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Abstract

Avoiding the generation of responses that contradict the preceding context is a significant
challenge for open-domain dialogue response generation systems (RGSs). Automatic evalu-
ation for the ability to avoid contradictory responses (Consistency-Awareness, CA) of RGSs
has the potential for the improvement of CA because of its high reproducibility and low cost.
The development of an automatic evaluation framework that is reliable, i.e., highly correlated
with human CA evaluations, is critical to effectively improving the CA of RGSs.

In this study, we first identify which of the existing CA automatic evaluation approaches
are effective for the efficient improvement of RGSs’ CA. Our experiments confirmed that
automatic CA evaluation based on the probability-based approach may have a limitation in
its evaluation effectiveness; we need to employ generation-based CA evaluation methods.

Based on this result, we address the improvement of the effectiveness of generation-based
automatic evaluation by enhancing the performance of contradiction detectors by augment-
ing their training data with real RGS-generated contradictory responses. Furthermore, in
order to evaluate more practical CA of RGSs, we propose a framework for automatic CA
evaluation of n-best candidates assuming the removal of contradictory response candidates
of RGS by post-processing.
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Chapter 1

Introduction

Open-domain dialogue response generation systems (RGSs) have attracted attention in vari-
ous fields, including medicine and education, and are the subject of active research and devel-
opment. In particular, deep neural network-based RGSs, which have been studied rapidly in
recent years against the backdrop of the development of deep learning technology, are known
to be able to generate fluent responses to dialogue contexts (Adiwardana et al., 2020; Roller
et al., 2021; Zhang et al., 2020). However, there is room for further improvement even for
recent RGSs. For example, even the responses generated by recent RGSs sometimes gener-
ate inappropriate responses in a dialogue with the user, such as responses based on incorrect
knowledge or responses containing offensive expressions (Shuster et al., 2022). Among var-
ious issues, contradictory responses pose a particularly grave concern. A contradiction not
only disrupts the dialogue flow but also creates a detrimental perception of the RGS lack-
ing comprehension of the dialogue content (Li et al., 2022; Nie et al., 2021). Moreover, as
described in Chapter 2, contradictions influence the occurrence of other errors. Effectively
improving RGSs’ ability to avoid contradictory responses, Consistency-Awareness (CA), is
crucial in developing RGSs that can establish a trustworthy and symbiotic relationship with
users.

Automatic evaluation for the ability to avoid contradictory responses of RGSs has the po-
tential for the improvement of CA because of its high reproducibility and low cost. Specifi-
cally, CA can be improved efficiently by repeatedly improving RGSs using automatic evalua-
tion with a certain level of accuracy and low cost, and using high-cost human evaluation only
for the final validation. The development of an automatic evaluation framework that is reli-
able, i.e., highly correlated with human CA evaluations, is critical to effectively improving
the CA of RGSs.
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A straightforward method of automatic CA evaluation is to calculate the frequency of
RGS-generated contradictory response generation using a contradiction detector that binary
classifies whether a response contains a contradiction (Nie et al., 2021; Welleck et al., 2019).
We call this approach generation-based automatic evaluation. However, this method requires
a contradiction detector capable of detecting contradictory responses with high accuracy. As
shown in Chapter 4, the accuracy of the current best-performance detector is as low as 0.54
for binary classification, making practical automatic generation-based evaluation difficult.
Therefore, in recent years, automatic CA evaluation based on the assignment of generation
probabilities to responses that have been prepared in advance is often employed as an alter-
native approach (Kim et al., 2020; Welleck et al., 2019). Specifically, when a noncontradic-
tory or contradictory response is prepared for a certain dialogue context, and the generation
probabilities of these responses are calculated by the evaluation target RGS, the RGS is eval-
uated based on whether it can assign a high generation probability to the noncontradictory
response or a low generation probability to the contradictory response. We call this method
probability-based automatic evaluation. The advantage of probability-based automatic eval-
uation is that once a noncontradictory or contradictory response is prepared, the RGS can be
evaluated without automatically evaluating the responses generated by the RGS, thus allow-
ing automatic evaluation of CAs without a high-performance contradiction detector, which
is currently not available. However, it has not been fully verified whether probability-based
automatic evaluation can really be the alternative evaluation of generation-based evaluation.
That is, no earlier studies validate the correlation between the results of probability-based
automatic evaluation and whether or not RGS actually generates contradictory responses.

