) 

( )∑∝ satisfiesit  formulas of weightsexpP(world)

Excerpt from http://homes.cs.washington.edu/~pedrod/803/	



Example: Friends & Smokers 
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Smokes(B) 
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Cancer(B) 

Friends(B,B) 

Two constants: Anna (A) and Bob (B) 

Excerpt from http://homes.cs.washington.edu/~pedrod/803/	



Markov Logic Networks 
l  MLN is template for ground Markov nets 
l  Probability of a world x: 
 
 
 
 
l  Typed variables and constants greatly reduce 

size of ground Markov net 
l  Functions, existential quantifiers, etc. 
l  Infinite and continuous domains 

Weight of formula i No. of true groundings of formula i in x 
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Excerpt from http://homes.cs.washington.edu/~pedrod/803/	



MAP Inference 

l  Problem: Find most likely state of world 
given evidence 

)|(maxarg xyP
y

Query Evidence 

Excerpt from http://homes.cs.washington.edu/~pedrod/803/	



MAP Inference 

l  Problem: Find most likely state of world 
given evidence 

l  This is just the weighted MaxSAT problem 
l  Use weighted SAT solver 

(e.g., MaxWalkSAT [Kautz et al., 1997]  
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Excerpt from http://homes.cs.washington.edu/~pedrod/803/	



Previous approaches (p. 2)	
1.  Ground first-order knowledge base!

2.  Use propositional weighted MaxSAT 
solver (or its variant)!

–  MaxWalkSAT [Singla & Domingos 05]!
–  LazySAT [Poon & Domingos 06]!
–  Cutting Plane Inference [Riedel 09]!
–  Integer Linear Programming [Huynh 10]!
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is obtained by substituting every occurrence of variable
x
i

in f with X
i

. A ground formula is a formula ob-
tained by substituting all of its variables with a constant.
A ground KB is a KB containing all possible groundings
of all of its formulas. For example, the grounding of a
KB containing one formula, Smokes(x) ) Asthma(x)
where �x = {Ana,Bob}, is a KB containing two formu-
las: Smokes(Ana) ) Asthma(Ana) and Smokes(Bob)
) Asthma(Bob).

Problem:	  
Grounding	  produces	  a	  huge	  search	  space!	  Q

such that each element in a subset has the same probability.
Thus, instead of performing a search for the MAP solu-
tion over O(2

P
n

i=1 d

i

) assignments as the ground inference
algorithms do, we can perform the search over an expo-
nentially smaller O(

Q
n

i=1(di + 1)) space, yielding a lifted
MAP inference algorithm.



Solution 1/2: intuition (p.4)	
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that they contain several worlds with the same probabil-
ity. We can group together these equi-probable worlds and
perform MAP inference by just iterating over the groups,
selecting the group with the maximum probability. The fol-
lowing example illustrates this grouping.R(A) R(B) S(A) S(B) Weight Groups

0 0 0 0 0 (0,0)
0 0 0 1 2w1 + w3 (0,1)
0 0 1 0 2w1 + w3 (0,1)
0 0 1 1 4w1 + 2w3 (0,2)
0 1 0 0 2w1 + w2 (1,0)
0 1 0 1 3w1 + w2 + w3 (1,1)
0 1 1 0 3w1 + w2 + w3 (1,1)
0 1 1 1 4w1 + w2 + 2w3 (1,2)
1 0 0 0 2w1 + w2 (1,0)
1 0 0 1 3w1 + w2 + w3 (1,1)
1 0 1 0 3w1 + w2 + w3 (1,1)
1 0 1 1 4w1 + 2w3 + w2 (1,2)
1 1 0 0 4w1 + 2w2 (2,0)
1 1 0 1 4w1 + 2w2 + w3 (2,1)
1 1 1 0 4w1 + 2w2 + w3 (2,1)
1 1 1 1 4w1 + 2w2 + 2w3 (2,2)

Figure 1: Weights of all assignments to ground atoms and
(lifted) groups for the non-shared MLN: [R(x)_S(y), w1];
[R(x), w2]; and [S(y), w3] with domains given by �

x

=

�

y

= {A,B}.

equi-probable groups for these assignments. It turns out

that each group can be represented by a pair (i, j) where

i and j are the number of true groundings of R and S re-

spectively. Namely, i, j 2 {0, 1, 2}. Thus, to compute the

MAP tuple, we only have to iterate over 9 groups while the

ground (naive) MAP inference algorithm will iterate over

16 assignments. In general, the number of groups will be

equal to while the number of possible

The above is true if an MLN is a non-shared.	
Definition 1. A normal MLN is called a non-shared MLN

if each of its formulas is non-shared. A formula f
i

is non-

shared if every logical variable appears at most once in the

formula. In other words, in a non-shared MLN, no logical

variable is shared between the atoms in a formula.

