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Abstract

Machine translation (MT) performance has improved significantly in recent years. With this
improvement, the use of MT in the real world has also expanded. For example, MT users
can enjoy foreign content on the web or online platforms such as SNS and YouTube or offer
their content to potential foreign customers. However, considering the real-world uses of
MT, we are faced with two problems caused by the currentMT: (1) the need for customizable
MT to the desires of individual users and (2) the potential to spread misunderstanding and
miscommunications with errors.

The final goal of this study is to develop an individually customizable MT that does not
cause miscommunication for real-world applications. In this study, we show two possible
solutions to these two problems, (i) MT design and (ii) robust evaluation, respectively. We
present actual works based on these two solutions in this paper.

We describe some possible designs of application-oriented MT to combine multiple op-
tional architectures for real-world problems. Particularly, we show amulti-dialect translation
system that translates low-resource and diverse Japanese dialects among examples of theMT
design.

For the robust evaluation, we explore appropriate evaluation framework for two specific
subjects: semantic similarity evaluation and terminology-focused evaluation. As for the
semantic similarity, we analyzed what factors are affected with respect to the currently pro-
posed automatic semantic similarity metrics. We argue that the current metrics are affected
by differences in domain and similarity granularity, and that we need to consider the bench-
mark for exploring amore rigorous similarity evaluation framework. Regarding terminology-
focused evaluation, we established a new task as an evaluation framework for constrained
models focused on terminology in neural MT. Through analyses of the task results, we dis-
cussed the validity of a simple proposed automatic metric and the importance of rigor in
human evaluation.

The MT design considering user-individual problem will further improve MT familiar-
ity and convenience and enable support for real-world cross-lingual communications. Fur-
ther, the robust evaluation is necessary to reduce misunderstandings that can occur in the
facilitated cross-lingual communications. We conclude that the development of application-
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oriented MT requires the exploration of appropriate MT design and robust evaluation as
described in this study, which will lead to MT helping people lead sound livelihoods.
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Chapter 1

Introduction

Machine translation (MT) is one of the fields actively studied inNatural Language Processing
(NLP). The quality of MT has improved in recent years, which has made the use of MT
widespread in our daily lives and industry. In daily life, the MT services on web browsers
and SNS have been implemented to encourage users to enjoy enormous foreign language
content. Additionally, automatic translated subtitle generation combining MT and speech
processing has also been tried on YouTube and online meeting tools such as Zoom. On the
other hand, MT also makes providers of contents such as articles and videos to provide pre-
translated content to reach foreign users. Also in industry, the introduction ofMT technology
has been active. The MT market has been and will continue to expand domestically and
internationally because of the improvement of the MT performance1. Thus, the expanded
use of MT systems has made MT an indispensable part of our lives.

However, two issues are critical in the expansion of MT. One point is the need for cus-
tomizableMT systems for individual problems. SomeMT services that provide a customized
MT system for individual enterprises are attracting attention, while there are general-purpose
MT such as Google Translate and DeepL. In addition, even in general-purpose MT such as
DeepL, user-customizable features such as glossaries are implemented. Thus, the actual use
of an MT system in the real world needs to be customized to suit the user’s preferences and
cases. Another critical issue is that the MT output still contains mistranslations that ama-
teurs need help identifying. In the MT research community, some researchers Läubli et al.
(2020); Toral et al. (2018) demonstrated that crowd workers’ evaluations are insufficient for
MT quality evaluation and professional translator-level evaluations are necessary. This prob-
lem becomes severe in real-world situations; because it means that most people would not be
able to recognize mistranslations in the real-world daily use ofMT. This has the possibility of

1https://www.gminsights.com/industry-analysis/machine-translation-market-size

https://www.gminsights.com/industry-analysis/machine-translation-market-size
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leading to misunderstandings and communication errors. In industry, such mistranslations
also have been making additional processes, such as post-editing by professional translators
for MT output. Thus, in real-world applications of MT, it is necessary to consider MT that
is (1) customizable and (2) does not induce miscommunication.

This study attempts to tackle these two critical issues using MT design and robust eval-
uation, respectively. We present examples of these approaches with concrete real-world
applications. As an example of MT design, we describe an MT system that can treat low-
resource and diverse dialects to show the effectiveness and importance of customizing MT
to individual problems. For robust evaluation, we focus on two subjects, evaluation for se-
mantically inappropriate examples and inappropriate terminology in the current MT outputs.
We analyze the semantic similarity evaluation metrics proposed in the current NLP field, and
explore the problems in the current semantic similarity evaluation for the semantically inap-
propriate examples. In addition, we establish a new translation task focusing on evaluating
terminology as an evaluation framework to detect inappropriate terminology.

1.1 Research Issues
In this thesis, we address the following research issues:

• What is the appropriate design for real-world situations?: In the MT field, vari-
ous optional architectures have been proposed to deal with individual problem such
as inappropriate terminology. However, how MT should be designed for real-world
problems involving a combination of various phenomena has yet to be organized.

• What are the possible problems with the current semantic similarity evaluation?:
Several metrics that consider semantic similarity instead of BLEU have been proposed
as current automatic metrics, but it needs to be clearly analyzed what factors they are
susceptible to and what problems they contain.

• Lack of an evaluation framework to facilitate proper terminology translation:
One problem that undermines the current MT’s quality is inappropriate terminology
translation. Several models have been proposed to address this, but no clearly shared
evaluation framework exists.

1.2 Contributions
This thesis makes the following contributions:
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• Proposed a customizedMT that allows efficient learning for a real-world situation
(e.g., low-resource Dialect Translation): we presented some designs for each scene
using MT and our customized MT system that treats dialects to show the effectiveness
and importance of customizing MT to individual problems.

• Comprehensive analysis for current semantic similarity metrics for MT: we an-
alyzed the generic semantic similarity evaluation metrics and MT-specific similarity
metrics proposed in the current NLP field. We explored the problems in the current
semantic similarity evaluation.

• Development of terminology translation evaluation framework: we established a
new translation task focusing on evaluating terminology as an evaluation framework
to detect inappropriate terminology examples. We identified additional considerations
in the current evaluation framework based on the task results.

1.3 Thesis Overview
An overview of this paper is given as follows:

Chapter 2: Background. we introduce the background of two approaches (MT design
and robust evaluation) and related work.

Chapter 3: Japanese Multi-Dialect Translation as Use Case. we introduce an example
of designing a real application-oriented MT system for low-resource and diverse Japanese
dialects.

Chapter 4: Comprehensive Analysis of Semantic metrics for MT. we discuss the char-
acteristics and biases of current semantic similarity metrics based on performance in two
tasks, the semantic textual similarity (STS) task, which is a generic semantic similarity bench-
mark, and MT evaluation task, which is one of the application-oriented semantic similarity
tasks.

Chapter 5: Proposal of Terminology-focused Translation Task. we introduce the
terminology-focused MT task in the MT workshop and highlight the problems for evalu-
ating terminology translation that need to be addressed.
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Chapter 6: Conclusions. we summarize two approaches, MT design and robust evalua-
tion, that should be considered for application-oriented MT to facilitate cross-lingual com-
munications in the real world.



Chapter 2

Background

2.1 Design: Customizable MT with Optional Architecture
A neural MT (NMT) model, a sequence-to-sequence model with neural networks, has
been adopted as a typical architecture in MT. Transitioning from Long-Short Term Mem-
ory (Hochreiter and Schmidhuber, 1997) to Transformers (Vaswani et al., 2017) allowed
these models to achieve higher translation performance. However, even with the current
NMT models using Transformers, translation quality issues are still present, as described
in Chapter 1 when considering real-world applications. Many attempts have been made to
address these problems by applying a (relatively simple) optional architecture to the general
architecture. Indeed, fairseq,1 an open-source tool for sequence-to-sequence models such as
MT, provides a choice of sub-words and characters as the encoding method and constrained
decoding as the decoding method. Here, we introduce examples of existing optional archi-
tectures that are useful for considering application-oriented MT.

2.1.1 Option Architectures
Encoding Method In general, NMT models have a static list of vocabularies. The encod-
ing process in NMT involves tokenization, which is splitting raw texts into a set of prescribed
processing units named tokens. Tokens that do not in the vocabulary list are processed as an
unknown token as <unk>. As a unit of the vocabulary, words are most traditionally used.
However, in the case of word units, several words that do not appear during training (e.g.,
rare words and domain-specific words) are treated as unknown tokens, which can deteriorate
translation performance. So, using a smaller unit as the optional architecture for tokeniza-

1https://github.com/facebookresearch/fairseq

https://github.com/facebookresearch/fairseq
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tion, subwords (Kudo and Richardson, 2018; Sennrich et al., 2016) and characters (Gao
et al., 2020; Lee et al., 2017), has been shown to improve performance by alleviating the
appearance of unknown tokens. In addition, ideograms, a set of characters that express
their meaning, have been used in some languages such as Chinese (kanji). To uniformly
process these different character types, recent research has been conducted that treats byte
sequences (Wang et al., 2020) and visual features (Salesky et al., 2021) as the optional archi-
tectures.

Additional Information for Input Representations In recent years, MT has been re-
quired to support low-resource languages. A few/zero-shot translation using multilingual
MT is attracting attention to solve this problem. Multilingual NMT is a translator that can
translate multiple language pairs by learning multiple language pairs simultaneously. Cur-
rently, the most common architecture for multilingual NMT is the method proposed by (John-
son et al., 2016), which inserts a special token for each language at the beginning of the input
sequence. The special token is used to learn the features of each language as a vector (named
language embedding), which is said to enable processing that corresponds to each language
better. There are also many examples of applications in which the special token is regarded
as “input meta information” and applied as a different representation. Such representations
according to special tokens are also used as augmented data signal (Caswell et al., 2019). The
special tokens as the augmented data signal are helpful in input data augmentation, which is
a promising method for improvingMT performance depending on data amounts. In addition
to individual special tokens such as language embedding, there is also an attempt to realize
context-aware translation by adding context information to input using [SEP] tokens. This
context-aware translation is effective for high-context languages such as Japanese, where
context information is often omitted, and for colloquial-style texts such as dialogues. Thus,
a simple method of additional input information can be considered an optional architecture.

DecodingMethod During decoding, we can adopt optional architectures as well as encod-
ing. Constrained models, which output specified phrases or words, have been proposed as an
architecture for terminology translation. There are two types of constrained models: the soft
constrained method (Chen et al., 2020; Song et al., 2019) that adds constraints by augmen-
tation of training data, and the hard constrained method (Arthur et al., 2016; Hokamp and
Liu, 2017; Post and Vilar, 2018) that forcibly adds constraints by signals during decoding.
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2.1.2 Examples of MT Design
When we would like to apply MT to individual problems in the real world, we can com-
bine the above optional architectures to suit the problem. This subsection will give several
examples of specific real-world problems and discuss possible MT designs for them.

As a first example, we consider the translation of patents of new medicine. Patent trans-
lation has been the subject of several studies in the research community (Chu et al., 2018;
Goto et al., 2013; Morishita et al., 2022) and is one of the leading applications of MT in the
industry. In this case, users would like to convey their patents worldwide. However, there is
a regulation that a patent obtained in Japan applies only within Japan. Therefore, in order to
protect patents around the world, it is necessary to translate the patents into various foreign
languages. In addition, this patent contains information about medicine; in other words, it
belongs to a specific biomedical domain, which contains many terminologies. To address
these issues, we can adopt three options are as follows: (1) multilingual translation with
special tokens, (2) input data augmentation for in-domain data, and (3) constrained models.
Multilingual translation using special tokens enables translation into a variety of foreign lan-
guages. In addition, to improve the performance of translations in the biomedical domain,
data augmentation using augmented data signals or constrained models that has the effect of
outputting a specific terminology can be introduced.

Next, as another example, we consider cross-lingual chat support. In recent years, auto-
matic translation tools have been introduced on online platforms such as SNS or YouTube,
leading to more interaction with foreign language users. Also, automatic interpretation has
been introduced in online meeting tools such as Google Meets and Zoom. Thus, cross-
lingual chats via MT have become an everyday occurrence, and several types of research
on chat translation have been conducted (Farajian et al., 2020; Li et al., 2022; Liang et al.,
2021). However, unlike the translation of official documents, MT systems must cope with
colloquial-style expressions, such as omitting some parts of the texts. In response to this, the
following options can be introduced: (1) context-aware translation using [SEP] tokens and
(2) data augmentation for in-style data. Context-aware translation enables supplementing
omitted parts in the source chat text with contextual information. In addition, data augmen-
tation with similarly styled data may effectively improve the translation performance into a
colloquial style.

Thus, there are various possible designs for MT systems combining with appropriate
optional architectures for each problem. In Chapter 3, as one example, we propose an MT
system for Japanese dialects, which needs to handle diverse dialects in low-resource situa-
tions.
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2.2 Evaluation: Necessity of Robust Evaluation
Another issue of the current MT is the validity of the evaluation. Generally, there are two
kinds, automatic and human evaluation, in MT evaluation. The human evaluation with pro-
fessional translators is the most desirable; however, it will be expensive to conduct the eval-
uations regularly to develop reliable MT systems. So much research has been conducted
to realize inexpensive and appropriate automatic evaluation metrics as an alternative to the
human evaluation. In the MT community, Metrics task 2 has been held at the international
MT workshop since 2008 to compete for the performance of the automatic metrics. The
results of this task have often led to discussions about the reliability of the MT evaluation
framework (Bojar et al., 2017; Ma et al., 2019).

One of the major problems for the MT evaluation in recent years is that the improve-
ment of MT performances has made it impossible for amateur annotators to evaluate the
MT quality properly (Läubli et al., 2020). This problem becomes a more severe issue when
considering real-world use. When MT outputs include mistranslations, users can only do
the following ways because they cannot recognize the errors on their own: to use the mis-
translated texts as it is or to hire experts to post-edit the texts. In the former case, ignoring
mistranslations may lead to misunderstandings in cross-lingual communication. The latter
also causes the problem of costs eventually, despite introducing MT as a low-cost way com-
pared to human translations. Thus, we need to consider more rigorous evaluation for MT
systems as the use of MT expands in real-world applications.

