A Neural Language Model for Dynamically Representing the Meanings of Unknown Words and Entities in a Discourse

Sosuke Kobayashi

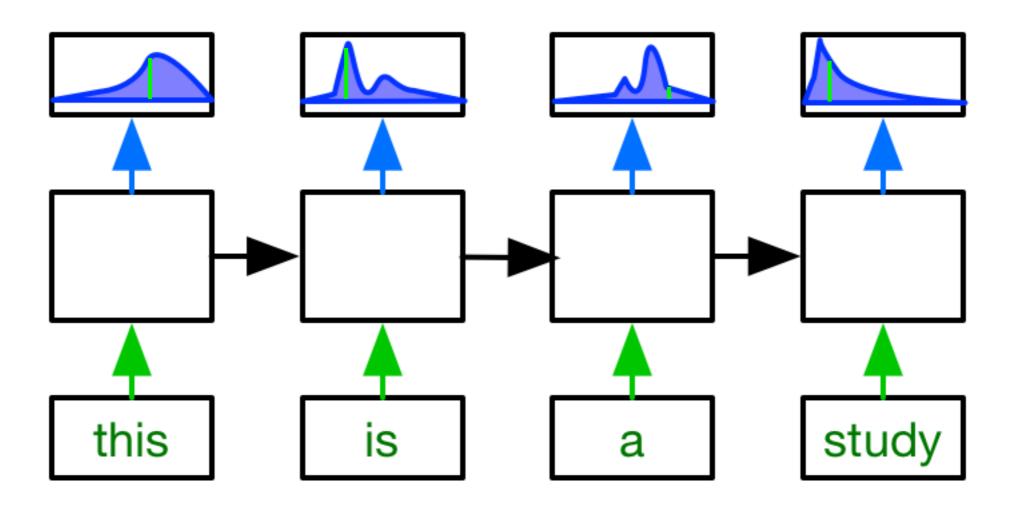
Naoaki Okazaki

Tokyo Institute of Technology

Kentaro Inui

Tohoku University / RIKEN

RNN Language Model

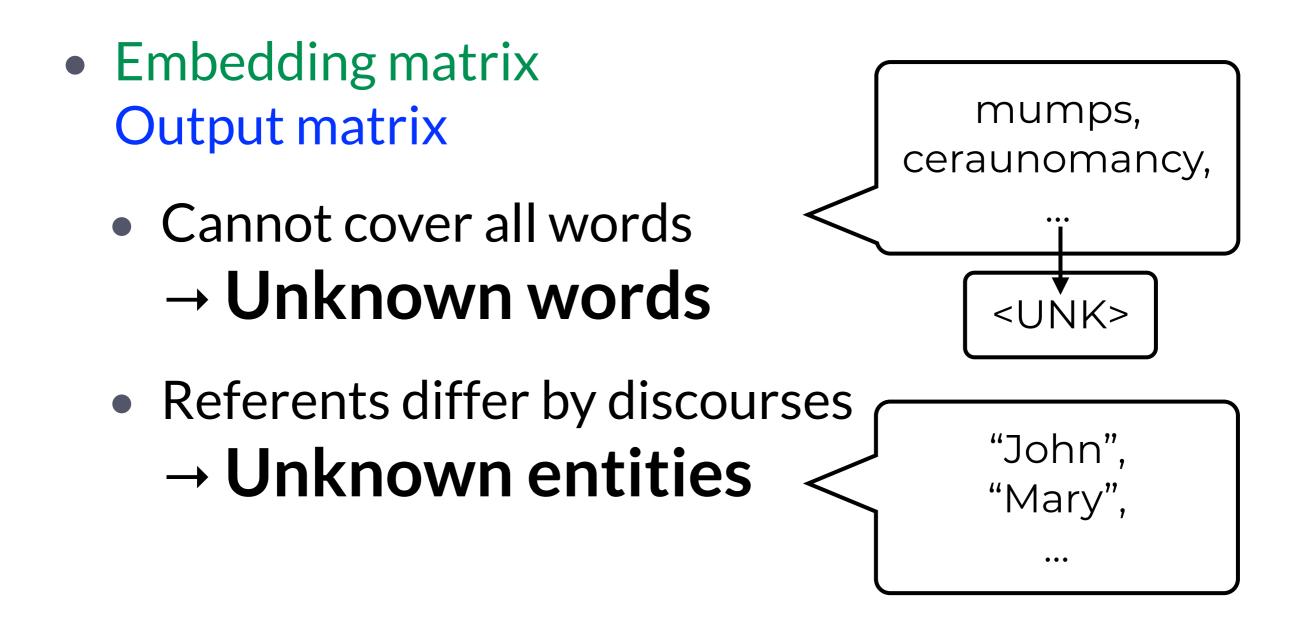


- Output matrix: calculate probability
- RNN matrices: encoding context
- Embedding matrix: represent word meaning