In this study, we explore and construct a framework for highly effective and practical
automatic evaluation of CA. First, we confirm that highly analytical automatic evaluation of
RGS is difficult with probability-based automatic methods. Specifically, we confirm through
experiments that there is no correlation between the results of probability-based automatic
evaluation and those of human evaluation at the instance level, which is a highly finer and
interpretable evaluation level. We then undertake two tasks to improve the effectiveness
and practicality of generation-based automatic evaluation of CA. First, in order to improve
the effectiveness of automatic generation-based evaluation, we improve the performance of
contradiction detectors by augmenting their training data. The training data is not a set of
human-generated contradictory responses, as in the past, but actual contradictory responses
generated by RGS to reduce the gap between the contradiction detector training data and
the inference target. Second, in addition to addressing the existing challenge of improving
the accuracy of the inconsistency detector, we develop a practical generation-based frame-
work for automatically evaluating the CA of RGSs, assuming their deployment. A practical
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1.1 Research Issues

method to avoid contradictory responses from RGS is to use the contradiction detector in
post-processing to select noncontradictory response candidates (Nie et al., 2021; Welleck
et al., 2019). Considering such post-processing, the final output of the RGS may depend
not only on the consistency of the final output determined by RGSs themselves but also on
whether multiple RGS response candidates contain noncontradictory responses. Therefore,
we propose a method for generation-based automatic CA evaluation that takes into account
response candidates generated by RGSs.

1.1 Research Issues
This thesis addresses the following research issues:

• Which approach should we employ for automatic CA evaluation? Although
probability-based automatic evaluation allows the evaluation of CAs without a con-
tradiction detector unlike generation-based ones, the validity has not been tested.

• Can we realize effective generation-based CA evaluation? The accuracy of the cur-
rent best-performance detector is not high enough for practical automatic generation-
based evaluation. For effective CA evaluation, their performance needs to be im-
proved.

• Canwe realize practical generation-basedCA evaluation? In addition, considering
post-processing using a contradiction detector, the consistency of all the candidates in
n-best generated by RGS is also important for CA evaluation. Nevertheless, conven-
tional generation-based automatic evaluation focuses only on the consistency of the
1-best candidates generated and does not fully analyze the characteristics of the n-bests
generated by RGS.

1.2 Contributions
This thesis makes the following contributions:

• Confirmed that we need to employ generation-based evaluation for efficient RGS
improvement. We experimentally confirmed through experiments that there is no
correlation between the results of probability-based automatic evaluation and those of
human evaluation at the instance level.

3



1.3 Thesis Overview

• Improved the accuracy of data-driven contradiction detectors. We collected a
large collection of RGS-generated contradictory responses for training data-driven
contradiction detectors. Our experiments demonstrated that training detectors on our
dataset improved the accuracy of contradiction identification.

• Proposed an n-best-aware CA evaluation framework. We propose evaluating CA
considering the consistency of n-best candidates generated by RGSs, assuming the
post-processing where an ideal contradiction detector chooses noncontradictory can-
didates from the n-best candidates.

1.3 Thesis Overview
An overview of this paper is given as follows:

Chapter 2. Background. We introduce the background of automatic CA evaluation.

Chapter 3. Identifying effective approach for automatic CA evaluation. Our ex-
periments demonstrate that probability-based automatic CA evaluation has no corre-
lation with human CA evaluation in instance-level evaluation, which is essential for
efficient CA improvement.

Chapter 4. Improving automatic contradiction detector. We report our large-scale
data collection for augmenting the training resource of automatic contradiction detec-
tors, along with the description of our experiments in which we confirmed that training
detectors with our collection improves contradiction identification accuracy.

Chapter 5. Expanding evaluation target to n-best responses. We propose a frame-
work for automatic evaluation of CA considering the consistency of their n-best can-
didates assuming the post-processing where an ideal contradiction detector chooses
noncontradictory candidates from the n-best candidates.

Chapter 6. Conclusions. We summarize our contributions to realize effective auto-
matic CA evaluation.

4



Chapter 2

Background

2.1 Neural Dialogue Response Generation Systems
Recent RGS advances. The exploration of dialogue response generation systems (RGS)
has captured widespread attention across various domains, including medicine and educa-
tion (Addlesee et al., 2019; Litman et al., 2016), and is currently a focal point of active
research and development endeavors. Notably, the emergence of deep learning-based RGS
has undergone rapid exploration in recent years, promoted by advancements in deep learn-
ing technology. These systems are known to be able to generate fluent responses to dialogue
contexts (Adiwardana et al., 2020; Roller et al., 2021; Zhang et al., 2020). In particular, it
has been reported that the evaluation results of engagingness, the degree to which a user is
willing to talk to the agent, are comparable to that of human beings (Roller et al., 2021).

Errors of current RGS. Despite these advancements, there is room for further enhance-
ment in the pursuit of RGSs capable of engaging in natural conversations with humans. Even
the responses generated by recent RGSs occasionally exhibit errors that would not occur in
human conversation. Among the various types of reported inappropriate responses, the ma-
jor domain-independent errors include context-irrelevant responses, contradictory responses,
factually incorrect responses, and offensive responses (Kann et al., 2022; Shuster et al., 2022),
as shown in Figure 2.1 These errors are known to decrease users’ willingness for human-bot
interaction, resulting in the breakdown of dialogue (Martinovsky and Traum, 2003). These
outcomes are especially critical in RGS applications that interact with users over long periods
of time, such as medical and educational applications. To achieve a reliable and engaging
RGS, these errors must be suppressed.
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2.2 Contradiction Awareness

Figure 2.1 Representative semantical errors of RGSs. In addition to domain-independent er-
rors, developers need to improve their RGSs to guarantee problem-specific appropriateness.