For more reliable MT in real-world applications, we analyze problems of the automatic
evaluation for capturing semantic similarity in Chapter 4 and establish a new MT task spe-
cialized for terminology evaluation in Chapter 5. In the following, we briefly describe the
background knowledge of the automatic and human evaluation helps to understand those
Chapters.

2.2.1 Automatic Evaluation
N-gram based metrics: BLEU, chrF The most commonly used automatic evaluation
metric in MT is BLEU (Papineni et al., 2002a), which is based on the n-gram overlap of
tokens. Recently, chrF (Popović, 2015, 2017), the F-score of character n-gram overlap, has
also been frequently used as a baseline because it is known to correlate higher with human
evaluation than BLEU. However, it has long been pointed out that the n-gram-based metrics
do not give good scores for semantically acceptable expressions (Banerjee and Lavie, 2005;
Zhang et al., 2020a). In addition, Ma et al. (2019) pointed out that the current MT automatic

2https://wmt-metrics-task.github.io/

https://wmt-metrics-task.github.io/
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evaluation at the segment level3 does not correlate with the human evaluation. Especially in
recent years, some papers strongly argue that BLEU should not be used (Kocmi et al., 2021;
Mathur et al., 2020).

Semantic metrics: METEOR, RUSE, and BERTScore In contrast to n-gram-based met-
rics, METEOR (Banerjee and Lavie, 2005) was proposed as one of the first metrics to capture
semantic similarity. However, it spread only a little, mainly because of the cost of adapting
it to other languages. With the advent of the Universal Sentence Encoder (USE) (Cer et al.,
2018), which was evaluated on a generic task of semantic similarity in NLP, many sen-
tence encoder models have applied for several NLP applications such as MT. Specifically,
RUSE (Shimanaka et al., 2018), which applied the sentence encoder to the MT evaluation,
became the top system in the WMT18 Metrics task. Recently, BERTScore (Zhang et al.,
2020a), a model using Bi-directional Encoder Representations from Transformer (BERT;
Devlin et al., 2019) was proposed as the automatic semantic metric. BERTScore is widely
used to evaluate semantic similarity in NLG as a whole (Mille et al., 2021), because its per-
formance is significantly higher than that of conventional methods that use BERT as-is, and
it does not require fine-tuning. In addition, learned semantic metrics such as BLEURT (Sel-
lam et al., 2020) and COMET (Rei et al., 2020) have earned state-of-the-art in the current
MT Metrics task.

2.2.2 Human Evaluation
Likert scale (adequacy and fluency) The most basic human evaluation is a five-point
scale based on the two aspects, adequacy and fluency, proposed by (Callison-Burch et al.,
2007). This five-point scale is also used in the JPO translation evaluation criteria4 and the
human evaluation of Workshop on Asian Translation (WAT) (Nakazawa et al., 2022, 2021).

Direct Assesment Currently, the most used human evaluation is the direct assessment
(DA) framework from Graham et al. (2015). It has 100 evaluation stages, including source-
based DA (Cettolo et al., 2017; Federmann, 2018), which evaluates by comparing source
and translation, and reference-based DA, which evaluates by comparing reference and trans-
lation.

3In general, one segment corresponds to one sentence in the datasets of the Metric task.
4https://www.jpo.go.jp/system/laws/sesaku/kikaihonyaku/tokkyohonyaku_

hyouka.html

https://www.jpo.go.jp/system/laws/sesaku/kikaihonyaku/tokkyohonyaku_hyouka.html
https://www.jpo.go.jp/system/laws/sesaku/kikaihonyaku/tokkyohonyaku_hyouka.html
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Multi-dimensional Quality Metrics (MQM) The overview paper in the recent Metric
task (Ma et al., 2019) argued that the current automatic metrics are incapable of comparing
superior MT systems at the segment level. Their focus was on the issue of automatic metrics;
however, Mathur et al. (2020) pointed out the possibility that there is no difference between
the superior MT systems not only in the automatic metrics but also in the current human eval-
uation framework. At the same time, Läubli et al. (2020) argued that it is a misconception
based on the low quality of the human evaluation that the current MT performance reaches
the professional translator level. In light of these studies, the MT community recognizes the
need to consider the validity of the human and automatic evaluation. As an alternative to
the DA framework, Freitag et al. (2021) has proposed Multi-dimensional Quality Metrics
(MQM)5 as a new criterion for the human evaluation. They proposed a method to annotate
multi-dimensional errors (e.g., Accuracy, Style, and Terminology.) in three levels: Major,
Minor, and None. They showed that the rankings of MT systems differed significantly be-
tween the two human evaluation frameworks (i.e., DA and MQM) and that professional hu-
man translation still be preferred over MT in the MQM framework. They also presented that
automatic metrics learned datasets with theMQM annotations outperformed human amateur
annotators. This result suggests that considering a proper human evaluation framework also
facilitates the proposal of better automatic metrics.

5https://themqm.org/

https://themqm.org/


Chapter 3

Design: Japanese Multi-Dialect
Translation as Use Case

3.1 Introduction
With the use of automated personal assistants (e.g., Apple’s Siri, Google Assistant, or Mi-
crosoft Cortana) and smart speakers (e.g., Amazon Alexa or Google Home) becoming in-
creasingly widespread, the demand to bridge the gap between the standard form of a given
language and its dialects has also enlarged. The importance of dealing with dialects is par-
ticularly evident in a rapidly aging society, like that in Japan, where older people use them
extensively.1

To address this issue, we consider a system for machine translation (MT) between
Japanese dialects and standard Japanese. If such a system can yield correct dialect-to-
standard translations, then other natural language processing systems (e.g., information re-
trieval or semantic analysis) that adopt standard Japanese as the input could also be applied
to dialects. In addition, if a standard-to-dialect translation system becomes available, then
smart speakers could respond to the native speakers of a dialect using that dialect. We be-
lieve that sympathetic interactions of this type might lead to such systems gaining more
widespread acceptance of in the Japanese society.

In this paper, we present a multi-dialect neural MT (NMT) system tailored to Japanese.
Specifically, we employ kana, a Japanese phonetic lettering system, to provide the basic units
in the encoder–decoder framework to avoid the followings: ambiguity in converting kana to
kanji (characters in the Japanese writing system), difficulties in identifying word boundaries

1本研究は既発表論文「Multi-dialect Neural Machine Translation for 48 Low-resource Japanese Di-
alects」『自然言語処理』27巻 4号 (CC BY 4.0)に基づく.
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especially for dialects, and data sparseness problems due to dealing with numerous words
originating from different dialects. Because Japanese dialects almost always use the same
word order as standard Japanese, we employ bunsetsu (a Japanese phrase unit) as a unit of
sequences, instead of a sentence, which is more commonly used in NMT.

One issue for Japanese dialects is the lack of training data. To deal with this, we build
a unified NMT model covering multiple dialects, inspired by the studies on multilingual
NMT (Johnson et al., 2016). This approach utilizes dialect embeddings, i.e., vector rep-
resentations of Japanese dialects, to inform the model of the input dialect. An interesting
by-product of this approach is that the dialect embeddings that the system learns illustrate
the difference between different dialect types from different geographical areas. In addition,
we present an example of using these dialect embeddings for dialectometry (Guggilla, 2016;
Kumagai, 2016; Nerbonne and Kretzschmar, 2011; Rama and Çöltekin, 2016).

Another advantage of adopting a multilingual architecture for multiple related languages
is that it can enable gaining knowledge of their lexical and syntactic similarities. For ex-
ample, Lakew et al. (2018) reported that including several related languages in supervised
training data can improve multilingual NMT. Our results confirm the effectiveness of using
closely related languages (i.e., Japanese dialects) in multilingual NMT.

3.2 Related Work
Dialectal text is scarcely available because dialects are generally spoken, instead of being
written. For this reason, many dialect MT researchers study in low-resource situations (Has-
san et al., 2017; Scherrer and Ljubešić, 2016; Zbib et al., 2012).

The use of similar dialects has been found to be helpful in learning translation mod-
els for particular dialects. Several previous studies have investigated the characteristics of
translation models of closely related dialects (Honnet et al., 2018; Meftouh et al., 2015).
For example, Honnet et al. (2018) reported that a character-level NMT model trained on one
Swiss-German dialect performed moderately well for translating sentences in closely related
dialects.

Therefore, in view of the above, we use multilingual NMT (Johnson et al., 2016) to
learn the parameters that encode the knowledge of the shared lexical and syntactic structures
of dialects. Some researchers (Arivazhagan et al., 2019; Gu et al., 2018) demonstrated that
multilingual NMT could be useful for low-resource language pairs, additionally Lakew et al.
(2018) found that a multilingual NMT system trained on multiple related languages showed
an improved zero-shot translation performance. We believe that multilingual NMT can be
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effective for closely related dialects, and can compensate for the lack of translation data for
the different associated dialects.

Multilingual NMT can also assist in analyzing the characteristics of each considered
language. Östling and Tiedemann (2017) found that clustering the language embeddings
learned by a character-level multilingual system provided an illustration of the language
families involved. In the light of this, we also examine our dialect embeddings to investigate
whether our multi-dialect model can capture the similarities between the dialects (Section
5).

Previous studies reported that character-level statistical machine translation (SMT)
using words as translation units is effective for translating between closely related lan-
guages (Nakov and Tiedemann, 2012; Scherrer and Ljubešić, 2016). There are two reasons
for this: character-level information enables the system to exploit lexical overlaps, whereas
using words as translation units takes the advantage of the syntactic overlaps of the related
languages. To utilize these overlaps, Pointer Networks (Gülçehre et al., 2016; Vinyals et al.,
2015), which can copy some parts of input sequences to output sequences, also seem to be
effective for dialect translation. In this study, we conduct an experiment with a simple long
short-term memory (LSTM) architecture to train a multilingual NMT model for multiple
dialects. Adopting a copy architecture similar to Pointer Networks will be conducted in a
future study.

In this study, we present a method of translating between Japanese dialects by combining
three ideas: multilingual NMT, character-level NMT, and using base phrases (i.e., bunsetsu)
as translation units. We believe this enables our approach to fully exploit the similarities
among dialects and standard Japanese, even under low-resource settings.

3.3 Data: Japanese Dialect Corpus
Japanese is a dialect-rich language, with dozens of dialects used in everyday conversations
in most Japanese regions. They can be characterized in terms of the differences in their con-
tent words (vocabulary) and regular phonetic shifts, mostly in their postpositions and suf-
fixes. Specifically, they share most words with standard Japanese, and mostly use common
grammatical rules, such as for the word order, syntactic marker categories, and connecting
syntactic markers.2 Some dialects also share the dialect-specific vocabulary. For example,
the word, しゃっこい (shakkoi, meaning “cold”), is shared among some dialects in the
Tohoku region, such as Aomori and Akita.

2For details, Linguistic Atlas of Japan Database (https://www.lajdb.org/TOP.html) published by
NINJAL provides an overview of the Japanese dialect distribution.

https://www.lajdb.org/TOP.html
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Figure 3.1 Number of sentences in each dialect in National Dialect Discourse Database
Collection.

In this study, we used a collection of parallel textual data for the dialects and standard
Japanese, called as the National Dialect Discourse Database Collection (National Institute
for Japanese Language and Linguistics, 1980). This corpus includes 48 dialects, one from
each of the 47 prefectures and an additional dialect from the Okinawa Prefecture. For each
dialect, the texts consist of transcribed 30-minute conversations between two native speakers
of that dialect. The total number of dialect sentences (each paired with a translation into
standard Japanese) is 34,117. Figure 3.1 shows the number of sentences in each dialect. The
amount of each dialect data is less than 1500 sentences and vary.

Japanese texts are generally written in a mix of kanji and kana; therefore, we converted
the kanji in the sentences into kana, and subsequently, segmented them into bunsetsus.3 In
this study, we used the bunsetsu segmentation annotated in the original corpus. After pre-
processing, the average sentence lengths were of 14.62 and 15.57 characters for the dialects
and the standard Japanese, respectively. The average number of bunsetsus per sentence was
3.42.4

3.4 Model: NMT Model with Three Options
Figure 3.2 presents an overview of our network structure of the multi-dialect NMT system.
Because our focus is on examining the effectiveness of themulti-dialect NMT and its detailed
behavior, rather than on creating a novel translation model, we used OpenNMT (Klein et al.,
2017). OpenNMT is a stacking LSTM encoder–decoder model with a multilingual extension
similar to that of Johnson’s method (Johnson et al., 2016). However, to improve its direct
translation accuracy, we introduce the following three modifications.

Dialect labels: Following a previous multilingual NMT study (Johnson et al., 2016), we
train the unified model that deals with all the 48 dialects simultaneously using the dialect

3This is the smallest Japanese phrase unit, containing a single content word and attached postpositions.
4The total number of bunsetsus is 116,928.
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Figure 3.2 Proposed multi-dialect NMT model.

Table 3.1 Dialect label input order variants. For example, when we translate Aomori dialect
into standard language, we test using input sentence that replaced <SRC> with青森 (Aomori)
and <TGT> with標準語 (Hyoujungo).

ID Encoder input order
a <SRC>, sequence
b <TGT>, sequence
c <SRC>, <TGT>, sequence
d <SRC>, sequence, <TGT>

embeddings including auxiliary dialect labels. Johnson et al. (2016) added a label to the be-
ginning of each sequence to specify the output language. Wemodify this approach to specify
both the input and output dialects of the model, and examine the four different placements
for these labels, as listed in Table 3.1.

Syllable-to-syllable translation: As mentioned in Section 3.3, a key to translate between
two closely related languages, especially in our case, dialects, is modeling the phonetic cor-
respondences between them. Thus, to consider syllable-level translation rules that may be
shared by similar dialects, we defined our translation task as a syllable-to-syllable translation.