Neural Language Model

- Embedding matrix Output matrix
 - Cannot cover all words
 → Unknown words
 - Referents differ by discourses
 → Unknown entities

Neural Language Model



Dynamic Entity Representation

[Kobayashi et al. NAACL 2016]

 Unknown's meaning representation cannot be obtained statically...

Dynamically update meaning representation while reading text

- Infer on-the-fly meanings from context
 - "she contracted mumps" \rightarrow mumps is a disease?
 - *"John* loves Fender" → *"John*" is a guitarist?

Usage: Input Embedding

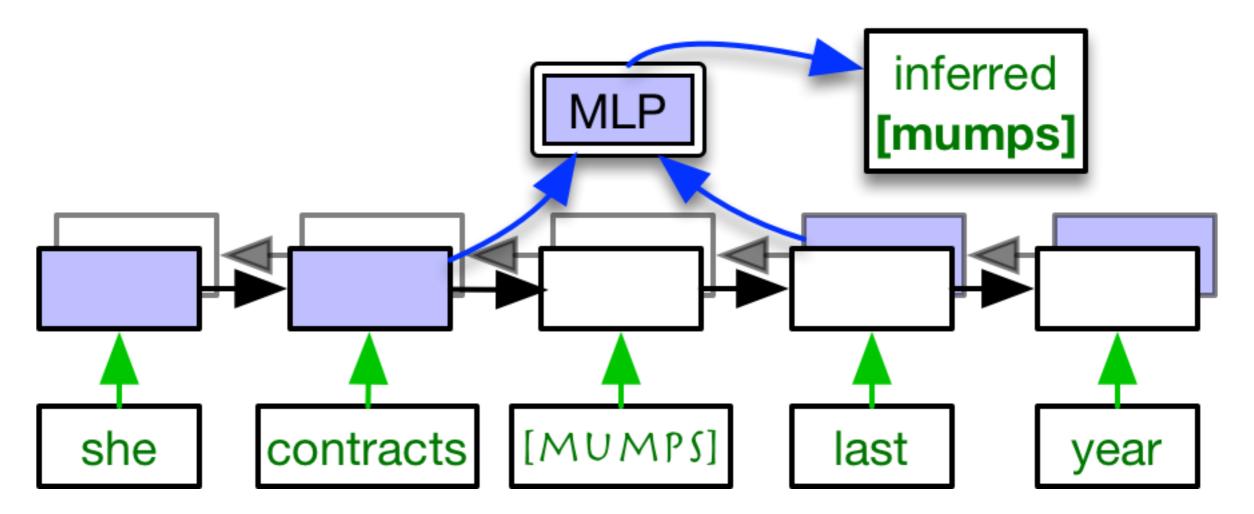
- Language models <u>encode context words</u> and predict next words
 - Input word embeddings can be replaced
- Dynamic modeling makes <u>context</u> informative
 - "... with him, <u>John</u> played [???]"
 - with dynamic model:
 "... with him, < John; guitarist > played [???]"

Usage: Output Matrix

- Language models encode context words and <u>predict next words</u>
 - Output matrix's rows can be replaced
- Dynamic modeling makes <u>target</u> informative
 - "... she is a big fan of [???]"
 John? Mary?
 - with dynamic model:
 "... she is a big fan of [???]"
 <guitarist>? <mother>?

