

Unsupervised Token-wise Alignment to Improve Interpretation of Encoder-Decoder Models Innovative

Shun Kiyono¹

Sho Takase² Jun Suzuki^{1,2,4} Naoaki Okazaki³ Kentaro Inui^{1,4} Masaaki Nagata²

¹Tohoku University ²NTT Communication Science Laboratories

³Tokyo Institute of Technology ⁴RIKEN AIP

Summary

- Attention matrix is **not an optimal choice** for interpreting the output of Encoder-Decoderbased models (e.g. low alignment acc.)
- Proposed method, Unsupervised Alignment Module (UAM), models token-wise alignment between the source and target
- UAM provides better interpretability of Encoder-Decoder-based models through alignments

Task: Headline Generation

Input X: 1st Sentence of an Article

Taiwan on Tuesday bowed to calls to make the island more international by easing its immigration rules.

Output **Y**: Headline

Compute Sentence-level Loss

<e0s>

Attention Mechanism

exchange

<null>

thursday

<null>

Taiwan eases immigration rules

4M sentence pairs are available from Gigaword corpus

Proposed Method: UAM

2UAM Predictions

share

Key Idea: Predict Source-side Tokens

$$G_1(heta, \gamma) = rac{1}{|\mathcal{D}|} \sum_{(m{X}, m{Y}) \in \mathcal{D}} \underbrace{\left(\ell_{ ext{trg}}(m{Y}', m{X}, m{ heta}) + \ell_{ ext{src}}(m{ ilde{x}}, m{X}, m{Y}', \gamma, m{ heta})
ight)}_{m{EncDec Loss}}$$
 UAM Loss

Compute a degree of difference between the sums of q_i and X (i.e., \tilde{q} and \tilde{x})

Source Pred.

 $({\bm q}_{1:I})$

Target Pred.

 $(o_{1:I})$

Decoder Final

Hidden

 $({m z}_{1:I})$

Hidden

 $(h_{1:I})$

Source

 (\boldsymbol{X})

→ No gold alignment is required

Mondon

share

Analysis: Attention vs. UAM

Qualitative Analysis

1 Attention Matrix

- Repeated alignments to same source-side tokens
- Attention values are distributed to several tokens

2 UAM Predictions

- Repeated alignments are rarely observed
- Alignments are more discrete than attention

Results (ROUGE Scores)

Table: ROUGE F1 Evaluation Results

prices

Model	Test (Ours)			Test (Zhou)		
	RG-1	RG-2	RG-L	RG-1	RG-2	RG-L
Baseline (EncDec)	46.80	24.48	43.74	46.79	24.75	43.62
Baseline +UAM		24.86				43.68

UAM improves ROUGE scores

><null> alignment handles selection of unimportant information?

Quantitative Analysis

Table: Alignment Accuracy

<null>

Model	Test (Ours)	Test (Zhou)	
Baseline (EncDec)	8.60	5.97	
Baseline+UAM	52.52	50.91	

UAM alignments are significantly more accurate than that of the attention matrix

better interpretation of the model