

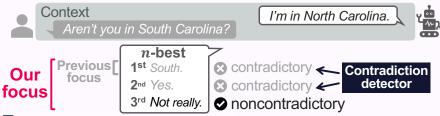
N-best Response-based Analysis of Contradictionawareness in Neural Response Generation Models

Shiki Sato¹, Reina Akama^{1,3}, Hiroki Ouchi^{2,3}, Ryoko Tokuhisa¹, Jun Suzuki^{1,3}, Kentaro Inui^{1,3} ¹ Tohoku University ² Nara Institute of Science and Technology ³ RIKEN

l Overview

- We analyze contextual contradiction-awareness of response generation models focusing on consistency of n-best candidates
- Beam search has limitation on avoiding contradiction and unlikelihood training reduce it

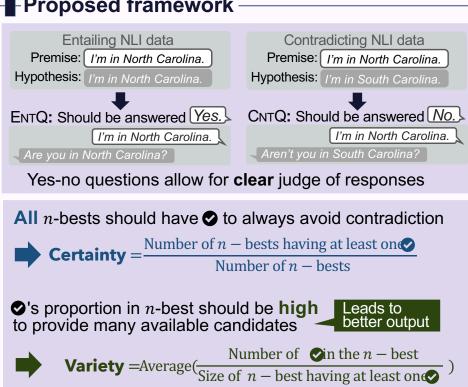
Background: Avoiding contradiction with contradiction detector



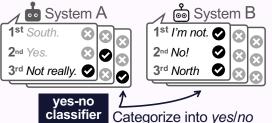
All candidates affect whether final output is contradictory

Need to observe all candidates' consistency

- Proposed framework



2. Detect noncontradictory candidate



3. Compute scores

Certainty 3/3= 1.00 Variety (.33+.33+.33)/3=0.33

Certainty 1/3 = 0.33Variety (1.00)/1 = 1.00

Experiments: Proposed framework reveals *n*-best's properties

Using beam search.

1.0 1.0 Certainty 8.0 8.0 <u>क</u> 9.0 **Sar** ENTO CntQ CNTQ 0.4 30 40 20 20 30 40 50 Beam size Beam size **Increases** as beam **Decreases** as beam size increases size increases

trade-off

Settings

Using **newer techniques**,

	Certainty		Variety	
Technique	EntQ	CNTQ	EntQ	CNTQ
Beam search	.856	.768	.824	.737
Diverse beam search [Vijayakumar+'16]	.999	.981	.758	.478
Nucleus sampling [Holtzman+'20]	1.00	.994	.755	.462
Unlikelihood training	.910	.937	.969	.968

Unlikelihood training improves both scores