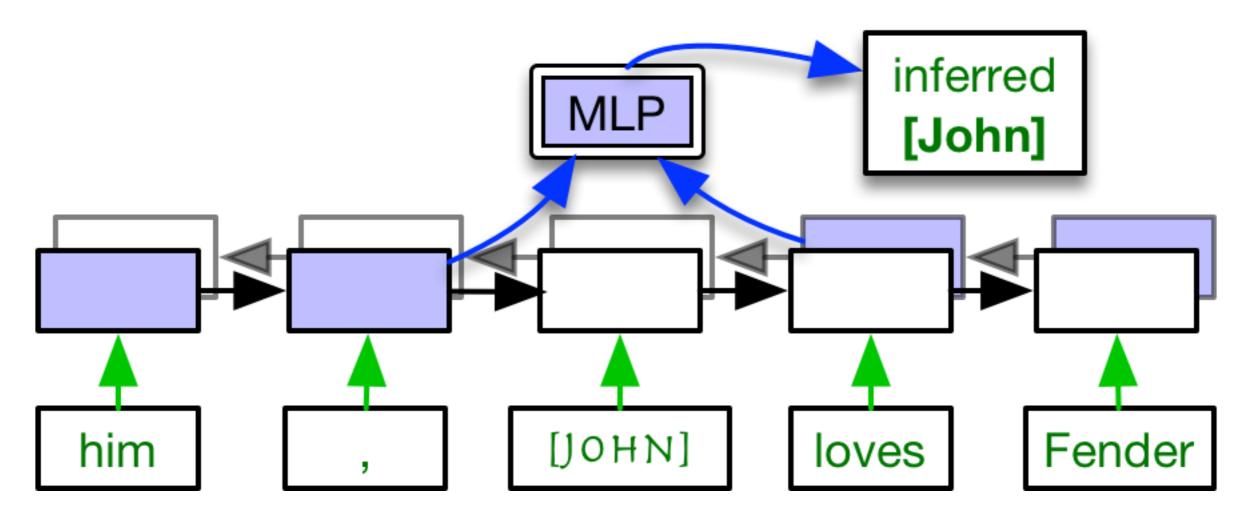
Recipe: Context Encoding

- Encode context of the target word
 - e.g. bi-directional RNN



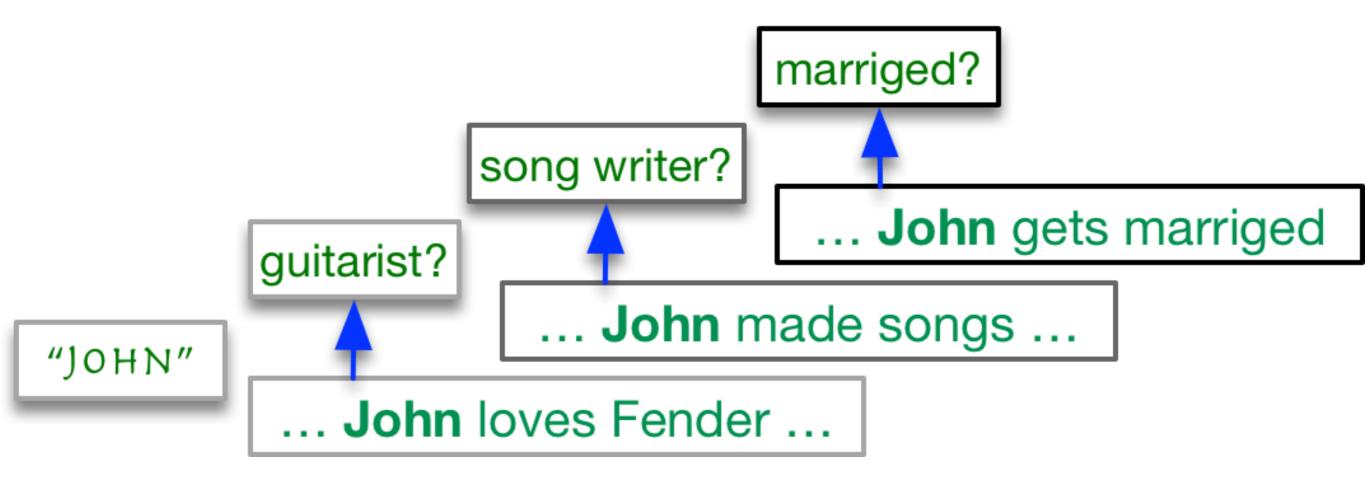
Recipe: Context Encoding

- Encode context of the target word
 - e.g. bi-directional RNN



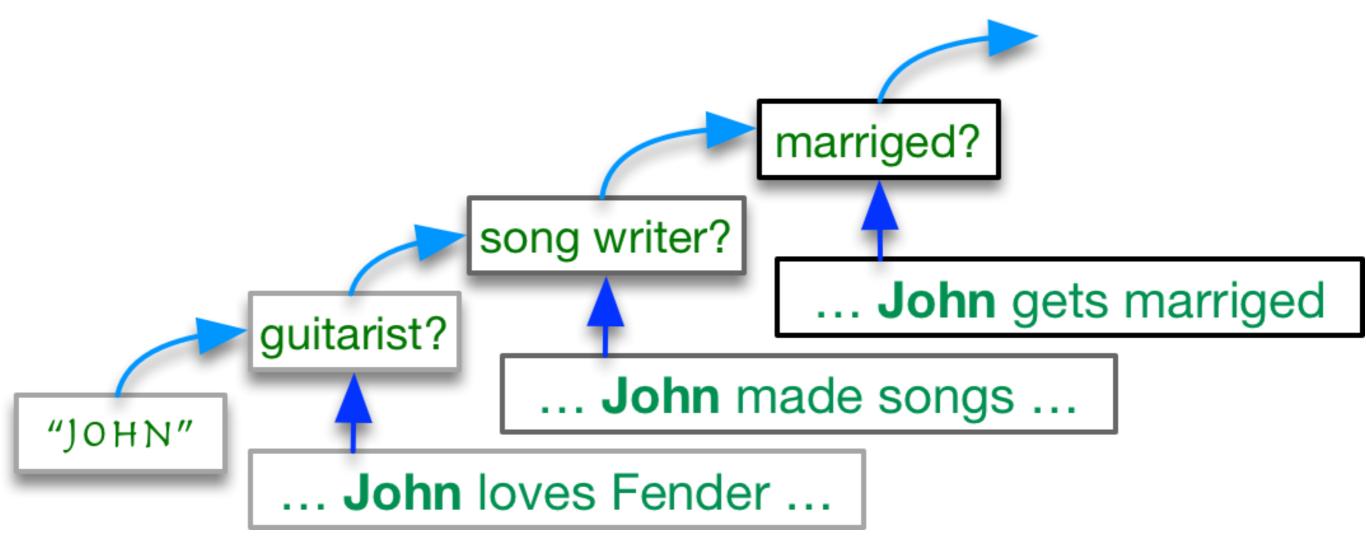
Recipe: Context Merging

- Merge multiple contexts where the target occurs
 - e.g. RNN, max-pooling



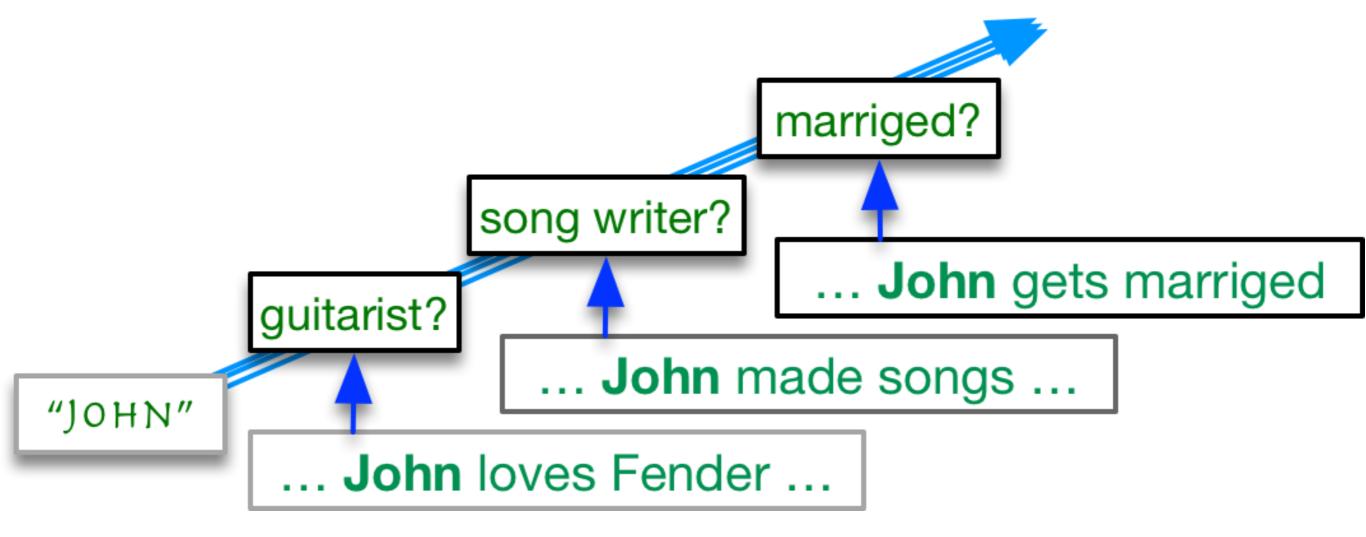
Recipe: Context Merging

- Merge multiple contexts where the target occurs
 - e.g. RNN, max-pooling



Recipe: Context Merging

- Merge multiple contexts where the target occurs
 - e.g. RNN, max-pooling



Dataset for Evaluation

- Dataset for language modeling from OnteNotes
 - Coreferents are unified and anonymized John, he, $\dots \rightarrow [UNK1]$ Mary, she, $\dots \rightarrow [UNK2]$

RAW John loves guitars.
Mary did not prefer music.
But, many people are big fans of him....