For example, R(x) _ S(y) is a non-shared formula. How-
ever, R(x) _ S(x) is not because x is shared.



Solution 1/2: formal (p.4) 	
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Theorem 1. Given a non-shared MLN M, let !1 and !2 be

two worlds such that for each atom R in the MLN, the num-

ber of true groundings of R in !1 is equal to the number of

true groundings of R in !2. Then, PrM(!1) = PrM(!2).

Theorem 1 yields the following lifted inference algorithm.
Let {R1,R2, . . . ,Rn

} be the atoms in the non-shared MLN.
Let d

i

denote the domain size of R
i

(the domain of an
atom equals the cartesian product of the domains of its
logical variables). By Theorem 1, all the ground assign-
ments of the MLN can be grouped into assignments of the
form h(R

i

, a
i

)|i 2 {1, . . . , n}i where a
i

2 {0, . . . , d
i

}
and the assignment indicates a

i

groundings of R
i

are
true. We will refer to (R

i

, a
i

) as a counting assignment

[14]. The algorithm iterates over all tuples of the form:
h(R1, a1), . . . , (Rn

, a
n

)i, computes the weight of the tu-
ple, and returns the tuple with the maximum weight as the
MAP tuple. This lifted algorithm is clearly more efficient
than its propositional counterpart. The search space over
which the propositional algorithm operates is bounded by
O(2

P
n

i=1 d

i

) where n is the number of atoms in the MLN.
On the other hand, the search space of the lifted algorithm
is bounded by O(

Q
n

i=1(di + 1)). Since the search space
is bounded polynomially by the domain size of the logical
variables, we have:

(Proof: omitted)	

各アトム Ri について、何個の 
groundings が true であるかを 
考えれば十分なので...	

前ページの一般化	



Solution 2/2: introduction (p.4)	
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propositional MAP algorithms, it turns out that we can fur-
ther reduce the search space for a sub-class of non-shared
MLNs, namely non-shared MLNs without self-joins.2 We
will present this result next.

�
2We say that a formula has no self-joins if a predicate symbol

appears at most once in the formula.

○: R(x) ∨ S(y)  
×: R(x) ∨ S(y) ∨ R(y)	
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Solution 2/2: intuition (p.5)	
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of x, y is {A,B,C,D,E}. If we iterate through all pos-

sible counting assignments to R and S and plot the total

weight of satisfied clauses as a function of counting assign-

ment of R and S we get the plot in Figure 2. Figure 2 shows

that the function in the plot has only four extreme points:

Example 2. Consider the MLN used in Example 1. Let

w1 = �4, w2 = 5 and w3 = 3. Assume that the domain

counting assignment:!
<(R, 0), (S, 0)> に対応	

that the function in the plot has only four extreme points:

(0, 0), (0, 5), (5, 0) and (5, 5). These extreme points corre-

spond to all groundings of R and S as either being all true

or all false. Since the MAP value can only lie on these ex-

treme points, we only have to evaluate these extreme points

for computing the MAP value. It turns out that the MAP

tuple is h(R, 0), (S, 0)i.

counting assignment:!
<(R, 0), (S, 5)> に対応	

MAP solution	



Solution 2/2: formal (p.5) 	
13	

Theorem 3. For a non-shared MLN without self-joins, in

at least one of the MAP solutions, all predicates have uni-

form assignments.

Corollary 1. The MAP inference in a non-shared MLN M
that contains no self-joins can be converted to an equiva-

lent propositional weighted Max-SAT problem with number

of variables equal to the number of first order atoms in M.

atoms of the predicate R (and the predicate S) have the
same truth value. We will refer to this kind of assignment
(i.e., all ground atoms having the same truth value) as a
uniform assignment [1]. This observation, that the atoms
have a uniform assignment in the MAP state, holds not only

(Proof: omitted)	