2.2 Contradiction Awareness

2.2.1 Contradiction types
Two major contradiction types are identified in the context of dialogue response generation:
(i) contradictions against the facts in the world outside of the ongoing dialogue (e.g., per-
sonas) and (ii) those against what is stated in the local preceding context (e.g., opinions) (Li
et al., 2020; Nie et al., 2021). This study focuses on suppressing the second type. While
several studies have addressed the issue of avoiding the first contradiction type (Kim et al.,
2020; Kottur et al., 2017; Li et al., 2016; Qian et al., 2018; Zhang et al., 2018), given that the
multi-turn human-bot interaction is attracting increasing interest, we believe that tackling
the issue of the second type is becoming increasingly important.

2.2.2 Importance of consistency awareness
As noted in the above section, RGS has a wide variety of errors. Among them, the genera-
tion of context-irrelevant responses has been solved to a certain extent by companies with
large computational and human resources, which have been scaling up their deep learning
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models (Adiwardana et al., 2020; Zhang et al., 2020). Therefore, contradictory responses,
factually incorrect responses, and offensive responses are the representative front-line errors
that have not been resolved. Out of these three error types, we believe it is especially im-
portant to prioritize the suppression of contradictions. There are two major reasons for this
focus. The first reason is that contradiction itself has a serious impact on the dialogue, as
described in Chapter 1. Another reason is that the suppression of contradictions also plays an
important role in suppressing the other two errors, as described in the following paragraphs.

Relations with suppressing factually incorrect responses. Factually incorrect responses
are inconsistent with facts in the world. One effective suppression method for factually incor-
rect responses is referring to factually correct external documents (Ji et al., 2023). However,
the current situation is far from resolved. For example, not even a widely accepted auto-
matic evaluation method has been established (Ji et al., 2023). Therefore, addressing this
error must obviously be studied. Here, it has been suggested that some of the factually incor-
rect responses may be suppressed by improving the consistency of the RGS (Mündler et al.,
2023). Thus, consistency awareness needs to be improved first to address factual errors, at
least in part.

Relations with suppressing offensive responses. One effective suppression method for
offensive responses is training RGSs on human-written examples of ideal agent outputs (Ope-
nAI, 2023; Ouyang et al., 2022). This type of training is tackled by companies with large
budgets since it requires large-scale data construction costs. Despite these efforts, the ex-
isting circumstances remain considerably unresolved. For instance, context-aware toxicity
handling has not been fully explored. Thus, suppressing offensive responses also needs to be
studied. Although there is no strong direct relationship between suppressing contradictions
and offensive responses, it has been reported that some of the techniques used to suppress
contradictions are also effective in addressing toxicity (Goldzycher et al., 2023). Therefore,
brewing technologies for the suppression of contradictions may, in part, also help to suppress
the generation of offensive responses.

2.2.3 Consistency awareness of current RGSs
As mentioned above, the suppression of contradictions is essential, and various efforts have
beenmade in previous studies. Themainstream approaches of prior studies to address contra-
dictions have been data-driven. Welleck et al. (2019) developed a dialogue-domain natural
language inference dataset by applying a rule-based method to transform an existing dia-
logue corpus. They employed this dataset to train a contradiction detector that automatically
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2.2 Contradiction Awareness

identifies contradictions within pairs of dialogue domain sentences. Nie et al. (2021) gath-
ered and employed contradictory and noncontradictory human-written responses to train a
contradiction detector. Meanwhile, Li et al. (2020) and Li et al. (2022) updated RGMs using
a loss function that reduces the likelihood of generating inconsistent responses to suppress
contradictions.

Despite these attempts, the suppression of contradictory responses remains far from re-
solved. There are even cases of contradictions with their own utterances immediately before
the responses, not to mention contradictions with utterances in past dialogues (Chapter 4).
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Chapter 3

Identifying effective approach for
automatic CA evaluation

3.1 Introduction
Improving CA is an important issue for RGS, and several previous studies have attempted
to realize automatic CA evaluation. At present, evaluation methods can be divided into two
types of approaches: generation-based (Nie et al., 2021;Welleck et al., 2019) and probability-
based (Kim et al., 2020; Welleck et al., 2019), as described in Chapter 1. Generation-based
evaluation is an approach to reproduce human evaluation, but it has not been put into prac-
tical use due to the low performance of existing contradiction detectors (Chapter 4). Due to
this background, probability-based evaluation has been attracting attention as a substitute for
generative-based evaluation. Probability-based evaluation has been actively used in recent
years due to its advantage of not requiring an automatic evaluation system such as a con-
tradiction detector for generation-based (Kim et al., 2020; Welleck et al., 2019). However,
the effectiveness of automatic evaluation based on this approach has not yet been verified,
as described in Chapter 1. If probability-based evaluations cannot evaluate CA effectively,
CA improvements guided by this evaluation may actually go in the wrong direction and may
significantly hinder CA improvement. Therefore, it is extremely important to verify the va-
lidity of the probability-based evaluation, or in other words, to verify whether it is necessary
to evaluate CAs with generation-based evaluation although it requires an accurate automatic
evaluation system.