We realize syllable-to-syllable translation by representing the inputs and the outputs as
kana sequences and performing character-basedMT. A similar approach was used to normal-
ize Japanese text from Twitter, where the main issue was phonological transliteration (Saito



3.5 Experiments | 16

et al., 2017). In our dataset, all the dialect expressions are transcribed using kana; however,
the standard Japanese translations use a mix of kanji and kana characters. Therefore, in or-
der to conform to the syllable-to-syllable task, we also convert them into kana sequences by
automatically analyzing the pronunciation of each kanji character and replacing it with the
corresponding kana sequence.

Translation without distortion: Finally, we attempt to remove the word-order distortion
modeling from NMT. In a standard MT, systems adopt a single sentence as the input and
yield a translated sentence in an appropriate word order for the target language. However, in
the dialect translation, the input and output word orders are mostly the same. To test this, we
manually checked 100 randomly-selected sentence pairs from the training set, and found no
differences in the ordering (distortion). This fact suggests that we do not require sentence-
by-sentence supervision data, because it does not need to learn a distortion model. Based on
this intuition, we split each input sentence into base-phrase parts, i.e., bunsetsu sequences,
translate each chunk from the source to the target language and, subsequently, output the
translated chunks in the same order.

3.5 Experiments
Using parallel text data (standard Japanese and 48 regional dialects), we trained both a single
dialect-to-standard translation model and a reverse (standard-to-dialect) model, measuring
the translation quality using BLEU scores (Papineni et al., 2002b). In addition, we analyzed
the trained dialect embeddings in detail and conducted data ablation tests.

3.5.1 Experimental Setup
For these experiments, we split the corpus into training, development, and the test sets in an
8:1:1 ratio. We oversampled the translation pairs to ensure that every dialect had the same
amount of training data, because there were different numbers of training and test instances
for each dialect (in Figure 3.1). For the oversampling, we randomly sampled the existing
sentence in each dialect dataset. Finally, all the training sets for each dialect consisted of
1,042 sentences, the same size as the largest original training set of the Iwate dialect.

Because Japanese dialects mostly share the same vocabulary and there are few distor-
tions (word order changes), we expect that the translation between a Japanese dialect and
standard Japanese is relatively easy compared to that between other languages. Thus, the
main focus of the following experiments was to evaluate how well the model captured the
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Table 3.2 Experimental settings of OpenNMT such as hyper parameters.

Train
epoch 20
layer (encoder / decoder) 2
batch size 64
valid batch size 32
word embedding dim. 500
hidden dim. 500
dropout rate 0.3
optimizer SGD
learning rate 1.0

Decode
Beam-size 5

phonological shifts between the dialects and the standard Japanese. Therefore, we employed
syllable-level (i.e., character-level) BLEU scores as the evaluation measures. We calculated
the syllable-level BLEU for each sentence by concatenating the chunk-wised translations.
Note that this evaluation measure generally yields higher scores than those calculated at the
word level. Finally, we macro-averaged the scores over all the dialects. For Multi NMT or
SMT models, we generated the translation output for the entire test set, which contained all
the dialects, and we divided it into the 48 dialect test sets. Subsequently, we calculated the
macro-averaged BLEU scores using the 48 local BLEU scores obtained on the test set for
all the dialects. For Mono NMT or SMT models, we trained 48 local NMT/SMT models us-
ing a local training/valid set (also a subset of the entire training/valid set) and subsequently
evaluated it with a local test set. For all the settings, for the evaluation, we used the test
set written as one sentence per line. The difference between the dialect-to-standard and
standard-to-dialect translations is simply the exchange of the source and target languages.
In fact, the macro-averaged BLEU score reached 35.10 even when we simply output the
dialect sentences without translation.

We used OpenNMT-py5 with its default hyper-parameter settings, except for the num-
ber of training epochs (which we set to 20), and selected the model that performed best on
the development set. For the details, we list the hyperparameter settings in Table 3.2. In
addition, we employed Moses6 (Koehn et al., 2007) as the baseline SMT model and set the
distortion limit to 0. The standard Japanese language model used in Moses was trained with

5https://github.com/OpenNMT/OpenNMT-py
6http://www.statmt.org/moses



3.5 Experiments | 18

Table 3.3 Descriptions of each model.

System Translation unit Model Identify dialects
None (w/o translation) - - -
Mono NMT bunsetsu local NMT ×48 True
Multi NMT (w/o labels) bunsetsu multilingual NMT False
Multi NMT-sentence (w/ labels) sentence multilingual NMT True
Multi NMT (w/ labels) bunsetsu multilingual NMT True
Mono SMT bunsetsu local SMT ×48 True
Multi SMT (w/o labels) bunsetsu multilingual SMT False

KenLM (Heafield, 2011). For the syllable-to-syllable translation, we used MeCab 0.9967 to
analyze the pronunciations of the kanji characters.

Regarding the dialect label order used for the input, our preliminary experiments on the
validation set indicated that the best models were obtained using input sequence (d) (Table
1) for the dialect-to-standard translation and input sequence (b) for the standard-to-dialect
translation.8

A brief description of each model we used in our experiments is provided in Table 3.3.
Except for the multi-sentence NMT models, we used each bunsetsu as a translation unit.
Note that, as we mentioned in Sec. 3.4, it is practically unnecessary to model the word order
distortion in Japanese dialect translation. The individual dialects are distinguished by two
methods: addition of dialect labels to the multilingual NMT, and training the local models
for each dialect separately. In comparison, the multilingual NMT and SMT systems without
the labels (Multi NMT w/o labels, Multi SMT w/o labels) do not distinguish dialects, and
therefore, are disadvantageous.

3.5.2 Multi-Dialect NMT Model Performance
Table 3.4 summarizes the results of the dialect translation performance of all the considered
models, with the first row group comprising their scores for dialect-to-standard translation
under different input settings.

Monolingual vs. multilingual: For comparison, we first considered a model that was
trained using only a single set of dialect-standard parallel data (Mono NMT). It performed
quite poorly compared to the other models that used data for all the dialects (Multi NMT)

7http://taku910.github.io/mecab/
8See Appendix B for more details.
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Table 3.4 Syllable-level BLEU scores of all models.

System BLEU
dialect-to-standard

None (w/o translation) 35.10
Mono NMT 22.45
Multi NMT (w/o labels) 71.29
Multi NMT-sentence (w/ labels) 69.74
Multi NMT (w/ labels) 75.66
Mono SMT 52.98
Multi SMT (w/o labels) 73.54

standard-to-dialect
Multi NMT (w/ labels) 65.30

Figure 3.3 BLEU scores of Multi NMT models and translation difficulty for all dialects.

and was even worse than simply outputting the dialect sentences unchanged (35.10). This in-
dicates that training independent NMT models for each language pair with a limited amount
of training data is extremely inefficient. In contrast, the multi-dialect model presented a
drastically improved the translation performance.

Dialect labels: Including dialect labels improved the Multi-NMT BLEU score by 4.37
points (fifth row of Table 3.4) compared to that of the same model without the dialect labels
(third row). Figure 3.3 shows for these two models the BLEU scores for all the dialects
in ascending order of translation difficulty. Here, the translation difficulty is defined as the
average normalized Levenshtein distance over all the sentence pairs (dialect and standard
Japanese) for a given dialect. As expected, the BLEU scores for all the dialects present
a strong negative correlation (𝜌 = –0.82) with the translation difficulty. In addition, we
can observe that the model with language labels consistently outperforms that without the
labels, except for the Tottori dialect, for which there is an extremely small amount of text data
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(Figure 3.1). This result indicates that explicit information of the source and target dialects
with dialect labels can improve the encoding and decoding accuracy.

Fixed-order translation: Comparing the proposed model (Multi NMT) with the same
model trained via the standard approach of using entire sentences as input/output sequences
(Multi NMT-sentence) shows that Multi NMT outperforms Multi NMT-sentence by 5.92
points. One disadvantage of the chunk-wise translation is that it cannot capture the context be-
yond the boundary of each chunk; however, despite this disadvantage, ourMulti NMTmodel
can still outperform the model with an access to a broader context (Multi NMT-sentence).
This indicates that our fixed-order translation approach is suitable for translating Japanese
dialects, despite its limited context sensitivity.

NMT vs. SMT: Zoph et al. (2016) found that SMT models largely outperformed state-
of-the-art NMT models for low-resource languages. The second-row group in Table 3.4
summarizes the results for a fixed-order character-based SMTbaseline. In these experiments,
the NMTmodel trained using a single dialect (MonoNMT) yielded the poorest performance;
however, the one with dialect labels outperformed the baseline Multi SMT model, achieving
the best performance overall.

3.5.3 Example of Translation Results
To demonstrate how each of the proposed component contributes to generating accurate
translations, we now present some concrete examples of the translation results of our models
for the Hyogo, Kagoshima, and Nigata dialects (Table 3.5).

Comparing the Multi NMTmodels with and without dialect labels, we noted that adding
labels enables the models to better translate the chunks that required dialect-specific knowl-
edge. In Example 1, the source sentence includes a local name, おー (O -), for a certain
area,あいおい (Aioi), in Hyogo, which only the model with dialect labels can successfully
translate. In addition, in Example 2, the dialect labels enable the model to capture a dialect-
specific transliteration rule for the functional suffix (“ta ra”), a conditional-mood marker in
the last chunk of the reference sentence (i.e., “ta ya” to “a ra”).

Similarly, because the Multi SMT model could not take advantage of the dialect labels,
it failed to capture dialect-specific translation rules.

In the previous section, we noted that our fixed-order translation approach is suitable for
translating Japanese dialects, despite its limited context sensitivity. However, this becomes
a problem in Example 3, where the chunk-wise translation models cannot correctly translate
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(a) Aomori-to-standard (b) Okinawa-to-standard

Figure 3.4 Attention weight examples. (a) Aomori-to-standard translation of “next time”.
Aomori word konda is formed by linking syllables from two standard Japanese words, kondo
(next time) and ha (topic marker). (b) Okinawa-to-standard translation of “we”. Okinawa
word watta- combines two standard Japanese words, watashi (I) and tachi (plural marker),
with watt and ta- roughly corresponding to watashi and tachi, respectively.

a bunsetsu owing to the lack of context. Here, none of the models, except the Multi NMT-
sentence, can translate the bunsetsu, “mi zu n”, in the Nigata dialect to the correct standard
Japanese bunsetsu “mi zu no.” Because the translation of the functional word, “n,” in the
Nigata dialect is ambiguous, it can be translated as either “ga” (nominative marker) or “no”
(of) depending on the following context. This example exposes the limitations of our chunk-
wise translation models and suggests potential future directions: extending the fixed-order
translation to incorporate contextual information.

3.5.4 Visualizing Attention Weights
Here, to investigate how the proposed model translated the kana sequences in various di-
alects, we visualized the attention weights of the best-performing model for some correctly-
translated examples.

Figure 3.4(a) shows the attention history of the model for an example where a part of
the target language (standard Japanese) bunsetsu changes from the source language (Aomori
dialect) according to a simple regular rule. In such cases, the model tends to weight the
dialect label heavily when applying the rule (“da” → “do ha”). Conversely, Figure 3.4(b)
shows the attention history for an example where almost all the syllables are transcribed.
In these cases, the model needs to disambiguate the morpheme-level definitions to create
a correct translation, and thus, tended to focus on the entire sequence of semantically- or
grammatically-related morphemes.
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Figure 3.5 T-SNE projection of dialect label vectors. Dialects belonging to same region are
shaded using same background color.

3.5.5 Visualizing Dialect Embeddings
Östling and Tiedemann (2017) reported that clustering the language embeddings used to
train a multilingual language model produced a language cluster structure similar to those of
established relationships among the language families. Motivated by their work, we decided
to examine the relationships between the dialect embeddings and the typology of the dialects.

Figure 3.5 shows the t-Distributed Stochastic Neighbor Embedding (t-SNE) projection
of the dialect embeddings. It indicates that dialects from neighboring regions tend to form
a single cluster. Furthermore, we can observe an interesting agreement between the cluster
distances and the predictions of the dialectological typology theory, known as center versus
periphery (Yanagida, 1980), wherein new language use trends gradually propagate from the
cultural center (the old capital, Kyoto) to less culturally influential areas. This potentially
explains why the dialects in the Tohoku region (E) are similar to those in the Kyushu region
(D), despite their large geographical separation.

3.5.6 Effect of the Nearby Dialects
To investigate in more detail how jointly learning multiple dialects contributed to the dialect-
to-standard translations for each dialect, we performed an ablation study on all the dialect
regions. As presented in the previous section, the dialects in geographically close regions are
generally more similar to each other than those in other regions. Therefore, we assumed that
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the impact of sharing data from other dialects would differ depending on their geographical
distances from the target dialect.

To investigate this assumption, we prepared two Multi NMT models per dialect, trained
on the data that excluded the five geographically nearest or farthest dialects9 for the given
dialect region, and calculated the differences in the BLEU scores of these models and the
original model, for all the dialect regions. For example, the −nearest 5 model for the Tokyo
dialect is the Multi NMT model learned with the training data excluding the Chiba, Kana-
gawa, Saitama, Gumma, and Ibaraki dialects. Subsequently, we compared this BLEU score
of the model for the Tokyo dialect in the test set to that of the original model trained with
full data.

Table 3.6 lists the average results over all the 48 models for both the cases. Both the
models trained without the nearest five dialects, and those without the farthest five dialects
yielded lower average BLEU scores for their target dialects than the full models. This sug-
gests that even very distant dialects still assist in training other dialects. In addition, we note
that removing the nearest five dialects had a more significant impact than removing the far-
thest five dialects, indicating that similar dialects contribute more to assisting a multi-dialect
NMT to learn effectively.