Proof. Given a non-shared MLN, M with m weighted
clauses {(C

i

;w
i

)}m
i=1 that contains no self-joins, we first

construct a weighted propositional knowledge base S . We
create S = {(C 0

i

;w0
i

)}m
i=1 with v propositional variables

where every v
k

2 v corresponds to a distinct atom R
v

k

in
M. All atoms in M have a corresponding variable in v

and vice versa. The assignment true to variable v
k

cor-
responds to the positive uniform assignment to R

v

k

, i.e.
- (R

v

k

, �R
v

k

) and assigning false to variable v
k

corre-
sponds to the negative uniform assignment to R

v

k

, i.e. -
(R

v

k

, 0). C 0
i

is constructed by replacing each atom in C
i

by
its corresponding variable in v. The weight of the clause
is computed as w0

i

= �

C

i

⇥ w
i

, where �

C

i

is the number
of possible groundings of C

i

. For uniform assignment, all
groundings of each clause C is either satisfied or none of

1. それぞれの atom に、命題変数 
vk を対応させる。 
　vk=T: Rvk は positive uniform assignment 
　vk=F: Rvk は negative uniform assignment 
  (...つまり、(Rvk, ΔRvk) or (Rvk, 0)） 
 
2. Ci のそれぞれのアトムを、Rvk で 
置き換える。 
　重みは、wi × ΔCi 

 
3. Weighted MaxSAT solver に投 
げ vk の割り当てを求め、対応する 
atom の真偽値に変換  



Possible extensions (p.6)	

• Unit propagation!

• Pure literal elimination	

14	Includes	  excerpt	  from	  h:p://en.wikipedia.org/wiki/Unit_propagaAon	

Proposition 1. Given an MLN M, if a predicate S appears

in k clauses C = {C
i

;w
i

}k
i=1, (i) if w

i

� 0, 8 1  i  k
and S either always occurs as a positive literal or always

occurs as a negative literal in M, every C
i

2 C can be

removed from M; and (ii) if w
i

< 0, 8 1 < i  k and S
either always occurs as a positive literal or always occurs

as a negative literal in M, then every occurrence of S can

be removed from M.

The pure literal elimination rule for SAT formulas [4] when
lifted to MAP inference for MLNs, removes (i) Clauses
guaranteed to be satisfied for all groundings; and (ii) Atoms
guaranteed to be false for all groundings. The following
proposition specifies the pure literal elimination rule for



How much scalable is it?	
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For our experiments, we implemented two lifted MAP al-
gorithms, (i) An anytime exact solver based on Integer Lin-
ear Programming (L-ILP); and (ii) An anytime approxi-
mate solver based on WalkSAT architecture (L-MWS).

MaxWalkSAT [18], a randomized local-search algorithm.
We compared both our algorithms with MaxWalkSAT
which is the MAP inference algorithm implemented within
two state-of-the-art MLN systems, Alchemy (MWS) and
Tuffy (TUFFY)[15]. Since both these systems produce ap-
proximate results, we implemented an exact MAP infer-
ence algorithm using Gurobi (ILP). All three algorithms,
MWS, TUFFY and ILP work on the propositional search
space, i.e. they ground the entire MLN before performing
MAP inference.

Lifted family:!
L-ILP!
L-MWS	

Propositional family:!
MWS!
TUFFY!
ILP	

v.s.	



Dataset	
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(i) A Student MLN having four formulas:

Teaches(teacher,course) ^ Takes(student,course)
! JobOffers(student,company);

Teaches(teacher,course);

Takes(student,course); and

¬JobOffers(student,company).

(ii) WebKB MLN [12] from the Alchemy web page, con-
sisting of three predicates and six formulas.

(iii) Citation Information-Extraction (IE) MLN [12]
from the Alchemy web page, consisting of five pred-
icates and fourteen formulas.

← !!!?!

Available at http://alchemy.cs.washington.edu/data/	



Results	
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(c) Student-500 (62 Billion clauses)

Figure 3: Cost vs Time: Cost of unsatisfied clauses (smaller is better) against time for benchmark MLNs for different domain sizes.
Notation used to label each figure: MLN-domainsize(number of ground clauses in the MLN). The standard deviation is plotted as error-  For (b), (c), propositional family ran out of memory.!

-  ILP-based solver is efficient	expected they perform differently on the benchmarks, with
L-ILP being the superior approach. However, the main
virtue of our approach is that we could use any off-the-

shelf solver that is purely propositional in nature to perform

lifted inference. This allows us to scale to large domain-
sizes without implementing a new lifted solver. We believe
that this abstraction greatly simplifies the development of
lifted algorithms by benefitting from the advances made in
propositional algorithms.