In this study, we experimentally test the effectiveness of probability-based automatic
evaluation. In general, not only for CA, there are two levels of granularity in RGS evalu-
ation: system-level and instance-level (Lowe et al., 2017). As discussed in the following
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section, the ability to evaluate at either granularity is important, but in particular, instance-
level evaluation, which is a more granular evaluation, plays an important role in improving
the CA. Therefore, prior to using probability-based automatic evaluation as a reliable frame-
work for automatic CA evaluation, it is necessary to verify whether automatic CA evaluation
correlates with human evaluation not only at the system level but also at the instance level.
Thus, we examine whether the results of probability-based automatic evaluation correlate
with the results of human evaluation at both the system and instance levels of granularity.
In order to gain diverse insights, we examine not only the evaluation of CA, but also a more
general aspect of CA: the evaluation of response appropriateness. As a specific method of
probability-based automatic evaluation, we employ response selection, which is one of the
representative probability-based evaluation methods (Kim et al., 2020; Welleck et al., 2019).
The results of the validation with response selection show that the probability-based auto-
matic evaluation results have a certain correlation with the human evaluation at the instance
level, but do not correlate with the human evaluation at the instance level, for both CA and ap-
propriateness. Therefore, it is necessary to improve and employ generation-based evaluation
for highly effective automatic evaluation of CA and appropriateness.

3.2 Evaluation Levels
Not only for CA (or appropriateness), there are two levels of granularity in RGS evaluations:
system-level and instance-level (Lowe et al., 2017). The system level is more coarser, while
the instance level is more granular. In this study, we test whether the results of probability-
based automatic evaluations of CA and appropriateness correlate with the results of human
evaluations at two granular levels.

3.2.1 System-level evaluation
System-level evaluation refers to an evaluation in which, given multiple RGSs to be evalu-
ated, the performance of the RGSs is compared. For instance, in the example at the top of
Figure 3.1, given four RGSs, a ranking is created based on the results of the system-level
evaluation. System-level evaluation mainly helps to perform comparisons between pre- and
post-improvement RGSs.

3.2.2 Instance-level evaluation
The instance level, on the other hand, refers to an evaluation that predicts the quality of
the target RGS’s response to a specific dialogue context. For instance, in the example at
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Figure 3.1 Two evaluation levels: (1) system-level and (2) instance-level.

the bottom of Figure 3.1, given a dialogue context, Context A, it predicts the quality of
the response that the target RGS will generate to Context A. Instance-level evaluation has
two characteristics. First, instance-level evaluation can provide important analysis for effi-
cient RGS improvement, such as in which dialogue contexts the RGS has trouble generating
responses. Second, if instance-level evaluation is possible, system-level evaluation is also
possible based on the percentage of dialogue contexts in which RGS has problems generat-
ing responses. Given these characteristics, it is important to have an automatic evaluation
framework that can perform highly effective instance-level evaluations.

Note that instance-level evaluation “predicts” the quality of the RGS response to a par-
ticular context, not necessarily evaluating the quality of the “generated” response. For exam-
ple, probability-based evaluation does not evaluate the quality of responses generated by the
RGS for a given dialogue context but rather predicts the quality via observing the behavior
of the RGS for the context based on probability assignments for prepared responses. These
probability-based evaluations are also included in instance-level evaluations.

3.3 Dialogue Response Selection
In this study, we verify the effectiveness of probability-based automatic evaluation of CA
and appropriateness. For the verification, it is necessary to prepare a specific method for
probability-based automatic evaluation. In this study, we use dialogue response selection
as a representative method of probability-based automatic evaluations (Kim et al., 2020;
Welleck et al., 2019).
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Figure 3.2 An example of dialogue response selection for CA evaluation.

Dialogue response selection is the task of selecting an appropriate candidate given a di-
alogue context and subsequent response candidates. Each question of the dialogue response
selection task for CA evaluation consists of a dialogue context, a correct candidate that is an
appropriate and noncontradictory response to that context, and an incorrect candidate that is
a contradictory response to that context. In the case of evaluating appropriateness, a correct
candidate should be an appropriate response, and an incorrect candidate should have at least
one semantic error as a response to that context. RGSs are required to select the correct
candidate.

In this section, we describe the way to have RGSs solve for dialogue response selection
and the construction of the dialogue response selection dataset used in this validation.