OURS [UNK1] loves guitars. [UNK2] did not prefer music. But, many people are big fans of [UNK1]. ...

- Dynamic modeling improves perplexity
 - Especially when entities reappear

	All tokens	Reappearing entities	Tokens following them
Baseline	64.8	48.0	128.6
input only	62.8	42.4	109.5
output only	62.5	35.9	129.0
input & output	60.7 ^{4.1}	34.0 ^{↓14.}	0 106.8 21.8

- Dynamic modeling improves perplexity
 - Especially when entities reappear

	All tokens	Reappearing entities	Tokens following them
Baseline	64.8	48.0	128.6
input only	62.8	42.4	109.5
output only	62.5	35.9 12.1	129.0
input & output	60.7 4 .1	34.0 ↓14.0	106.8 21.8

"... she is a big fan of [???]"

- Dynamic modeling improves perplexity
 - Especially when entities reappear

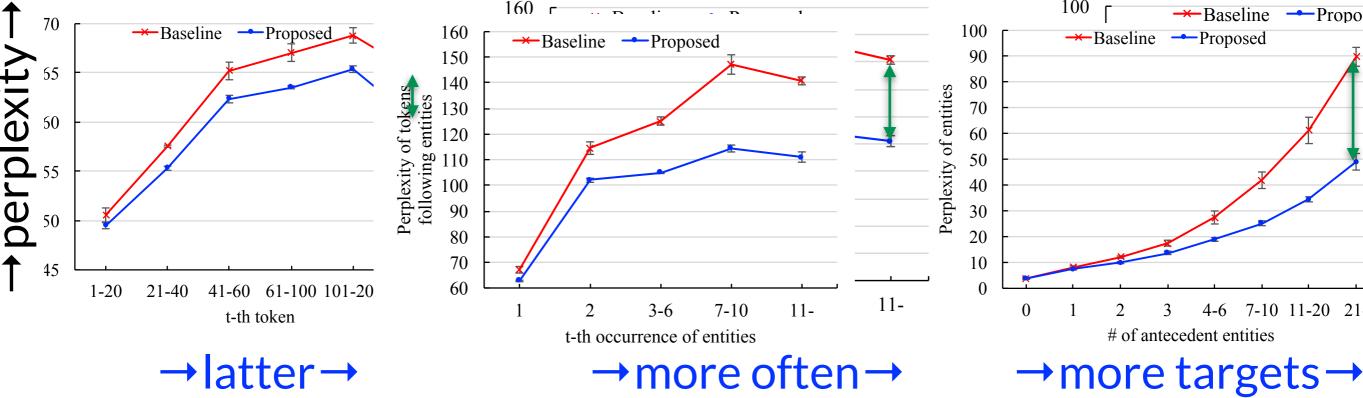
		All tokens	Reappearing entities	Tokens following them
	Baseline	64.8	48.0	128.6
÷	input only	62.8	42.4	109.5 19.1
yna	output only	62.5	35.9	129.0
mio	input & output	60.7 4 .2	^L 34.0 ↓ ^{14.0}	106.8

"... < John; guitarist > [???]"

- Dynamic modeling improves perplexity
 - Especially when entities reappear

	All tokens	Reappearing entities	Tokens following them
Baseline	64.8	48.0	128.6
input only	62.8	42.4	109.5
output only	62.5	35.9	129.0
input & output	60.7 ↓ ⁴ .	¹ 34.0 ↓ ^{14.}	106.8

- Dynamic modeling works well for long documents The latter of a document, The more often targets occur, the more improved The more targets occur,
- Organizing context is useful for long documents



Summary

- Dynamic modeling of word vectors improves language models
 - For prediction of the unknowns
 - For prediction of tokens following the unknowns
- Future work
 - Story generation with organizing entities
 - Joint modeling with coreference resolution
 - Joint modeling with character/subword vectors

Result: Cloze Test

- Pseudo coreference resolution task
- Solve this task by calculating the sentence likelihood by filling in with each entity

[UNK1] loves guitars. [UNK2] did not prefer music. But, many people are big fans of [???]....

• Mean Quantile (mean rank of answers) is improved $.525 \rightarrow .642$ by dynamic modeling