3.6 Conclusion
We have examined the effectiveness of a multilingual, syllable-based, fixed-phrase-order
NMT model for translating Japanese dialects into standard Japanese. The results showed
that each component of our multi-dialect NMT model successfully improved the translation
accuracy when using a limited amount of supervised training data. In addition, we demon-
strated the potential benefit of analyzing dialect embeddings for dialectological analysis ap-
plications, and have also analyzed how the multi-dialect NMT leverages the training data
involving similar dialects to translate a given dialect.

One limitation of the proposed model is that it cannot consider longer-range dependen-
cies beyond the chunk level. Therefore, our future research plans include incorporating con-
textual information, e.g., n-to-1 translation (Tiedemann and Scherrer, 2017), into fixed-order
translation models and investigating the characteristics of the dialect embeddings further.

9The distances between the dialect pairs were calculated using the Euclidean distances between the points
where the dialogs were recorded.
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3.7 Appendix
Data size for each dialect We show the details of the dataset size in Figure 3.6. In our
experiments, we used the largest available Japanese dialect dataset; however, the number
of sentences in some dialects (e.g., Tottori) was small in our dataset. Owing to the lack of
the training or test dataset, the BLEU score of the Tottori dialect is actually inconsistent
with those of the other dialects, as shown in Figure 3.3. However, this result suggests that
the proposed method is effective for almost all the dialects, except in a very low-resource
scenario.
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Figure 3.6 Size of each dataset (training/valid/test) in our experimental setting per dialect.

Experiments of dialect label order variants We summarize the results of the preliminary
experiments to examine the best setting of the dialect labels in Tables 3.7 (validation set) and
Table 3.8 (test set). As can be seen from both the tables, the best models are obtained using
input sequence (d) for the dialect-to-standard translation and input sequence (b) (in Table
3.1) for the standard-to-dialect translation. Label set (b) in the dialect-to-standard translation
and set (a) in the standard-to-dialect translation does not contain the dialect information, in
contrast with the other settings. They present quite lower performances.
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Example 1 Hyogo region
(Meaning Yes, until then, in Aioi ...)
Source n - / so re ma de / o - ni wa

(んー /それまで /おーにわ)
Reference u n / so re ma de / a i o i ni ha

(うん /それまで /あいおいには)
Multi NMT (w/o label) u n / so re ma de / o o ni ha

(うん /それまで /おおには)
Multi NMT-sentence (w/ label) n - / so re ma de / a t ta n da

(んー /それまで /あったんだ)
Multi NMT (w/ label) n - / so re ma de / a i o i ni ha

(んー /それまで /あいおいには)
Multi SMT (w/o label) u n / so re ma de / o o ni ha

(うん /それまで /おおには)
Example 2 Kagoshima region
(Meaning After a few days, then it was...)
Source so i ga / mo / na n ni k ka / shi ta ya

(そいが /も /なんにっか /したや)
Reference so re ga / mo u / na n ni chi ka / shi ta ra

(それが /もう /なんにちか /したら)
Multi NMT (w/o label) so re ga / mo u / na n ni chi ka / shi ta da

(それが /もう /なんにちか /しただ)
Multi NMT-sentence (w/ label) so re ga / mo u / na n ni tsu ka / shi ta yo

(それが /もう /なんにっか /したよ)
Multi NMT (w/ label) so re ga / mo u / na n ni chi ka / shi ta ra

(それが /もう /なんにちか /したら)
Multi SMT (w/o label) so re ga / mo u / na ni ka / shi ta de

(それが /もう /なにか /したで)
Example 3 Nigata region
(Meaning I want to go to the water park as soon as possible, but...)
Source ha yo - / mi zu n / do ko e / i ko - to / o mo u ke do

(はよー /みずん /どこえ /いこーと /おもうけど)
Reference ha ya ku / mi zu no / to ko ro he / i ko u to / o mo u ke re do

(はやく /みずの /ところへ /いこうと /おもうけれど)
Multi NMT (w/o label) ha ya ku / mi zu ga / do ko he / i ko u to / o mo u ke do

(はやく /みずが /どこへ /いこうと /おもうけど)
Multi NMT-sentence (w/ label) ha ya ku / mi zu no / to ko ro he / i ko u to / o mo u ke do

(はやく /みずの /ところへ /いこうと /おもうけど)
Multi NMT (w/ label) ha ya ku / mi zu ga / do ko he / i ko u to / o mo u ke re do

(はやく /みずが /どこへ /いこうと /おもうけれど)
Multi SMT (w/o label) ha ya ku / mi zu ga / do ko he / i ko u to / o mo u ke do

(はやく /みずが /どこへ /いこうと /おもうけど)
Table 3.5 Example dialect-to-standard translations for Hyogo, Kagoshima, and Nigata di-
alects.
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Table 3.6 Impact of excluding nearest or farthest five dialect regions from training data when
calculating BLEU score for each dialect region. “Avg. Δ” denotes the average BLUE score
difference compared to that using all the data.

Dataset Avg. Δ #Regions BLEU decreased
−nearest 5 −0.94 34 / 48 (71%)
−farthest 5 −0.22 31 / 48 (65%)

Table 3.7 Syllable-level BLEU scores for each dialect label in Multi NMT in both translation
directions on the validation sets. We showed the details of dialect labels (a)–(d) in Table 3.1.

Seed (a) (b) (c) (d)
dialect-to-standard

0 90.16 89.30 90.28 91.03
1 90.92 89.45 90.93 91.16

standard-to-dialect
0 79.32 85.37 84.35 84.68
1 79.36 85.34 84.39 84.83

Table 3.8 Syllable-level BLEU scores for each dialect label in Multi NMT in both translation
directions on the test sets.

Seed (a) (b) (c) (d)
dialect-to-standard

0 74.35 71.59 74.25 75.57
1 75.31 71.44 75.43 75.50

standard-to-dialect
0 51.30 65.30 64.18 63.17
1 51.61 65.13 64.06 63.19



Chapter 4

Evaluation (1) : Comprehensive
Analysis of Semantic Metrics for
MT

4.1 Introduction
Computing the semantic similarity between two texts is crucial in various NLP tasks. One
prominent cluster of application examples is the use of semantic similarity as a metric for
evaluating automatically generated text (e.g., machine translation and text summarization)
considering gold reference texts (Rei et al., 2020; Sellam et al., 2020; Zhang et al., 2020a).
Such semantic similarity metrics are also reported effective as a loss function for training
language generation models (Wieting et al., 2019; Yasui et al., 2019). Another common
application of the semantic similarity can be seen in text/sentence retrieval, where estimating
the relevance between a given query and retrieved texts is an essential component (Chen
et al., 2017; Gao et al., 2021a; Karpukhin et al., 2020; Qu et al., 2021).

For more than a decade, a framework, known as Semantic Textual Similarity (STS) has
been widely used to test computational models of semantic similarity (Agirre et al., 2012).
Over the last decade, STS has emerged as the de-facto standard task for evaluating semantic
similarity models, and numerous studies have been published to propose semantic similarity
models over a decade (Chuang et al., 2022; Gao et al., 2021b; Giorgi et al., 2021; Lan and
Xu, 2018; Li et al., 2020; Reimers and Gurevych, 2019; Severyn et al., 2013; Yan et al., 2021;
Zhang et al., 2020b, etc.).
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The STS evaluation framework assumes that a model that performs well for the general
STS task should also perform well for specific application-oriented tasks. Based on this
assumption, models proposed for and evaluated on STS have been applied to application-
oriented tasks. For example, in machine translation (MT) evaluation, for the model incor-
porating several universal sentence encoders (USE) (Cer et al., 2018; Conneau et al., 2017;
Logeswaran and Lee, 2018), which performed well on STS, had the highest performance in
WMT18 (Shimanaka et al., 2018). These studies appear to provide empirical evidence sup-
porting the assumption that STS performs well as a general proxy for specific application-
oriented tasks.

However, in this study, we question this widely accepted assumption. Specifically, we
empirically investigated whether semantic similarity models superior to the general STS
task perform better on specific application-oriented tasks. In the experiments, we chose MT
Evaluation (MTE) as the representative application-oriented task of STS, and investigated
the correlation of the performance of numerous (> 20) sampled models between STS and
MTE. From the results, we gained several findings as follows:

• Semantic similarity models exhibited a non-negligible gap in performance on STS and
the specific task (i.e., MTE) (Fig. 4.1).

• The discrepancies appeared to be caused by the discrepancies between the STS and
MTE datasets, including (i) sentence length distribution, (ii) vocabulary coverage, and
(iii) granularity of gold-standard similarity scores.

The identified gap, which we refer to as the evaluation gap, indicates that the assumption in
question does not necessarily hold and demonstrates the potential dangers of relying solely
on the current STS-based evaluation alone in studying the semantic similarity. We believe
that our findings will be considered in future research on the crucial components of NLP.

4.2 Related Work
The necessity of the semantic similarity in application-oriented tasks. Semantic simi-
larity is required in various NLP application tasks, and STS was motivated by being a sur-
rogate task for such application-oriented tasks (Agirre et al., 2012; Cer et al., 2017). These
tasks comparing similarity can be categorized into two types, namely, (1) reference-based
evaluation and (2) semantic retrieval. For example, the reference-based evaluation is com-
monly used in the natural language generation (NLG) fields such as MT, summarization, and
simplification. Semantic retrieval includes PR, dialog retrieval, as well as machine reading
comprehension. Among these application-oriented tasks, we selected MT evaluation.
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In fact, MT evaluation have several examples that incorporate STS-based models. For
example, Castillo and Estrella (2012); Shimanaka et al. (2018) applied STS model for MT
evaluation and demonstrated the effectiveness of those models. However, relying on the
STS evaluation for semantic similarity models could be risky when there is no sufficient
correlation between the evaluation of STS and the application-oriented task such as MTE.
We investigates the evaluation gap between STS and MTE, to identify vulnerabilities in the
STS evaluation in the real world.

Validity of NLP evaluation protocol. Recently, the validity of evaluation protocols, such
as benchmark datasets (Bowman and Dahl, 2021) or metrics (Durmus et al., 2022; Mathur
et al., 2020) has been questioned on various NLP tasks. Many studies have identified the bias
or lack of certain factors in the evaluation protocol. Søgaard et al. (2021); Varis and Bojar
(2021) investigated the effects of differences in the sentence length distribution between train
and test sets. Additionally, a difference in vocabulary distribution (domain mismatch) is also
often mentioned as an important factor affecting the evaluation (Wang et al., 2022; Zhang
et al., 2020b). In terms of an STS-specific factor, Reimers et al. (2016) highlighted the
difference in the granularity of similarity between STS and downstream tasks. They focus
on appropriate task-intrinsic evaluation metrics for STS-based models, considering different
downstream tasks; however, their thought is also based on the assumption that the STS-based
models are useful for the downstream tasks. In our study, we question this assumption.
Based on these previous studies, we analyze the effects of three factors, sentence length,
vocabulary, and similarity granularity, contributing to the evaluation gap between STS
and the application-oriented task such as MTE.

Discussion of the problems of STS benchmark. While many models have been proposed
using the STS evaluation, some studies have also questioned the STS or conducted an addi-
tional evaluation for specific factors that are not captured by the STS evaluation. Wang et al.
(2021) argue that previous studies rely on the STS evaluation and argues that STS lacks do-
main adaptability. Futhermore, Liu et al. (2021) did not adopt the STS evaluation because
of the lack of domain coverage and lack of consideration for context, so they created a new
contextual dialog domain STS dataset. In addition, Wieting et al. (2020) extracted a more
difficult subset which contains the examples with low word overlap by focusing on a spe-
cific factor such as word overlap. Wang et al. (2022) focused on the discrepancy between
the evaluation of STS and single-sentence downstream tasks in SentEval, highlighting the
problems of domain mismatch and ambiguous annotations. In comparison, we investigated
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Figure 4.1 Correlation between evaluation using STS and that using a task-specific dataset,
such as MT Evaluation (MTE).

whether STS satisfies the original motivation for application-oriented tasks practically using
semantic similarity (Agirre et al., 2012; Cer et al., 2017).

In summary, we shed the light on the specific factors such as sentence length, vocabu-
lary, and similarity granularity to make the relationship to the evaluation gap explicit. We
provided the first evidence that STS has a considerable evaluation gap even from the MT
evaluation task, that have been considered representative applications since the inception of
STS.

4.3 Is There a Gap between Evaluation of STS and
Application-oriented Tasks?

STS dataset (Agirre et al., 2012; Cer et al., 2017)was proposed as a semantic similarity bench-
mark that can be directly applied to several NLP tasks and is currently the de-facto standard
for evaluating semantic similarity models. In this study, to validate the STS benchmark,
we conducted comprehensive experiments to examine whether there is a sufficient correla-
tion between the evaluation results on STS and that on the specific application-oriented task
dataset such as MTE.



4.3 Is There a Gap between Evaluation of STS and Application-oriented Tasks? | 31

4.3.1 Tasks and Datasets
General settings. We present the definitions of two tasks—STS and MTE—that must cap-
ture the semantic similarity addressed in this study. The main structure of the two tasks
is comparing a sentence pair (s, s′) and predicting the semantic similarity score between
the two sentences. We selected MTE as the example of application-oriented tasks of STS.
MTE compares relatively similar sentence pairs and provides a gradation score as the gold
standard.

STS (STS-b). STS (Agirre et al., 2012) is a task that compares a sentence pair (s1, s2) and
predicts a similarity score between the two sentences. The gold-standard similarity score
is provided in the range of 0-5. Model prediction scores are evaluated using Pearson or
Spearman correlations with the gold standard. In this study, we used Pearson correlation.
We used the STS-b dataset (Cer et al., 2017) with image captions, news articles, and forum
domain data over a 5-year pilot task (STS12-17).