3.3.1 Response selection by RGSs
Basically, RGSs are not designed to select response candidates directly. Instead, RGSs com-
pute the softmax cross-entropy loss ℓr for each response candidate r ∈ ℛ. The candidates
with the lowest losses are regarded as the RGSs’s selections: ̂r = argmin

r∈ℛ
ℓr. Figure 3.2

shows an example of dialogue response selection for CA evaluation.
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3.3 Dialogue Response Selection

3.3.2 Response selection dataset construction for evaluating appropri-
ateness

In this section, we describe the dataset construction method of dialogue response selection
and the results of the construction for appropriateness evaluation.

Method for dataset construction

For each context c and ground-truth response rtrue, we construct a set of false response
candidates rfalse ∈ ℛfalse by gathering utterances from an utterance repository u ∈ 𝒰 .

We collect responses that are semantically inappropriate to serve as false candidates for
the response selection test set, allowing us to assess RGSs’ sensitivity to appropriateness.
Simply extracting responses at random from the repository might lead to the inclusion of
predominantly negative candidates that bear little relevance to the dialogue context. Conse-
quently, the evaluation of the RGS is constrained to measuring its ability to recognize the
topic relevance between dialogue contexts and their response candidates. To broaden the
assessment of RGS sensitivity to various types of inappropriateness, it becomes imperative
to gather false candidates displaying a diverse range of inappropriate characteristics. In this
study, we employ the followingmethod to collect utterances that, while not entirely unrelated
to the dialogue context, are deemed inappropriate as responses:

1. Retrieve M utterances, {u1, ⋯ , uM}, related to the ground-truth response rtrue from
the utterance repository 𝒰 .

2. Remove acceptable ones from the retrieved utterances by human evaluation.

1. Retrieve utterances related to the ground-truth response. We assume that utterances
related to the ground-truth response share some similar content words between them. Here,
we retrieve the related utterances on the basis of the similarities of the content words. To
make false candidates in each pool diverse, we use two retrieval methods: lexical retrieval
and embedding-based retrieval. We use Lucene1 for lexical retrieval, and cosine similarity
of sentence vectors for embedding-based retrieval. Sentence vectors are SIF (Arora et al.,
2017) weighted average of ELMo word vectors (Peters et al., 2018).

2. Remove acceptable utterances. Coincidentally, some of the retrieved utterances may
be acceptable as an appropriate response. To remove such utterances, we ask human an-
notators to evaluate each retrieved utterance. Specifically, we instruct five annotators (per

1https://lucene.apache.org/.
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candidate) to score each retrieved candidate in a five-point scale from 1 to 5. A score of 5
means that the utterance can clearly be regarded as an appropriate response for the given
context, whereas a score of 1 means that it cannot be regarded as an appropriate one at all.
In addition to the scores, we also instruct annotators to give a score of 0 to ungrammatical
utterances. We remove the utterances that are given a score of 3 or higher by three or more
annotators because these utterances with a high score can be acceptable. In addition, we
remove the utterances that are given a score of 0 by three or more annotators because these
are likely to be ungrammatical ones. We also instruct annotators to score ground-truth re-
sponses, combining them with retrieved utterances. We remove the questions if the score of
the ground-truth response is low, i.e., three or more annotators give a score of 3 or lower.
This is intended to ensure that ground-truth responses are certainly appropriate for the given
context.

Results of dataset construction

Settings of test set construction. We retrieve 10 utterances (per question) from the repos-
itory and remove acceptable ones following the method described in Section 3.3.2. We
use crowdsourcing2 to score the retrieved utterances. After removing acceptable utterances,
there are some questions that have 6 ormore available false candidates. From these questions,
we develop new questions with the same context but different candidates (both ground-truth
responses and false candidates). We regard one of acceptable utterances removed by human
evaluation as the ground-truth responses of new questions. We use the dialogue data from
DailyDialog (Li et al., 2017) to construct the test set. We extract the four beginning turns of
each dialogue sample from DailyDialog, regarding the fourth utterance as the ground-truth
response. We extract the utterances of OpenSubtitles2018 (Lison et al., 2018) to construct
the repository used to retrieve false candidates. Note that the repository does not contain the
utterances in the dialogue data used to train response generation systems in all subsequent
experiments.

Statistics of our test set. We developed the test set that consists of 1, 019 questions with 4
candidates (1 ground-truth + 3 false candidates). Table 3.1 shows the basic statistics of our
test set. The Fleiss’ Kappa of the annotators’ scoring in the six scale is 0.22.3 Note that if we
regard the scoring as binary classification (scores higher than 3 are regarded as appropriate
responses, and the others not), the Fleiss’ Kappa of the scoring is 0.63, which seems to be
reasonably high.

2https://www.mturk.com/.
3We calculated Fleiss’Kappa based on the scale of the scores as categorical.
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Table 3.1 Basic statistics of our test set.

Total questions 1,019
Candidates per question 4
Context turns per question 3
Kappa of the scoring (six classes) 0.22
Kappa of the scoring (two classes) 0.63

Table 3.2 Example of our test set. All three false candidates contain the content word “focus”,
which is related to the context (topic).

