

Transformer Language Models Handle Word Frequency in Prediction Head

Goro Kobayashi ^{1,3}, Tatsuki Kuribayashi ^{2,1}, Sho Yokoi ^{1,3}, Kentaro Inui ^{1,3}

¹ Tohoku University ² MBZUAI ³ RIKEN

goro.koba@dc.tohoku.ac.jp

https://github.com/gorokoba560/transformer-lm-word-freq-bias

Prediction head has been overlooked in Transformer analyses

- Transformer layer has been typically analyzed
 - Analyses of Attention [Clark+'19;Kobayashi+'20;etc.]
 - Analyses of Feed-forward network

[Geva+'21;Dai+'22;etc.]

- Prediction head is the last block of LMs
 - Can directly impact on prediction
 - However, it has been overlooked in previous analyses...

We investigate its inner workings!

We focus on bias parameters in prediction head

- Prediction head has bias parameters
 - BERT has three biases: b_{FC} , b_{LN} , b_{last}
 - GPT-2 has one bias: $b_{\rm LN}$

Bias parameters can be easily mapped to the output space (word prediction)

Finding 1: Bias adjusts word prediction according to word frequency

- When removing a bias b_{LN} ($\longrightarrow -$)
 - Probability of high-frequency words is decreased
 - Probability of high-frequency words is increased

- Bias $b_{\rm LN}$ adjusts word prediction
 - to promote high-frequency words
 - to discourage low-frequency words

Average prediction distribution by GPT-2 small

Finding 2: Controlling the bias can encourage more diverse language generation

• Control the bias b_{LN} with coefficient $\lambda \in [0,1]$

$$\boldsymbol{b}_{\text{LN}} \leftarrow \lambda \boldsymbol{b}_{\text{LN}}$$

- ullet For large models, weakening $oldsymbol{b}_{ ext{LN}}$
 - Improves diversity
 - Maintains quality

Model	λ	Diversity ↑			Quality	
		D_1	D_2	D	MAUVE ↑	PPL↓
large	1	0.04	0.30	0.47	0.90	12.7
	0.5	0.04	0.36	0.50	0.91	12.9
	0	0.04	0.42	0.54	0.86	13.6
xl	1	0.04	0.30	0.47	0.90	11.4
	0.7	0.04	0.34	0.49	0.92	11.5
	0	0.04	0.41	0.53	0.86	12.1

Thank you for listening!

Feel free to ask or comment!

We hope you read the paper for more details, other findings, and discussions!