MT Evaluation (WMT17). MT Evaluation (MTE) is a task that compares a (model hy-
pothesis, reference) pair and predicts the adequacy scores of the model hypothesis relative to
the reference. In this study, we use the segment-level Direct Assessment dataset (to-English)
in WMT17 (Bojar et al., 2017).1 We selected this because of the reliability of the manual
scores (Sellam et al., 2020; Zhang et al., 2020a). The gold standard score is the normalized
value of scores manually evaluated with 100 scales to the pair (model hypothesis, reference).
The Pearson or Kendall correlation between the gold standard and the model prediction score
is usually used in the evaluation. In this study, we used the Pearson correlation.

Statistics of datasets. Table 4.1 shows statistics of two datasets (STS andMTE) employed
in this paper. The dataset size of STS is larger than that of MTE, whereas the total word
counts are comparable between STS and MTE.

4.3.2 Semantic Similarity Prediction Model
A semantic similarity prediction model usually involves the following two steps: (i) obtain-
ing a sentence representation and (ii) calculating the similarity between two representations.

To determine whether there is an evaluation gap between various models, we measured
the correlation between the evaluation results on STS and that of MTE. In this study, we used

1We use cs–en, de–en, fi–en, lv–en, ru–en, tr–en and zh–en datasets, which are sourced from news domain
texts. https://www.statmt.org/wmt17/results.html

https://www.statmt.org/wmt17/results.html
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STS (s1, s2) MTE (hyp, ref)
#sentence pairs 8,628 3,793

#sentences ({s, s’}) 15,487 4,261
#words 186,134 170,565

#words / {s, s’} 11.443±6.143 23.381±11.215
#words / s 11.450±6.188 23.296±11.290
#words / s’ 11.437±6.099 23.467±11.138

STS-news (s1, s2) STS-forum (s1, s2) STS-image-captions (s1, s2)
#sentence pairs 4,299 1,079 3,250

#sentences 8,268 1,913 5,306
#words 107,957 25,456 52,721

#words / {s, s’} 12.927±7.506 12.642±4.978 9.0823±2.910
#words / s 12.949±7.564 12.677±5.007 9.0585±2.906
#words / s’ 12.905±7.448 12.608±4.949 9.1062±2.914

Table 4.1 Stats. of sentences and words and average of sentence length for STS (all and
sub-domain sets) and MT Evaluation: MTE).

the following 23 semantic similarity prediction models: BoW-{raw, TFIDF}-sum, BoV-
{Word2vec*, Glove, Fasttext}-{mean, max}, USE-{normal, large}, Avg. of BERT-{BERT-
base-uncased (bbu), RoBERTa-large (rl)}, BERTScore (BScore)-{BERT-base-uncased,
RoBERTa-large}-{precision, recall, F1-score}, Sentence-BERT (SBERT)-{bertbase-NLI-
mean, MiniLM, mpnet}, and SimCSE-{supervised, unsupervised}.

Table 4.2 shows the descriptions of the models used in this paper.



4.3 Is There a Gap between Evaluation of STS and Application-oriented Tasks? | 33

m
od

el
di
m

sim
ila

rit
y
fu
nc

tio
n

po
ol
in
g

ot
he

rs
Si
m
CS

E-
su

p
pr
in
ce
to
n-
nl
p/
su

p-
sim

cs
e-
be

rt-
ba

se
-u
nc

as
ed

de
fa
ul
t

co
s

Si
m
CS

E-
un

su
p

pr
in
ce
to
n-
nl
p/
un

su
p-
sim

cs
e-
be

rt-
ba

se
-u
nc

as
ed

de
fa
ul
t

co
s

SB
ER

T-
bb

-N
LI

-m
ea

n
be

rt-
ba

se
-n
li-

m
ea

n-
to
ke

ns
co

s
m
ea

n
SB

ER
T-

M
in
iL

M
all

-M
in
iL

M
-L

6-
v2

38
4

co
s

m
ea

n
SB

ER
T-

m
pn

et
all

-m
pn

et-
ba

se
-v
2

76
8

co
s

m
ea

n
BE

RT
Sc

or
e-
rl-

p
ro
be

rta
-la

rg
e

de
fa
ul
t

pr
ec

isi
on

BE
RT

Sc
or
e-
rl-

r
ro
be

rta
-la

rg
e

de
fa
ul
t

re
ca

ll
BE

RT
Sc

or
e-
rl-

f
ro
be

rta
-la

rg
e

de
fa
ul
t

f1
-sc

or
e

BE
RT

Sc
or
e-
bb

u-
p

be
rt-

ba
se
-u
nc

as
ed

de
fa
ul
t

pr
ec

isi
on

BE
RT

Sc
or
e-
bb

u-
r

be
rt-

ba
se
-u
nc

as
ed

de
fa
ul
t

re
ca

ll
BE

RT
Sc

or
e-
bb

u-
f

be
rt-

ba
se
-u
nc

as
ed

de
fa
ul
t

f1
-sc

or
e

av
g.

of
BE

RT
-b
bl

be
rt-

ba
se
-u
nc

as
ed

76
8

co
s

m
ea

n
av
g.

of
BE

RT
-rl

ro
be

rta
-la

rg
e

76
8

co
s

m
ea

n
Bo

V-
W
or
d2

Ve
c(

m
ea

n)
Go

og
leN

ew
s-v

ec
to
rs-

ne
ga

tiv
e3

00
.m

ag
ni
tu
de

30
0

co
s

m
ea

n
Bo

V-
W
or
d2

Ve
c(

m
ax

)
Go

og
leN

ew
s-v

ec
to
rs-

ne
ga

tiv
e3

00
.m

ag
ni
tu
de

30
0

co
s

m
ax

Bo
V-

Gl
ov

e(
m
ea

n)
gl
ov

e.8
40

B.
30

0d
.m

ag
ni
tu
de

30
0

co
s

m
ea

n
Bo

V-
Gl

ov
e(

m
ax

)
gl
ov

e.8
40

B.
30

0d
.m

ag
ni
tu
de

30
0

co
s

m
ax

Bo
V-

fa
stt

ex
t(
m
ea

n)
cr
aw

l-3
00

d-
2M

.m
ag

ni
tu
de

30
0

co
s

m
ea

n
Bo

V-
fa
stt

ex
t(
m
ax

)
cr
aw

l-3
00

d-
2M

.m
ag

ni
tu
de

30
0

co
s

m
ax

Bo
W

(su
m
)

Co
un

tV
ec

to
riz

er
(sk

lea
rn
,u

se
sm

oo
th

id
f,
sto

pw
or
ds

)
vo

ca
b
siz

e
co

s
su

m
Bo

W
-T
FI

DF
(su

m
)

Tfi
df
Ve

cto
riz

er
(sk

lea
rn
,s
to
pw

or
ds

)
vo

ca
b
siz

e
co

s
su

m
no

rm
=L

2
US

E
un

iv
er
sa
l-s

en
ten

ce
-e
nc

od
er

51
2

co
s

no
rm

=L
2

US
E-

l
un

iv
er
sa
l-s

en
ten

ce
-e
nc

od
er
-la

rg
e

51
2

co
s

no
rm

=L
2

Ta
bl
e4

.2
Se

m
an

tic
sim

ila
rit

y
m
od

el
de

sc
rip

tio
ns

.



4.3 Is There a Gap between Evaluation of STS and Application-oriented Tasks? | 34

(a) STS

(b) MT Evaluation

Figure 4.2 Performance of semantic similarity models on STS and MT Evaluation.

4.3.3 Experimental Procedure and Results
Fig. 4.2 compares the evaluation for each semantic similarity prediction model on STS and
MTE. The x-axis represents the semantic similarity prediction models, which are ordered by
decreasing the performance on STS from left to right. Compared with STS, the performance
of each model differs largely in MTE. For the STS evaluation, SBERT (mpnet: 0.86) out-
performs BScore (RoBERTa-large, F1-score: 0.55); however, in MTE, those performances
are inverse as SBERT (0.66) < BScore (0.76). Both STS and MTE, both correlation mea-
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sures have a similar trend for model ranking in each task (Fig. 4.2), thus we used the Pearson
correlation in each task’s evaluation. In addition, we calculated Spearman correlation coef-
ficients between the performance on STS and that on each task to precisely visualize these
performance gaps (Fig. 4.1). Here, we define these correlation coefficients as the value of
the evaluation gap. A lower correlation value indicated a larger evaluation gap. In Sec. 4.4,
we examine changes in the evaluation gap when the explanatory variables (e.g., sentence
length, vocabulary coverage, similarity granularity) are changed.

4.4 What Factors Cause the Evaluation Gap?
As mentioned in Sec. 4.3, there is a large gap between the specific application-oriented task
and STS used as frameworks for evaluating the sentence similarity prediction models. In
this section, we discuss three potential factors contributing to the gap between evaluation
frameworks, as well as the dataset features that should considered to when using STS for
evaluation.

4.4.1 Factor 1: Difference in Sentence Length
In the following, we discuss the sentence length (i.e., the number of words in a sentence).
Words are commonly used as the basic unit in NLP models. This is also true when making
predictions of semantic similarity measures. We focused on the large variance in the number
of words (i.e., sentence length) in the target text for similarity measurement. Some studies
reported that differences in the sentence length distributions produce different scores on dif-
ferent test sets (Søgaard et al., 2021; Varis and Bojar, 2021). Therefore, we hypothesize that
differences in the distribution of sentence lengths by task may result in an evaluation gap.

Short sentence length in STS benchmark

Here, we demonstrate that the STS dataset has shorter sentence lengths than the datasets for
other specific tasks, such as MTE. Histograms of the sentence length distribution for each
dataset are presented in Fig. 4.3(a). Compared with the sentence length distribution of the
MTE task, STS has a biased sentence length distribution consisting of short sentences.

Also in Table 4.1, the sentence length distribution (the number of of words / {s,s’})
shows that STS has very few words per sentence compared to the MTE task. As for the STS
sub-domain sets, the three sets have different sentence length distributions. We additionally
describe the histograms of the sentence length distributions for the three STS sub-domain
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size avg. sent len
[0, 40) 481 11.610±5.794
[5, 45) 481 11.790±5.979
[10, 50) 1225 16.841±5.747
[15, 55) 1484 21.086±5.015
[20, 60) 1112 24.722±4.286
[25, 65) 715 28.260±3.733
[30, 70) 465 33.184±4.462

Table 4.3 Statistics of sentence length subsets for MTE. The “size” means the number of
sentence pairs and the “avg. sent len” means the average of sentence length for each subset.
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(a) original datasets (STS and MTE)
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(b) MTE subsets

Figure 4.3 Histogram of sentence length in original datasets (STS andMTEvaluation: MTE)
and MTE subsets according to sentence length.

sets in Fig. 4.1. As illustrated here, the average sentence length of the image-caption domain
is particularly highly biased for shorter sentence lengths.

Does the sentence length gap cause the evaluation gap?

There is a difference in the sentence length distribution between STS and the application-
oriented task. Here, we investigate whether eliminating the difference in sentence length
between the STS and the application task (MTE) alleviates the evaluation gap.

Settings. We created subsets of theMTE dataset to match or differ the STS sentence length
distribution, and then, compared the correlations between the STS evaluation result andMTE
result for the different models. The subset [x, y) was drawn from a range of sentence lengths
[x, y) according to the STS distribution. In MTE, the subsets were split based on the average
sentence length of the sentence pairs. Statistics of the subset of sentence length is shown in
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Figure 4.4 Spearman correlations between performance with STS and that with the subsets
split according to sentence length with MT Evaluation task. The darker color represents the
lower correlation (= the larger evaluation gap). [x, y) means that the subsets consist of the
examples of the sentence length from x to y.

Table 4.3. Histograms of the created subsets according to sentence length distribution are
shown in Fig. 4.3(b). We created MTE subsets from [0, 40) to [30, 70). The shorter MTE
subsets, such as [0, 40) and [5, 45), had nearly the same distribution as the STS set. We
investigated whether correlations were lower in the task-specific datasets (i.e., the evaluation
gap was amplified) when their sentence length distribution was more different from that of
STS.

Results. Figs. 4.4 present the Spearman correlations between the performance of the mod-
els on STS and that on the MTE subset with adjusted sentence length distributions, respec-
tively. For MTE, the greater the difference in the sentence length distribution, the lower the
correlation (i.e., the larger the evaluation gap). This result indicates that the difference in the
sentence length distribution contributes to the evaluation gap between STS and MTE.

Analysis: In-domain vs. Out-of-domain. The STS dataset is sourced from three differ-
ent domains (news, image captions, and forum), and the sentence length distribution actually
differs for each domain. We conducted additional experiments for three sub-domain sets fol-
lowing the same procedure using subsets, and found that the similar trends that the evaluation
gap increases with the larger sentence length subset.

Settings. We create subsets from theMTE dataset to match the sentence length distribution
for each of three STS sub-domain sets. Notably, the forum and image caption domains have



4.4 What Factors Cause the Evaluation Gap? | 38

STS-news-based STS-forum-based STS-image-captions-based
size avg. sent len. size avg. sent len. size avg. sent len.

[0, 40) 503 12.898±6.971 400 9.491±3.183 816 12.348±4.347
[5, 45) 506 13.238±7.259 398 9.521±3.162 867 13.106±4.855
[10, 50) 2150 19.356±6.201 676 13.024±2.620 1229 15.444±3.879
[15, 55) 1902 22.082±5.192 778 17.648±2.457 911 18.337±3.013
[20, 60) 1185 24.935±4.332 650 22.185±2.548 658 22.251±2.620
[25, 65) 715 28.260±3.733 - - - -
[30, 70) 465 33.184±4.462 - - - -

Table 4.4 Stats. of sentence length subsets for MTE according the sentence length distribu-
tion of STS sub-domain sets. The “size” means the number of sentence pairs and the “avg.
sent len” means the average of sentence length (the average of {s, s’}) for each subset.