Context:
A: Excuse me. Could you please take a picture

of us with this camera?
B: Sure. Which button do I press to shoot?
A: This one.
Candidates:
1. Could he not focus on that?
2. But I do have ninja focus.
3. Do not lose your focus!
4. Do I have to focus it? [Ground-truth]

Example of our test set. Table 3.2 shows an example of our test set. All the false response
candidates share the same content word “focus” related to the topic “camera”.

Preliminary experiments. We conducted a simple experiment to investigate whether or
not a system that takes only content words into account can recognize false response candi-
dates in our test set. For the model, we used the TF-IDF model (Lowe et al., 2015), which
simply compares between content words of a given context and each candidate. As a re-
sult, the accuracy was 0.461. For a comparison, we also replaced all the false candidates in
our test set with randomly sampled utterances. The accuracy of the same TF-IDF model in-
creased to 0.671. These results indicate that we have successfully collected false candidates
that are not irrelevant but inappropriate.

3.3.3 Response selection dataset construction for evaluating CA
From the test set collected in the previous section, we construct a response selection test set
for CA evaluation. Specifically, among the false candidates in the test set for appropriateness
evaluation, we extract only those determined to be inappropriate due to inconsistency with
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Figure 3.3 Procedures of the validation for system-level evaluation.

the dialogue context and use them as new false candidates of a response selection test for
CA evaluation.

Method for dataset construction

From the false candidates of the test set developed in Section 3.3.2, we collect false can-
didates contradicting their contexts through human annotation. Specifically, each of the
false candidates is classified into three classes by three human annotators: contradictory to
dialogue context, irrelevant to dialogue context, or containing other errors. We retrieve can-
didates classified in the first class above by two or more annotators as candidates containing
contradictions with their contexts.

Results of dataset construction

Settings of test set construction. We employed 692 false candidates of the response se-
lection test set for evaluating appropriateness. We use crowdsourcing4 to score the retrieved
utterances.

Statistics of our test set. We developed the test set that consists of 50 questions with 2
candidates (1 ground-truth + 1 false candidates).

3.4 Validation for System-level Evaluation
First, we investigate whether the results of probability-based automatic evaluation of CA and
appropriateness correlate with the results of human evaluation at a rougher granular system
level.

4https://www.mturk.com/.
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3.4 Validation for System-level Evaluation

3.4.1 Procedures
Figure 3.3 shows the validation method. This consists of ranking n RGSs in each of the
probability-based-automatic and manual evaluations, and calculating the rank correlation
coefficient between the two rankings.

Rank by probability-based automatic evaluation. As described in the previous section,
we employ the response selection task as a probability-based automatic evaluation method.
For each of the evaluation target RGSs, we calculate the percentage of questions among m
response selection questions in which the RGS selects ground-truth candidates. The ranking
of the RGSs is based on this percentage.

Rank by human evaluation for appropriateness. Evaluation target RGSs generate a re-
sponse rgen for each input context c ∈ 𝒞 used in the response selection. Then, five human
annotators (per response) score each generated response rgen in a five-point scale from 1 to
5. A score of 5 means that the response can clearly be regarded as an appropriate response
for the given context, whereas a score of 1 means that it cannot be regarded as an appropri-
ate one at all. As a result, we obtain five scores, {s1, s2, ⋯ , s5}, for each response rgen and
average them: smean = mean(s1, s2, ⋯ , s5). We also average smean across all the questions
in the test set and yield the final score sfinal for each RGS. Based on this score, we make a
ranking of the RGSs. Although we developed the test set that consists of 1, 019 questions,
it is too costly to evaluate several RGSs’responses for 1, 019 questions by humans. Thus
we give the context of 50 randomly sampled questions from our test set to evaluation target
RGSs as inputs 𝒞 .

Rank by human evaluation for CA. Evaluation target RGSs generate a response rgen for
each input context c ∈ 𝒞 used in the response selection. Then, three human annotators (per
response) classify each generated response rgen into two classes: contradictory or noncon-
tradictory. A response judged to be contradictory by two or more annotators is regarded as
a contradictory response. We compute the percentage of noncontradictory ones among all
generated responses for each RGS. Based on this percentage, wemake a ranking of the RGSs.
We employ all 50 contexts included in the response selection test set for CA as inputs 𝒞 .

Evaluation target RGSs. In order to avoid experimental results dependent on specific
RGSs, 20 diverse RGSs were prepared. Table 3.4 lists all employed RGSs.
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Table 3.3 Spearman’s rank correlation coefficient between ranking tables created by manual
evaluation and those created by automatic evaluation.

