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Explore the potential of multiple models in multi-domain translation

® One challenge in machine translation is multi-domain adaptation [Saunders+ ‘22]

°* Main approaches for multi-domain
* asingle Multi-Domain Model (MDM)
* multiple Domain Expert Models (DEMs)

* The contributions of this work
* Demonstrated effectiveness of DEMs
* Investigated effective collaboration methods in DEMs
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How multiple models collaborate in DEMs

* Ensemble

® Output selection
* Quality Estimation (QE)
°* Minimum Bayes Risk (MBR)
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Quality Estimation (QE)
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Quality Estimation (QE)
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Calculate quality estimation metric score
we used MS-COMET-QE-22 [Kocmi+ "22]
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Quality Estimation (QE)
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Select the one with the highest score
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Quality Estimation (QE)
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Minimum Bayes Risk (MBR)
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Minimum Bayes Risk (MBR)
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JET) pseudo-references

Evaluate against all other candidate translations
and take an average score.
We used MS-COMET-22 [Kocmi+ "22]
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Minimum Bayes Risk (MBR)
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Repeat the AVG score calculation for all candidates

— tsok AVG1
R t
| see you,) €= | llikeyou AVG1 €pea | AVG2
— AVG3
| eat Iunch}

AVG4




Minimum Bayes Risk (MBR)
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Select the one with the highest score
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Minimum Bayes Risk (MBR)
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Select a consensus output
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Experimental settings

* Model: Transformer (90M, 290M, 1B)

* Dataset (En-Ja and Ja-En)
® Pre-train: JParaCrawl v3.0
* Fine-tuning: five-specific domain
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Encoder & Decoder

Name Params

layers  dmoder  dfn heads

SMALL  90M 6 512 2048 8

BASE 290M 6 1024 4096 16

LARGE 1B 6 2048 8192 32

Model configurations

Dataset #Sent Pairs
JParaCrawl v3.0 25.TM
The Kyoto Free Translation Task (KFTT) 440k
Japanese-English Legal Parallel Corpus (LAW) 260k
TED talks (TED) 225k
Asian Scientific Paper Excerpt Corpus (ASPEC) 200k
The Business Scene Dialogue corpus (BSD) 20k

Data information



Result: output selection from small experts is effective

20 A QE o MBR = ENS @ MDM
MBR is effective mmmms) 79.31 O
e\ 79 B
o < 78.35
078 | | 77.72 78.12 A
2 O
S, 76.97  p 7723
O 77 F O .
I Ensembles is mmm—) 76.75 =
ineffecti
S 76 L7556 / ineffective
@ = 75.50
75 “MDM MDM DEMs MDM DEMS
Small Base Small Large Base
90M 290M 9OM x5  Model size 1B 290M x 5

> Ja-En setting (same trend in En-Ja)



Summary: DEMs can be a hopeful direction in multi-domain

* The performance of 90M x 5 models was comparable to the 1B model

* Collaboration by MBR is effective, especially MBR

* X The outputs of the small experts must include an output comparable to the output of the large model
* X Selection model (e.g., MS-COMET-22) should address multi-domain
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