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e Output matrix: calculate probability
e RNN matrices: encoding context

e Embedding matrix: represent word meaning



Neural Language Model

e Embedding matrix
Output matrix

e Cannot cover all words
-+ Unknown words

e Referents differ by discourses
- Unknown entities



Neural Language Model

e Embedding matrix

Output matrix mumps,
ceraunomancy,
e Cannot cover all words < i
- Unknown words UMK
e Referents differ by discourses
“John”,

— Unknown entities Mary”




Dynamic Entity Representation

[Kobayashi et al. NAACL 2016]

e Unknown’'s meaning representation
cannot be obtained statically...
1
Dynamically update meaning representation
while reading text

e |nfer on-the-fly meanings from context




Usage: Input Embedding

e Language models
encode context words and predict next words

e |nput word embeddings can be replaced

e Dynamic modeling makes context informative

e “...with him, John played [???]”

e with dynamic model:
“...with him, <John; guitarist> played [???]”




Usage: Output Matrix

e Language models
encode context words and predict next words

e QOutput matrix’s rows can be replaced

e Dynamic modeling makes target informative

e “...sheisabigfanof [??7?]
John? Mary?

e with dynamic model:
“...sheis abigfan of [??7?]"
<guitarist>? <mother>?




Recipe: Context Encoding

e Encode context of the target word

e e.g.bi-directional RNN
iInferred
[mumps]
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Recipe: Context Encoding

e Encode context of the target word

e e.g.bi-directional RNN

iInferred
[John]




Recipe: Context Merging

e Merge multiple contexts where the target occurs

e e.2. RNN, max-pooling

marriged?

quitarist? ... John gets marriged
'
JIJOHN,, g

... John loves Fender ...




Recipe: Context Merging

e Merge multiple contexts where the target occurs

e e.2. RNN, max-pooling

marriged?
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Recipe: Context Merging

e Merge multiple contexts where the target occurs

e e.2. RNN, max-pooling

S

marriged?

=
. John gets marriged

.. John made songs ...

.. John loves Fender ...
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Dataset for Evaluation

e Dataset for language modeling from OnteNotes

e Coreferents are unified and anonymized
John, he, ... = [UNK1] Mary, she, ... = [UNK2]

RAW John loves guitars.
Mary did not prefer music.
But, many people are big fans of him....

OURS [UNK1] loves guitars.
[UNK2] did not prefer music.
But, many people are big fans of [UNK1]. ...




Result: Language Modeling

e Dynamic modeling improves perplexity

e Especially when entities reappear

Reappearing Tokens
All tokens entities éfollowing them
_____________ Baseline |  648|  480|  1286|
""" nput&output | 60.7v71  34.0v140  106.8V
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It: Language Modeling

e Dynamic modeling improves perplexity

e Especially when entities reappear

All tokens Reappearing | Tokens

entities éfollowing them

_____________ Baseline |  648|  480|  1286]

O inputonly | 628| 424  109.5|
__outputonly | 625| 359121 1290
nputsoutput | 60.7vFL  340v1%0 1068




Result: Language Modeling

e Dynamic modeling improves perplexity

e Especially when entities reappear

All tokens Reappearing @ Tokens

entities following them
_____________ Baseline | 648| 480 1286
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Result: Language Modeling

e Dynamic modeling improves perplexity

e Especially when entities reappear

Reappearing Tokens
entities following them

48.0 128.6

........................................................................................................................................................................

&  inputonly 62.8 42 4 109.5

........................................................................................................................................................................
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> outputonly 62.5 35.9 - 129.0

= PSS I | 41 o Al 140 .~/ ol 21.8
a

All tokens

Baseline 64.8

. input & output 60.7v "~ 34.0 ~ 106.8
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Result: Language Modeling

e Dynamic modeling works well for long documents
The latter of a document,
The more often targets occur, the more improved
The more targets occuir,

e Organizing context is useful for long documents
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Summary

e Dynamic modeling of word vectors
Improves language models

e For prediction of the unknowns

e For prediction of tokens following the unknowns
o Future work

e Story generation with organizing entities

e Joint modeling with coreference resolution

e Joint modeling with character/subword vectors



Result: Cloze Test

e Pseudo coreference resolution task

e Solve this task by calculating
the sentence likelihood by filling in with each entity

[UNK1] loves guitars.

[UNK2] did not prefer music.
But, many people are big fans of [?77]. ...

e Mean Quantile (mean rank of answers)
is improved .525—.642 by dynamic modeling