Perspective Spearman p-value
Appropriateness 0.74 < 1.0 × 10–2

CA 0.60 < 1.0 × 10–2

3.4.2 Results
Table 3.3 displays Spearman’s rank correlation coefficient between the ranking created by
human evaluation and automatic evaluation for the two perspectives. The rank correlation
coefficients for both perspectives reached 0.6, indicating that the results of automatic eval-
uation by response selection have a certain degree of correlation with the results of manual
evaluation at the system level. These results suggest that at the system level, probability-
based automatic evaluation may be able to assess the CA and appropriateness of RGS with
reasonable effectiveness.

3.5 Validation for Instance-level Evaluation
Second, we investigate whether the results of probability-based CA and appropriateness eval-
uation correlate with the human evaluation results at a finer granular instance level.

3.5.1 Procedures
For the above system-level validation, a dialogue response selection test set was constructed
for each of the appropriateness and CA aspects, and 20 RGSs solved them. We then extracted
the dialogue contexts from the two test sets and manually evaluated the responses generated
by the same 20 RGSs in terms of appropriateness and CA. Therefore, we can analyze the
instance-level correlation of probability-based evaluation by comparing an RGS’s response
selection result for a dialogue context used for human evaluation, with the human evaluation
result of the same RGS for the corresponding dialogue context.

Appropriateness. If an RGS can generate highly appropriate responses in dialogue con-
texts where the RGS can select ground-truth in response selection, then the human evaluation
results for the RGS responses to dialogue contexts in which the RGS correctly selects a candi-
date in response selection should score higher. We therefore divide the 50 dialogue contexts
used for human evaluation into two groups, depending on whether the RGS was correct in its
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response selection for each of the 20 RGSs. We then examine for each RGS whether there
is a difference in the average of the manual ratings of the appropriatenss between the two
groups.

CA. The human evaluation of CA at the system level is a binary classification, not a rating
like the evaluation for appropriateness. Therefore, the average of the human ratings cannot be
compared between two groups classified based on the results of response selection. Instead,
we compare the contradiction frequency between the two groups.

3.5.2 Results
Appropriateness. For each of the 20 RGSs, we compared the averages of the human rat-
ings between two dialogue context groups based on the response selection results, using a
one-tailed t-test at 5% significance level. The results showed that for only 4 out of 20 RGSs,
the average human evaluation scores of the response-selection-correct group were statisti-
cally significantly higher than those of the response-selection-incorrect group.

CA. For each of the 20 RGSs, we compared the number of human-judged noncontradictory
responses between two dialogue context groups based on the response selection results using
Fisher’s exact test at 5% significance level. The results showed that for none of 20 RGSs, the
number of contradictory responses of the response-selection-correct group were statistically
significantly higher than those of the response-selection-incorrect group.

These results indicate that for instance-level RGS evaluations, the probability-based au-
tomatic evaluation results for appropriateness and CA do not necessarily correlate with the
results of the human evaluation.

3.6 Evaluation considering n-best
In the previous section, we found that at the instance level, there is not necessarily a correla-
tion between the human evaluation of RGS’s 1-best response and the evaluation results from
response selection. We finally investigate whether this result is also true for the correlation
with the human CA evaluation of the n-best RGS responses, that is, the evaluation of the
percentage of contradictory responses in generated n-bests. As discussed in Chapter 5, con-
sidering n-best, not only 1-best, is essential for avoiding contradictions of RGS. Therefore,
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it is important to be able to automatically evaluate the appearance of contradictions within
RGS’s n-best to avoid contradictory outputs in practice.

3.6.1 Procedures
Each evaluation target RGS generates n-best responses for each input context. We evaluate
the consistency of each response candidate in the generated n-best list and calculate the
contradictory responses’ percentage of the n-best list, which we treat as a score of the n-best
list. We compare this n-best score with the evaluation result through response selection.

Due to the high cost of evaluating the n-best of all 20 RGSs used in the experiments up to
the previous section, we evaluate the n-best of 10 of these RGSs.5 For each of the 10 RGSs,
we manually obtained the percentages of contradictory responses for a total of 10 n-bests
by taking the 5 dialogue contexts answered correctly and the 5 dialogue contexts answered
incorrectly in the dialogue response selection for CA evaluation of the corresponding RGS.
We finally compare all 10 RGSs’ average contradictory response percentages of the two
dialogue context groups classified based on dialogue response selection results. The value
of n was set to 10.

3.6.2 Results
The mean percentage of contradictory responses in the 10-best of the 10 RGSs in the
response-selection-correct group was 2.6. On the other hand, the mean percentage in the
response-selection-incorrect group was 2.5. This indicates that RGS does not necessarily
generate n-bests with a higher proportion of contradictory responses for dialogue contexts
where the RGS incorrectly answers in response selection. The proportion of contradictory
responses in n-bests, i.e., the ability of RGS to avoid contradictory responses through gener-
ating n-bests, cannot necessarily be evaluated by probability-based CA evaluation.

3.7 Conclusion
There are two approaches to CA evaluation: generation-based and probability-based.
The probability-based approach has the advantage of allowing evaluations without high-
performance contradiction detectors, but the effectiveness of such evaluations has not been
verified.