(a) news (b) image captions (c) forum

Figure 4.5 Spearman correlations between performance on sentence length subsets of STS-
news, image captions, forum and MT Evaluation (MTE) . The darker color indicates the
lower correlation (= the larger evaluation gap).

relatively small sentence length distributions (in Fig. 4.4, we thus reduced the range of the
subsets from [0, 40) to [20, 60). Statistics of the subset of sentence length are shown in
Table 4.4.

Results. Fig. 4.5 shows the correlation withMTEwhen sentence length subsets are created
separately for each domain. We observed a similar tendency for all sub-domain sets that
the evaluation gap increases for subsets of longer sentence lengths. This suggests that the
evaluation results differ due to different sentence length distribution even within the same
domain, which is consistent with a previous study’s report in a different benchmark (Søgaard
et al., 2021).
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Figure 4.6 Histogram of the ratio of the vocabulary covered with the vocabulary of STS in
the MT Evaluation (MTE) for each sentence pair.

4.4.2 Factor 2: Difference in Vocabulary Coverage
Beyond sentence length, there are still other factors that may contribute to the evaluation gap
between STS and the application-oriented tasks. Here, we discuss the vocabulary coverage
of the MTE task dataset using STS. One reason for focusing on this factor is that the text
domains represented in the datasets are distinct. Some studies have highlighted the strong
dependence of the STS-based models on domains (Zhang et al., 2020b), as well as mismatch
with a dialog domain (Liu et al., 2021). Therefore, we hypothesize that differences in vocab-
ulary coverage due to domain differences may influence the evaluation gap.

Low vocabulary coverage with STS for vocabulary in the applications

Here, we demonstrate that the STS vocabulary does not adequately cover task vocabulary
(MTE). For each sentence pair, we calculate the vocabulary coverage, which is the recall
of vocabulary in STS (Vsts) to the vocabulary in the sentences in the MTE task (s, s′), as
follows:

Recall(s, s′) =|(s ∪ s′) ∩ 𝒱STS|
|s ∪ s′| (4.1)

Fig. 4.6 shows the histograms of Recall(s, s′) for each sentence pair in MTE. In both tasks,
most sentence pairs have a vocabulary coverage of less than 1, i.e., they contain vocabulary
not covered by STS. Thus, STS vocabulary does not sufficiently cover the vocabulary of the
other task.
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STS-based STS-news-based STS-forum-based STS-captions-based
size avg. Recall size avg. Recall size avg. Recall size avg. Recall

(all) 3,793 0.882±0.084 4,299 0.854±0.093 1,079 0.715±0.120 3,250 0.523±0.112
High 100 1.000±0.000 100 1.000±0.000 100 0.980±0.024 100 0.787±0.042
Low 100 0.631±0.060 100 0.588±0.058 100 0.418±0.063 100 0.252±0.062

Table 4.5 Statisitics of vocabulary subsets for MTE.

Does the vocabulary distribution gap cause an evaluation gap?

We investigate whether the low vocabulary coverage with STS examined in Sec. 4.2.1 is
indeed a factor contributing to the evaluation gap.

Settings. For the MTE dataset, we extract the top and bottom 100 pairs as the Recall(s, s′)-
High and Recall(s, s′)-Low subsets, respectively. The MTE Recall(s, s′)-High subset con-
tains all sentence pairs composed of STS vocabulary. In this experiment, we examine
whether higher lexical coverage with the STS vocabulary for the subsets resulted in a higher
correlation. Statistics of the subset of vocabulary coverage is shown in Table 4.5.

Results. Table 4.6 presents the Spearman correlation between the performance on STS and
those on the Recall(s, s′)-High and Low subsets in MTE. The MTE subsets did not show the
hypothesized trend. One reason for the result of MTE is that STS is a mix of three different
domains (news, image captions, and forum). In contrast, MTE is a single news domain
dataset, which might have caused a divergence in the evaluation of sentence pairs from the
same or different domains.

Analysis: In-domain vs. Out-of-domain. To confirm the influence of STS inner do-
mains, we performed an additional analysis. We created vocabulary coverage subsets for
the three STS sub-domain sets (news, image captions, and forum) in the same way as for the
entire STS, and calculated the correlation between the three STS sub-domain sets and MTE
High/Low subsets. For an in-domain setting, theMTE subset withHigh vocabulary coverage
using STS-news correlated better than that with Low vocabulary coverage (0.438 > 0.373),
as hypothesized. For out-of-domain settings, the STS-forum set also showed that the High
subset has a better correlation than the Low subset (0.779 > 0.458); however, in the im-
age caption set, the correlation of the Low subset (0.177) is better than that of High subset
(0.046). For the image caption domain, the correlation values are extremely low for both the
subsets, indicating that the STS image caption set did not play a good role in the evaluation
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Recall(s, s′)-Low Recall(s, s′)-High
MTE 0.276 > 0.272

Table 4.6 Spearman correlations between the performance with STS and that with the
subsets split according to higher vocabulary coverage (Recall(s, s′)-High) and lower one
(Recall(s, s′)-Low) with STS of MT Evaluation task (MTE).

of application-oriented tasks such as MTE. In summary, these results indicate that the vo-
cabulary coverage contributes to evaluating gap between STS and the application-oriented
tasks.

Analysis: STS has easier vocabulary STS contains more familiar words than that appear
in the application tasks. As quantitative indicators of word familiarity, word frequency (Yi-
mam et al., 2018) and word length (Kincaid et al., 1975) are often used mainly in the text
simplification task. Intuitively, the higher the word frequency or the shorter the word length,
the more familiar the word. In this case, we use “word frequency (wordfreq)” and “zipf
frequency (zipffreq)” scale in wordfreq module (Speer et al., 2018).2 Wordfreq is the nor-
malized frequency in the corpora, and zipffreq is the logarithmically scale of wordfreq. The
word length is the number of characters in each word. We use nltk.word_tokenize() as
word split and filtered out URLs and those with more than 50 characters.

Table 4.7 shows the average word frequency with the wordfreq module and word length
for each dataset. In zipffreq, the average of STS is shorter than that of both the application
tasks. Also in word length, we could observe that the average of STS is higher than that of
MTE. Thus, in both the indicators, word familiarity distribution in STS is higher than in the
two application tasks.

Additionally, by comparing between “general” word frequencies (wordfreq) in the
wordfreq module and actual word frequencies in the corpus (corpus-freq), we can identify
words that appear particular high-frequently in the corpus. The words belongs to “corpus-
freq – wordfreq > 0.001” for STS and MTE were 43, 18 words, respectively (if excluding
stopwords and punctuation, 28 and 3 words, respectively). Examples of higher frequent
words in each dataset are shown in Table 4.8. As shown in this, some domain-specific words
(STS: image captions, MTE: news) are particularly frequent in each corpus. STS seems to
be biased toward certain words (e.g., colors, present progressive forms, relatively abstract
nouns such as man and dog). The results indicate that the STS has a relatively “easier” vo-

2A tool to obtain word frequencies from 7 different corpora (Wikipedia, Subtitles, News, Books, Web text,
Twitter, Reddit). https://pypi.org/project/wordfreq/

https://pypi.org/project/wordfreq/
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STS MTE
zipffreq (↑) 3.59±1.24 3.45±1.54
length (↓) 6.97±2.76 7.34±2.83

Table 4.7 Average of word frequency and word length in STS and MT Evaluation (MTE).
The higher (↑) the average for zipffreq (zipf scale of normalized word frequency) or the lower
(↓) the average for word length, the higher the word familiarity can be considered.

STS man, woman, playing, running, guitar, white, black, red, dog,…
MTE said, police, olympic(, was, will, which, who,…)

Table 4.8 Examples of higher frequency words for STS and MT Evaluation (MTE) (stop-
words in parentheses).

cabulary (particularly sourced from the image-caption domain) than the application-oriented
task.

4.4.3 Factor 3: Difference in Granularity of Gold-standard Scores
Below, we consider the granularity gap of the gold-standard similarity scores between STS
and MTE.

We suspect that the granularity of the similarity that was considered in each task varies.
The distinction between better or worse hypotheses for high-similarity sentence pairs is an
arresting challenge in MTE (Ma et al., 2019). More concretely, the current semantic evalua-
tion model for MTE is unable to finely discriminate the better outputs in highly competitive
language pairs such as to-English because of high quality of recent MT output for highly
competitive language pairs. Considering this application, we hypothesize that the similarity
granularity of STS is insufficient to evaluate such MTE problems.

The discrepancy of the similarity granularity between STS and MTE

The difference in the similarity score between STS and MTE can be seen in some real ex-
amples. The actual examples in STS and MTE are illustrated in Table 4.9. STS provides
give relatively high scores for the difference between the past and present progressive tenses,
and the difference in including proper nouns such as cholera, as long as they generally share
some elements. However, in MTE, the first example is given a relatively higher score (0.49)
for the different actions between continues to take and is already given, whereas the second
example (Fresh fruit ...) is assigned a lower score (-0.83), sharing almost similar elements
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source s1 (ref) s2 (hyp) gold BScore SimCSE
STS (i) A man is riding a

mechanical bull.
A man rode a me-
chanical bull.

4 0.98 0.96

(ii) A total of 17
cases have been
confirmed in the
southern city of
Basra, the Organi-
zation said.

A total of 17 con-
firmed cases of
cholera were re-
ported yesterday by
the World Health
Organisation in the
southern Iraqi city
of Basra.

3.6 0.93 0.74

MTE (i) This drug contin-
ues to take 12
months after a
heart attack, which
can reduce the risk
of a stroke or heart
attack.

The drug is al-
ready given for
12 months after
a heart attack,
reducing the risk of
a stroke or another
attack.

0.49 0.94 0.90

(ii) Fresh fruit was
replaced with
cheaper dried fruit.

Fresh fruit is cheap
dried fruit instead.

-0.83 0.94 0.82

Table 4.9 Actual examples of STS and MT Evaluation (MTE). The gold scores of MTE
are normalized in the range (-1.81, 1.44) from with manually evaluated 100-scale scores.
“BScore” and “SimCSE” mean prediction scores with BERTScore (RoBERTa-large, F1-
score) and SimCSE (supervised), respectively.

but the hypothesis is somewhat difficult to understand. Can this similarity granularity gap
cause the evaluation gap?

Does the gap in the granularity of similarity cause an evaluation gap?

Here, we investigate whether the difference in the similarity granularity mentioned in Sec.
4.3.1 results in the evaluation gap.

Settings. For the STS and MTE datasets, we create subsets according to the similarity
scores for a sentence pair. We divide the STS dataset into five subsets by considering six
labels from 0 to 5. For the MTE dataset, we separated four subsets (Sim-{Low, MidLow,
MidHigh and High}) by quartiles for human-rated golden scores. We determined the gap
between the evaluations using STS andMTE subsets to confirmwhich range of the similarity
granularity impacts the gap in the evaluation. Specifically, the correlation might be higher
between the narrower range of the similarity band of STS and the wider range of that of
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STS
(all) (news) (forum) (image captions)

size avg. similarity size avg. similarity size avg. similarity size avg. similarity
[0, 1] 1182 0.655±0.280 594 0.522±0.393 275 0.472±0.420 931 0.360±0.353
(1, 2] 1348 1.631±0.285 640 1.631±0.283 248 1.687±0.286 460 1.601±0.283
(2, 3] 1672 2.653±0.291 876 2.678±0.291 232 2.656±0.292 564 2.615±0.286
(3, 4] 2317 3.614±0.287 1378 3.599±0.280 189 3.692±0.303 750 3.622±0.292
(4, 5] 1491 4.619±0.304 811 4.613±0.301 135 4.686±0.311 545 4.612±0.306

MTE
size avg. similarity

Sim-Low: [-2, -0.47] 950 -0.820±0.266
Sim-MidLow: (-0.47, -0.03] 948 -0.240±0.126
Sim-MidHigh: (-0.03, 0.42] 943 0.193±0.127
Sim-High: (0.42, 1.5] 952 0.683±0.183

Table 4.10 Dataset size (#sentence pairs) and average & standard derivation of gold-standard
similarity scores on STS and MTE subsets.

MTE. We anticipate that the higher similarity band in STS only correlates with the MTE
dataset, to consider the demand of the MTE that must distinguish higher similarity pairs.

Statistics of the subset of the granularity of similarity is shown in Table 4.10.

Results. Fig. 4.7 shows the Spearman correlations between the similarity granularity sub-
sets of STS and that of the MTE. As hypothesized, only the high-similarity subsets of STS,
STS-(3,4] and STS-(4,5], were highly correlated with all the MTE subsets. These results sig-
nificantly show that STS is unable to evaluate discrimination performance in the fine-grained
higher similarity bands.

In Fig. 4.8, we describe one interpretation of the above result. We suspect that STS
cannot capture fine-grained granularity at higher similarity bands, as discussed (Sec 4.3.1).
Not only is the evaluation of the high-similarity band of STS is higher correlated with that
of MTE, but the low-similarity band of STS and MTE are nearly uncorrelated or inversely
correlated (Fig. 4.7). We should consider introducing finer granularity in high similarity
bands for STS, while also considering exclusion examples in ineffective low similarity bands
as a widely applicable benchmark.

Analysis: No or low correlations in any domain. As in the previous analyses, we in-
vestigated the differences in each domain’s tendencies. The correlations between subsets
and MTE similarity subsets in each STS sub-domain sets are shown in Fig. 4.5. For the in-
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Figure 4.7 Spearman correlations between performance on subsets according to gold-
standard similarity scores of STS and MT Evaluation (MTE). The darker color represents
the lower correlation (= the larger evaluation gap).

STS

MT
Metrics

Gold-standard scores
0 1 2 3 4 5

0 100…gap

Figure 4.8 The relationship of the granularity of similarity scores between STS and MT
Evaluation.

domain setting (STS-news ↔ MTE), only the middle similarity band showed a strong nega-
tive correlation with the MTE. For out-of-domain settings, the image caption set showed no
correlation with MTE at lower similarity levels. In contrast, the forum domain set showed
correlation only at very high or low similarity levels. Thus, the evaluation gap caused by
similarity granularity was found to be a cross-domain problem.

