Investigating the Effectiveness of Multiple Expert Models Collaboration

Ikumi Ito¹, Takumi Ito^{1, 2}, Jun Suzuki^{1, 3}, Kentaro Inui^{4, 1, 3} ¹Tohoku university, ²Langsmith Inc., ³RIKEN, ⁴MBZUAI

Findings of EMNLP2023

Explore the potential of multiple models in multi-domain translation

- One challenge in machine translation is multi-domain adaptation [Saunders+ '22]
- Main approaches for multi-domain
 - a single Multi-Domain Model (MDM)
 - multiple Domain Expert Models (DEMs)
- The contributions of this work
 - Demonstrated effectiveness of DEMs
 - Investigated effective collaboration methods in DEMs

How multiple models collaborate in DEMs

• Ensemble

- Output selection
 - Quality Estimation (QE)
 - Minimum Bayes Risk (MBR)

 $\arg \max_{C_i \in C} \text{QE} (Src, C_i)$

$$\arg \max_{C_i \in C} \text{QE} \left(Src, C_i \right)$$

Calculate quality estimation metric score we used MS-COMET-QE-22 [Kocmi+'22]

 $\arg \max_{C_i \in C} \text{QE} (Src, C_i)$

Select the one with the highest score

What you need

- Source
- Each expert model's outputs
- Practical method

$\arg \max_{C_i \in C} \frac{1}{|C|} \sum_{j \neq i} \text{EVAL} (Src, C_i, C_j)$

Evaluate against all other candidate translations and take an average score. We used MS-COMET-22 [Kocmi+ '22]

$$\arg \max_{\substack{C_i \in C}} \frac{1}{|C|} \sum_{j \neq i} \text{EVAL}(Src, C_i, C_j)$$

Repeat the AVG score calculation for all candidates

$$\underset{C_i \in C}{\operatorname{arg\,max}} \frac{1}{|C|} \sum_{j \neq i} \text{EVAL} (Src, C_i, C_j)$$

Select the one with the highest score

$$\arg \max_{C_i \in C} \frac{1}{|C|} \sum_{j \neq i} \text{EVAL} (Src, C_i, C_j)$$

$$\blacksquare$$
Select a consensus output

What you need

- Source
- Each expert model's outputs
- Practical method

Experimental settings

- Model: Transformer (90M, 290M, 1B)
- Dataset (En-Ja and Ja-En)
 - Pre-train: JParaCrawl v3.0
 - Fine-tuning: five-specific domain

NT	Params	Encoder & Decoder			
Name		layers	\mathbf{d}_{model}	$\mathbf{d}_{\mathrm{ffn}}$	heads
SMALL	90M	6	512	2048	8
BASE	290M	6	1024	4096	16
LARGE	1 B	6	2048	8192	32

Model configurations

Dataset	#Sent Pairs
JParaCrawl v3.0	25.7M
The Kyoto Free Translation Task (KFTT)	440k
Japanese-English Legal Parallel Corpus (LAW)	260k
TED talks (TED)	225k
Asian Scientific Paper Excerpt Corpus (ASPEC)	200k
The Business Scene Dialogue corpus (BSD)	20k

Data information

Result: output selection from small experts is effective

X Ja-En setting (same trend in En-Ja)

Summary: DEMs can be a hopeful direction in multi-domain

- The performance of 90M x 5 models was comparable to the 1B model
- Collaboration by MBR is effective, especially MBR
 - 💥 The outputs of the small experts must include an output comparable to the output of the large model
 - 🔆 Selection model (e.g., MS-COMET-22) should address multi-domain

