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| Overview
* We analyze contextual contradiction-awareness of response generation models
focusing on consistency of n-best candidates
 Beam search has limitation on avoiding contradiction and unlikelihood training reduce it
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| Experiments: Proposed framework reveals n-best’s properties

Using beam search, Using newer techniques,
= A 1.0 Certainty Variety
> o .
1= 0.8 e 3«0 8 Technique EnNTQ CNTQ ENTQ CNTQ
g 7 2 Beam search 856 768 824 737
(O]
0.6 - ENTg =06 Diverse beamsearch 999 981 758 478
S e NT
[ ] q
047 1020 30 40 50 047 10 20 30 40 50 Nucloygsampling  B4:00 81994 | 755 462
eam Ssize eam Ssize T(F .
Unlikelihood trainin
Incrgases as beam Decreases as beam [L+20] 7 e 7571968
Siz€ Increases traEdea-off Size Increases Unlikelihood training improves both scores

Setti Generation model: Blender 3B [rolier+21] (See our paper for results of DialoGPT [zhang+20))
etlings Inputs: 2,000 EnTQ/CNTQ from Multi-Genre NLI (wiiams+18], Yes-no classifier: RoOBERTa [Liu+19] fine-tuned on Circa [Louis+20]