Analysis: Ambiguity of similarity criteria in STS andMTE One of the possible reasons
for this strange phenomenon is the ambiguity of criteria for similarity in both STS and MTE.
Regarding MTE, each similarity score has no concrete criterion. Therefore, the degree of
penalty for a particular error depends on the discretion of each annotator. This lack has the
potential problem of creating unexpected bias in the annotation. In addition, STS annotations
are also ambiguous due to label criteria, discussed in (Wang et al., 2022). For example,
there is a large gap between the definitions of 2 (not equivalent but share some details) and
3 (roughly equivalent) in terms of semantic equivalence. These ambiguities in criteria can
be attributed to the evaluation gap.

We described histograms of sentence pairs that differ in some elements (tense, named
entities, and pronouns) in the Fig. 4.10.pronouns) in the STS andMTE datasets. We used the
spacy module to identify verb tenses, POS tags, and named entities. We define the examples
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(a) news

(b) image captions

(c) forum

Figure 4.9 Spearman correlations between performance on subsets divided according to gold-
standard similarity scores of each STS domain (news, forum, image captions) andMT Evalu-
ation (MTE). The darker color represents the lower correlation (= the larger evaluation gap).

of different tenses as a pair of one sentence containing the verb whose POS tag is VBD and
another sentence not containing such a verb. Besides, we defined examples with different
named entities as a pair in which an entity list was obtained for each sentence, and both its
text and the corresponding label in the list did not match exactly. We also made a list of
pronouns (POS = PRON) for each sentence and regarded a pair in which the two lists of
pronouns did not match precisely as examples of different pronouns.

This figure shows that MTE annotations give relatively lower scores for tense differences
than other elements, although the criteria are not explicitly stated. Thus, the lack of criteria
for each label may result in unexpected annotation bias, contributing to the evaluation gap
between STS and MTE.

Analysis: MTE-derivedmodels fail high surface and low semantic similarity pairs We
observed that the primary cause of the correlation gap regarding similarity granularity is the
difference between MTE-derived models, such as BERTScore, and STS-derived models,
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(a) Tense (b) Named entities (c) Pronouns

Figure 4.10 Histograms of #sentence pairs that have difference for each element (tense,
named entities, and pronouns) in STS (upper) and MTE (bottom). X-axis represents sim-
ilarity scores in each dataset.

(a) STS (b) MTE

Figure 4.11Model performances on STS andMTEvaluation (MTE) for each similarity band.

such as SBERT. We then performed an additional analysis by dividing the models into three
types: STS-derived model, MTE-derived model, and simple baselines like BoW, to investi-
gate the tendency induced by this derivation. The type of each semantic similarity prediction
model is as follows:

• Simple baselines: BoW, BoV, and the average of BERT embeddings

• STS-derived models: USE, SBERT, and SimCSE

• MTE-derived models: BERTScore variants

Fig. 4.11 shows three-type model performances on STS and MTE subsets for each simi-
larity band. As seen from this figure, the MTE-derived model performs extremely poorly in
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the low similarity band of STS. In fact, for a simple sentence pair with high surface similarity
(e.g., s1: “A woman is slicing tomato.”, s2: “A man is slicing onion.”). Such MTE-derived
models tend to predict high scores for pairs with high surface similarity, even for examples
that are easy for humans to discriminate, regardless of their semantic similarity. Our results
suggest that this tendency is one reason for the evaluation gap.

4.5 Discussion and Conclusions
We have investigated the gap between evaluation scores on the STS benchmark dataset and
those on the evaluation datasets for MT evaluation (MTE). We identified three factors con-
tributing to this evaluation gap, namely, (i) sentence length distribution, (ii) vocabulary cov-
erage ratio, and (iii) similarity granularity. These factors contributed to the evaluation gap,
indicating that STS is not currently a directly applicable benchmark for evaluating semantic
similarity.

Therefore, what should we do? We must continue to refine the evaluation of seman-
tic similarity alone because of the significant demand for predicting semantic similarity
(Sec. 4.1). Generic and task-specific semantic similarity measures have been proposed,
which may have overfitted the evaluation dataset. Even though we evaluate a generic seman-
tic similarity metric on only STS, it may not perform satisfactorily in real-world applications
due to the influence of multiple factors described in this study. Wang et al. (2021) argued
that the evaluation of existing semantic similarity models is biased toward STS and reported
evaluation results on several datasets, including STS. One feasible approach is to evaluate
and validate model performance on multiple datasets that engage in real-world tasks rather
than just STS. In application-oriented semantic similarity metric tasks, e.g., MTE, the prob-
lems of evaluation and metric, which derived in the task, caused by task-specific features
were shown. The MTE-derived metrics incorrectly scores high surface and low semantic
similarity sentence pairs that could appear in real-world applications. Even though STS has
some limitations as a “generic” semantic similarity evaluation, it can be used with a par-
ticular application task such as MTE to determine whether the model overfits task-specific
tendency. Furthermore, ambiguity in the criteria for similarity scale in both semantic simi-
larity evaluation tasks might lead to unexpected annotation bias. While there have been at-
tempts to make the current criteria more concrete (Park et al., 2021), in recent years, research
has emerged in various fields that employ a multi-dimension evaluation for models (Freitag
et al., 2021; Singhal et al., 2022; Thoppilan et al., 2022). To mitigate the fear that recent
high-performing models may inadvertently deceive humans, we need to be more rigorous in
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identifying phenomenon-by-phenomenon differences in various model evaluations, includ-
ing semantic similarity evaluation.



Chapter 5

Evaluation (2) :
Terminology-Focused Evaluation

5.1 Background: Lack of Benchmarks
When applying MT, there are many situations in which users want to translate a specific
phrase or word into an appropriate representation. For example, when an English sentence,
“We have conducted a shared task focusing on terminology consistency since 2021”, trans-
lated into Japanese using the three off-the-shelf systems, the result is shown in Table 5.1.1.
Three systems give two different translations for each phrase: 共有タスク and共同作業
as the translation of “shared task”, and一貫性 and統一 as the translation of “consistency”,
respectively. For the“shared task,” the phrase共有タスク is preferred for the translation,
since the other phrase共同作業 would give a different impression of its original meaning.
As for the concept of ”consistency,” the meanings of both translated phrases (一貫性 and
統一) are correct. However, when appearing more than once in the same document, either
translation phrase should be used consistently to facilitate better comprehension. As such,
there is some motivation for translating a phrase in the source text into coherent and appro-
priate terminology. We denote such translation as “terminology translation” in this paper.

Previously, terminology translation was performed relatively easily by phrase-based sta-
tistical machine translation (PBSMT). Because PBSMT is a method to learn phrase-by-
phrase correspondences from the training dataset statistically, we could thus teach a PBSMT
model the phrase correspondences using some dictionaries. However, current mainstream
NMT models cannot specify phrase correspondences. The reason is that NMT no longer

1They are the results as of 12/01/2022.
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source We have conducted a shared task focusing on terminology consistency since 2021.
System A 2021年から用語の一貫性に重点を置いた共有タスクを実施しました。
System B 2021年からの用語の統一に焦点を当てた共有タスクを実施しました。
System C 2021年から用語の一貫性に焦点を当てた共同作業を行った。

Table 5.1 Motivated examples of terminology translation.

takes explicit phrase correspondences instead of enabling fluent generation via deep learn-
ing (in other words, it has become a black box).

In response to this problem, constrained NMTmodels have been proposed, which aim to
output (always) the words or phrases specified as constraints. Existing constrained models
can be broadly classified into two types. One model is the soft constrained model, in which
constraints are imposed softly by input augmentation for training datasets. For example,
Song et al. (2019) proposed a method that replaces constrained phrases in the source input
with code-switching to the target language representation. Furthermore, Chen et al. (2020)
concatenates a list of constraints directly to the inputs in the Transformer model with [SEP]
tokens. The soft constrained model is an The soft constrained model is an augmentation of
the training data, so the decoding speed is the same as the generalMT architecture. However,
this has the drawback that it does not always have output constraints. Recently, Kondo and
Komachi (2022) proposed a model to address this drawback by using an automatic post-
editing method (Susanto et al., 2020). The other model is the hard constrained model, which
provides a signal to force the output of constraints during decoding. The hard constrained
model has the advantage of always outputting constraints, but its disadvantage is increasing
the decoding speed due to additional operations during decoding. Arthur et al. (2016) first
established the basis for constrained models. In the last few years (Post and Vilar, 2018)
proposed a model with improved decoding speed, but it is still noticeably slower than the soft
constrained model. The decoding speed problem is one of the major concerns for real-world
applications. The faster response speed is favored by users when considering applications in
business scenes.

Though the proposals for the constrained models, there is little benchmark that provides
a unified evaluation. There exists a dataset (Thompson et al., 2019) that is created for eval-
uating the terminology translation but has not been widely used for evaluating constrained
models. In addition, Jiang et al. (2022) proposed a document-level evaluation automatic
metric, but evaluation frameworks that focus on terminology consistency have been scarcely
conducted. Therefore, we proposed the Restriction Translation task in the WAT workshop,
created a new evaluation dataset with a scientific domain, one of the real-world application-
oriented domains, and set up a simple automatic metric.
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5.2 Restricted Translation Task

5.2.1 Task Setting
For the terminology-consistent translation, we re-designed ASPEC scientific-domain trans-
lation task (Nakazawa et al., 2016). Restricted vocabulary list containing scientific technical
terms in a target language. We do not accept other terms that are semantically similar to the
specified ones.

Let𝒟 = {(xn, yn)}N
n=1 be an dataset that consists of a pair of sentences (xn, yn), where xn

and yn represent the n-th source and target sentences, respectively. N denotes the number of
samples in 𝒟 . For the terminology consistency evaluation, we need additional information
of restricted vocabulary list in the dataset 𝒟 . We have a list of restricted vocabulary (term
pairs) 𝒯 = {(qk, rk)}K

k=1, such as a bilingual dictionary, where qk and rk represent the k-th
source and target term pair, and K represents the number of term pairs in 𝒯 . A sentence
pair may contain multiple term pairs. Note that task participants are only given a restricted
vocabulary list that is not aligned to a sentence pair. Different restricted vocabulary lists are
given for the training, valid, and test datasets, respectively. We evaluate whether all given
term pairs in the restricted vocabulary list are correctly translated in whole test dataset.

5.2.2 Dataset
We need to annotate term pairs (in the restricted vocabulary) for each instance to construct a
dataset for the restricted translation task. This process can be decomposed into three steps: 1)
extracting technical terms in each language, 2) aligning the source and target terms extracted
in Step 1, and 3) final check.

We constructed data for English–Japanese language pairs (En–Ja and Ja–En) in 2021 and
Chinese–Japanese language pairs (Zh–Ja and Ja–Zh) in 2022, respectively. For the En–Ja and
Ja–En directions, steps 1 and 2 were executed in parallel using manual annotation. During
these steps, we asked ten bilingual speakers to extract and annotate technical term/phrase
pairs for each example. Each annotator annotated around 540 sentence pairs and was paid
10,000 yen as compensation. The final check was done using an additional bilingual speaker.
In the final check, we corrected extracted terminology boundaries that were inconsistent
between the annotators and corrected alignment errors.

Executing all such procedures manually was a high cost. That is, we attempted to au-
tomate the term extraction in Zh–Ja and Ja–Zh datasets by applying pytermextract2 in
step 1. In addition, we attempted to automate the alignment acquisition in step 2. But due

2http://gensen.dl.itc.u-tokyo.ac.jp/pytermextract/

http://gensen.dl.itc.u-tokyo.ac.jp/pytermextract/
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En-Ja Ja-En Zh-Ja Ja-Zh
(#phrase, #char) (#phrase, #word) (#phrase, #char) (#phrase, #char)

Dev (2.8, 16.4) (2.8, 6.6) (1.2, 4.7) (1.2, 3.8)
Devtest (3.2, 18.2) (3.2, 7.3) (1.5, 5.5) (1.5, 4.5)
Test (3.3, 18.1) (3.2, 7.4) (1.4, 5.2) (1.4, 4.2)

Table 5.2 An average number of annotated phrases and words/characters per sentence pair.
Since Japanese and Chinese have no explicit word delimiter, the character count is used as a
phrase length indicator, whereas word count is used for English.

to inconsistencies in technical terms boundaries, we failed to obtain the correct alignment
between automatically extracted technical terms in each language. So we continued to per-
form alignments in these directions manually. We asked three bilingual speakers to make
the alignments of the terms. Finally, to add the alignment quality information, we asked two
additional bilingual annotators to give a translation of 0-100 scores for each term pair. We
show in Table 5.2 the average number of term pairs annotated for each sentence pair in the
dataset.

5.2.3 Evaluation
Automatic metric: Combination of Exact Match and BLEU BLEU, a standard auto-
matic evaluation metric, looks at n-gram overlap and does not have a feature that explicitly
considers terminology. In this study, we designed an automatic evaluation metric that con-
siders terminology errors that we focus on. Our metric is a simple combination of exact
matches with given target terms and BLEU scores. We aim to measure both terminology
and translation quality in a single metric. For evaluation, we filter out system outputs that
do not include terminology with exact matching and then compute BLEU scores. With this
filtering, we can consider the brief penalty of BLEU as a demerit of terminology error in the
final score calculation.

Human evaluation: Source-based Direct Assessment We used the simple automatic
metric described above as a low-cost method to obtain the system’s ratings. However, a
well-known problem is that automatic evaluation such as BLEU alone does not adequately
measure translation quality. To assess the translation quality more accurately, we also per-
formed a human evaluation once the automatic evaluation results are obtained. We adopted
source-based Direct Assessment (Cettolo et al., 2017; Federmann, 2018), which asked bilin-
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gual evaluators to rate how adequate the output was on 0–100 scores given the source and
the corresponding system output.

5.3 Results: What is the Best Model?
Table 5.3 shows the results for the Restricted Translation task in 2021 and 2022. Overall,
the combination of soft and hard constrained models (Hard+Soft const) submitted by the
NTT team in 2021 performed best (Chousa and Morishita, 2021). This model combines a
pre-trained model with large and filtered augmented data and constrained decoding to output
terms in the given restricted vocabulary. This model could always generate specified con-
straints due to the effect of the hard const model. The use of filtered augmented data allowed
the model to produce high-quality output comparable to the reference.

Besides, in 2022, the TMU team proposed a method that complements the shortcom-
ings of the soft constrained model with the post-editing model (Kondo and Komachi, 2022).
Although this model was slightly inferior to the combination of soft and hard constrained
models, it could also output 100% of the constraints by adding omitted constraints using the
post-editing model. Another advantage of this model is that it avoids the drawbacks of the
hard constrained model, which is slower at decoding speed. 3. Since the decoding speed
of MT is usually an essential issue in real-world applications, this model is a promising
substitute for the best model.

5.4 Analysis: Validity of Automatic Metric
Correlation between automatic and human evaluation Below, we investigate the valid-
ity of our proposed automatic evaluation metric. To evaluate the validity of automatic met-
rics, wemeasured the correlation between our proposedmetrics and human evaluation scores
following the previous studies (Banerjee and Lavie, 2005; Mathur et al., 2020; Popović,
2017). We measured Spearman correlations between human evaluation (source-based DA)
and three automatic metrics: BLEU-only, exact-match-only, and our metric (i.e., a combina-
tion of exact-match and BLEU). The results of the Spearman correlations in 12 submitted
systems over a 2-year period are shown in Table 5.4. This result indicates that our metric
resulted in the highest correlation. Noticeably, although source-based DA did not explic-

3Note that there is no rigorous comparison of decoding speed between the Hard+Soft const model by the
NTT team and the soft const+post-edit model by the TMU team. However, the TMU team paper shows that
the decoding speed of their model (En-Ja: 0.115, Ja-En: 0.126) is faster than that of the NTT-team ablation
model excluding the hard constrained part (En-Ja: 0.221, Ja-En: 0.228).



5.4 Analysis: Validity of Automatic Metric | 55

En-Ja Ja-En
System Auto Human Auto Human

2021 Hard+Soft const (NTT) 57.2 77.5 44.1 75.6
Soft const (NHK) 33.9 74.1 37.5 73.9
Hard+Soft const (NICT) 28.8 73.6 31.8 72.1
Hard const (TMU) - - 22.6 50.2
(human ref.) - 73.4 - 74.1

2022 Soft const+Post-edit (ensemble) (TMU) 52.7 76.4 40.8 74.1
Soft const+Post-edit (TMU) 50.5 76.6 38.1 72
Soft const (TMU) 37.6 74.9 23.0 73.3
(human ref.) - 76.6 - 74.7

Table 5.3 Result of Restricted Translation Task 2021-2022. “Auto” means the evaluation
scores with our automatic metric (exact match + BLEU). “Human” means the evaluation
scores with Source-based Direct Assesment (DA).

Automatic metrics Corr.
↔ BLEU 0.795
↔ Exact match 0.498
↔ Ours (Exact+BLEU) 0.836

Table 5.4 Spearman correlations between three automatic metrics (BLEU, exact match, and
the combination of exact match and BLEU) and human evaluation (source-based DA).

itly judge terminology errors, the correlation of BLEU scores via exact-match filtering was
higher than that of BLEU-only scores. This suggests that integrating terminology-focused
evaluation is closer to human translation evaluation.

Reappearance of terminology Indeed, exact matching does not strictly consider reappear-
ance of terms. The reappearance is, e.g., that term A appears twice, and term B including
term A appears. Here we analyze how our automatic metric performs on such examples.

First, how many examples containing the reappearance of terms occur? Fig 5.1 shows
the percentage of occurrences of reappearance examples in the reference and system outputs
that are submitted in 2021. Here, we consider examples where at least one of the terms
in RV matched more than once as the reappearance examples. As shown in Fig. 5.1, the
reappearance of terms occurs at about 10% in the reference and all systems.

We next investigate howmany real erroneous examples are in the reappearance examples.
Let us compare the reappearance of an example between the reference and the system output.
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Ja–En En–Ja
#under #over #under #over

Hard+Soft const (NTT) 16 41 19 31
Soft const (NHK) 28 46 36 61
Hard+Soft const (NICT) 17 107 38 86

Table 5.5 Number of examples of under-generation and over-generation for given terms.

Concretely, we focus on under-and over-generation errors. In this analysis, we count those
examples that have the reappearance in reference but do not have the reappearance in the
system output as under-generation errors. Similarly, we count examples that do not have
the reappearance in the reference but have the reappearance in the system output as over-
generation. Note that this is a toy setting where we only check the appearance change of a
particular term between twice and once.

Table 5.5 shows the number of over- and under-generation errors for each system output
submitted in 2021. In Table 5.5, we can observe each system’s shortcomings in detail. For
example, the soft constrained NHK system tends to under-generate terms compared with
the other systems. In contrast, the combination (hard and soft constrained) NICT system,
which is inferior to the same NTT architecture, tends to over-generate terms. Thus, over- or
under-generation in the reappearance examples was indeed observed; however, the trend in
the total error count is the same as the system ranking obtained with the automatic metric.
One reason is that the BLEU part of our automatic metric should penalize large under/over-
generation. Our combination metric did not significantly affect these errors and thus resulted
in a high correlation with human evaluation.

At present, the errors caused by reappearance are not significant enough to affect the
ranking results of the system. However, the current metric may not be able to detect errors
such as the number of term appearances being correct but their positions needing to be cor-
rected. Our future work is to introduce a more rigorous evaluation metric that can account
for a term position.

5.5 Analysis: What examples are rated low in the human
evaluation?

With the task results, we have a question; what examples fail to translate correctly to the
current top system? To investigate this, we check examples with lower human evaluation
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Figure 5.1 Ratio of the numbers of examples that have reappearance of terms. Reappearance
represents the ratio of examples where at least one of the terms in the RVmatched more than
once.

scores in the best system (Hard+Soft const. in 2021). Then, we found four error types
affected by the quality of the different elements.

1. Annotation quality: examples that lack some terms not included in restricted vocab-
ulary list

2. Translation model quality: examples that are mistranslated other than terminology

3. Human evaluation quality: examples that seem to be annotated unfairly with lower
scores due to lack of domain knowledge in annotators

4. Original translation dataset quality: examples that seem to overfit ASPEC reference
and be annotated with lower scores with source-based evaluation

Type 2 (Translation model quality) and 3 (Human evaluation quality) were the most com-
mon of the four error types. More detailed examples of each type are shown in Table 5.6.
The first type is an error caused by the annotation quality of the dataset, i.e., restricted vocab-
ulary quality. In example 1, a specific proper noun北国新聞社 is translated as北新聞社
by the model. If the phrase 北国新聞社 corresponding “Hokkoku Newspaper Company”
is specified as a constraint, this error can be avoided on the current hard constrained model.
The second type is a error due to translation model quality. Here, we consider as this type
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of error all mistranslation examples that are not regarded as terminology errors such as the
example 1. In example 2, the phrase “it is omnipresent like God” included in the quotation
marks is translated as “Godのように不思議である” which is a misinterpretation of the
original meaning. So far, there have been manymistranslations considering longer sentences
with complex structures or quotation marks. The third type is the error due to human evalua-
tion quality (although whether this can be called “error” is debatable). Example 3 contains a
large number of technical terms as the restricted vocabulary (RV). Even though all of them
can be output by the constrained model, the human evaluation score is 25 points, which is
the lower score among 0-100 scale. One reason is that evaluators were allowed to see only
the source sentence (Src) and the output of the system (Out). In other words, they are not
given any instruction related to terminology, requiring high domain knowledge of technical
terms to evaluate the model correctly. Future improvements could include adopting a dif-
ferent human evaluation method (Multi-dimensional Quality Metrics; Freitag et al., 2021)
or incorporating terminology-related criteria into the current framework. The fourth is an
example in which a low score is given despite the original reference translation being almost
reproduced. In Example 4, the system output sentence reproduces the same meaning as the
reference, but misses a portion of “(behind) other countries” when compared to the source
meaning. While not as common as in Types 2 and 3, such a few examples were found. One
possible reason is that the model overfits ASPEC’s reference style leaving out some parts
of data, leading to lower scores under the evaluation focusing on corresponding the source
meaning.

5.6 Related Work
There is a long history of MT tasks focusing on terminology in real-world application sce-
narios. Among them, a patent translation task was established in 2013 (Fujii et al., 2008),
indicating the demand of MT for specialized technical documents. In recent years, as the use
of MT in real-world applications has expanded, there is a need to develop a new terminology-
focused task. To meet this need, another terminology task (Alam et al., 2021b) was held at
WMT21 as well as our Restricted Translation task. In this task, a terminology-specific evalu-
ation metric (Alam et al., 2021a) was also proposed, which aligns between the source terms
and the output terms and focuses on the location of the terms. Also, in WMT22, the ter-
minology task have been adopted as a sub-track of the biomedical translation task (Neves
et al., 2022). Thus, there have been some attempts to establish an evaluation framework in
the form of task proposals in response to the demand for a system that can correctly translate
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Example 1 (annotation quality)
Src This paper presents security card renewal construction of HokkokuNewspaper Company.
Ref 北国新聞社のセキュリティカード更新工事を紹介した。
Out 北新聞社のセキュリティカード更新工事について紹介した。(score: 37)
RVs []
Example 2 (translation model quality)
Src “Ubiquitous” is the meaning of “it is omnipresent like God”.
Ref ユビキタス（ｕｂｉｑｕｉｔｏｕｓ）は「神のように遍在する」という意味で

ある。
Out 「ユビキタス（ｕｂｉｑｕｉｔｏｕｓ）」とは，「Ｇｏｄのように不思議である」

という意味である。(score: 33)
RVs [“ユビキタス（ｕｂｉｑｕｉｔｏｕｓ）”]
Example 3 (human evaluation quality)
Src The titled facility consists of equipment such as flue gas desulfurization, stack‐gas desul-

furization drainage, total drainage, ash disposal, coal transportation, and coal receiving.
Ref 標記設備は，排煙脱硫，排脱排水，総合排水，灰処理，揚運炭，石炭の湾受け

入れなどの設備から成る
Out 標記設備は排煙脱硫，排脱排水，総合排水，灰処理，揚運炭，石炭の湾受け入

れ等の設備からなる。(score: 25)
RVs [“標記設備”, “排煙脱硫”, “排脱排水”, “総合排水”, “灰処理”, “揚運炭”, “石炭の湾

受け入れ”]
Example 4 (original translation dataset quality)
Src Japan is behind other countries in taking measures against misconduct.
Ref 日本では不正行為への対応が遅れている。
Out 日本は不正行為への対応が遅れている。(score: 58)
RVs [“不正行為”]
Table 5.6 Examples of outputs of the top system in the Restricted Translation Task.

terminology. In this chapter, we describe a scientific-domain terminology task and proposed
a simple metric for English–Japanese and Chinese–Japanese language pairs.

5.7 Conclusions
We established Restricted Translation task as a evaluation benchmark for current constrained
models. For this task, we construct English-Japanese and Chinese-Japanese datasets from
original ASPEC corpus and proposed a simple automatic metric which capture both transla-
tion performance and consistency. The task was actually organized in a workshop, and we
pointed out some aspects to consider in future terminology-focused translation. For future
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work, we need to consider how to increase human evaluation quality. Possible approaches
to increase the quality of human evaluation is to provide domain knowledge to annotators to
show given terms or to apply a new human evaluation framework.



Chapter 6

Conclusions

In this study, we summarize two approaches to the current MT issues for real-world appli-
cations: (1) MT design using multiple optional architectures and (2) improvement of the
evaluation framework to find mistranslations that may lead to miscommunications. We then
present three real examples of these approaches:

• Multi-Dialect Translation: we demonstrated an example of designing MT for a real-
world problem of processing various dialects in low-resource scenarios using multilin-
gual, character-level, and fixed-order translation.

• Comprehensive Analysis of Semantic Metrics for MT: we investigated potential
problems concerning automatic evaluation metrics for semantic similarity and identi-
fied factors that influence evaluation results.

• Proposal of Terminology-focusedMTTask: we introduced an evaluation framework
for MT models that handles terminology and identified issues with the current MT
model and evaluation frameworks.

This research aims to construct a customizable MT system to individual users’ desires
that do not induce miscommunications. Fulfilling this goal makes the following develop-
ments possible in the real world. The first is the further improvement of familiarity and prac-
ticality of MT. By providing an MT system that combines optional architectures to handle
more user-specific situations, we can promote readily high-resolution interlingual communi-
cations for everyone worldwide. The second is preventing misunderstandings and miscom-
munications caused by MT, which can occur with the current MT system as it is. In order
to realize MT is acceptable for professionals, we focus on the two evaluation frameworks.
One is the semantic evaluation to accept semantically correct outputs and reject semantically
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wrong outputs appropriately. The another is the terminology evaluation to subtract for in-
appropriate terminology even if it is semantically acceptable. With these works, we have
yet to ultimately create a silver bullet to prevent MT from impeding miscommunications.
However, exploring appropriate MT design and evaluation frameworks will help real-world
MT applications that enrich people’s lives.

Finally, we think that there are two policies for future real-world application-orientedMT
research. As we have discussed, the first is to develop an appropriate evaluation framework
tomake professional-level judgments and a high-qualityMT system to pass such evaluations.
This policy should be continued, but it is not easy to realize it perfectly. Another practical way
is to make users aware of what MT can/cannot do or to make users correctly recognize the
errors by, for example, adding functions to present wrong errors as “wrong”. In conclusion,
we must give insight into MT users’ preferences and capabilities in real-world applications.
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