5We employed RGS #1 through #10 in Table 3.4.
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In this study, we examined the effectiveness of probability-based automatic CA evalua-
tion by measuring the correlation between human evaluation and automatic evaluation with
response selection at two levels: the system level and the instance level. At the system level,
the results of automatic evaluation by response selection were found to correlate to a certain
degree with the results of human evaluation, not only for CA but also for appropriateness.
On the other hand, at the instance level, both CA and appropriateness had no correlation with
human evaluation in our settings. From the above, it was found that automatic evaluation of
CA requires the use of a generation-based approach, which evaluates the responses actually
generated by RGSs.
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Table 3.4 Training data and hyperparameters of evaluation target RGSs．

Architecture Training data # of Ec/Dc*1 # of hidden dim*2 # of emb dim*3 # of input*4

1 GRU OpenSub*5 1/ 1 256 256 3
2 GRU OpenSub 1/ 1 512 512 3
3 GRU OpenSub 2/ 2 256 256 3
4 GRU OpenSub 2/ 2 512 512 3
5 LSTM OpenSub 1/ 1 256 256 3
6 LSTM OpenSub 1/ 1 512 512 3
7 LSTM OpenSub 2/ 2 512 512 1
8 LSTM OpenSub 2/ 2 512 512 3
9 LSTM OpenSub→Self*6 2/ 2 512 512 3

10 ConvS2S OpenSub 20/20 3 × 512 512 3
11 ConvS2S OpenSub→Self 20/20 3 × 512 512 3
12 Transformer OpenSub 2/ 2 4*7 256 3
13 Transformer OpenSub 2/ 2 4*7 512 3
14 Transformer OpenSub 4/ 4 4*7 256 3
15 Transformer OpenSub 4/ 4 4*7 512 3
16 DialoGPT-large -*8 -/36 20*7 1280 3
17 DialoGPT-medium -*8 -/24 16*7 1024 3
18 DialoGPT-medium Self*9 -/24 16*7 1024 3
19 DialoGPT-small -*8 -/12 12*7 768 3
20 DialoGPT-small Self*9 -/12 12*7 768 3
*1 These indicate the number of layers of encoder/decoder.
*2 These indicate the number of hidden layer’s dimensions.
*3 These indicate the number of embedding’s dimensions.
*4 These indicate the number of utterances used as context.
*5 Training was performed on 5M dialogue pairs constructed using OpenSubtitles2018.
*6 The training was performed on 5M dialogue pairs constructed using OpenSubtitles2018, and then addi-
tional training was performed on 0.27M dialogue pairs constructed using Self-dialogue Corpus (Fainberg
et al., 2018; Krause et al., 2017).

*7 These indicate the number of attention heads．
*8 https://github.com/microsoft/DialoGPT.
*9 Additional training was performed on dialogue pair data constructed using Self-dialogue Corpus, using
publicly available model parameters as initial parameters.
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Chapter 4

Improving automatic
contradiction detector

4.1 Introduction
It was shown in Chapter 3 that for highly effective automatic CA evaluation, it is necessary
to employ generation-based automatic evaluation methods. In automatic generation-based
evaluation, a contradiction detector plays a very vital role. The contradiction detector is re-
quired to perform binary classification of whether a given RGS response contains contradic-
tions or not. It is no exaggeration to say that the effectiveness of automatic generation-based
evaluation depends on the accuracy of the detector’s contradiction identification.

Previous studies demonstrated the effectiveness of data-driven methods in developing
contradiction detectors by utilizing datasets containing contradiction instances (Nie et al.,
2021;Welleck et al., 2019). As evidenced in various natural language processing tasks (Leite
et al., 2020; Mosbach et al., 2020), the data-driven system performance is expected to be
contingent upon the accessible data volume. Therefore, the performance of data-driven con-
tradiction detectors can be enhanced if a large number of contradictory responses from RGSs
are available. However, a comprehensive collection of RGS-generated contradiction data is
lacking, except for the small dataset of less than 400 RGS-generated responses compiled by
Nie et al. (2021), which is intended for use as test data. Consequently, data-driven devel-
opments have resorted to alternative sources, such as automatically synthesized or human-
written contradictions (Li et al., 2022; Nie et al., 2021). These substitute responses possess
different characteristics compared to RGS-generated ones (Section 4.5.1), causing a gap be-
tween the training data and the inference targets in practice. Therefore, the full potential of
data-driven methods may not be realized.
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4.2 Related studies

Table 4.1 Dataset examples in which the speakers are identified as A and B. CG, B1, and
BL are the three distinct RGSs. The labels provided by three human workers are represented
by C and N, which denote contradictory and noncontradictory responses, respectively. The
bolded portion illustrates a contradiction.

Context
A: I hurt my toe doing ballet. — un
B: Oh I hope you get better. Does is hurt a lot?
A: It hurts pretty bad, but it will heal. [. . .]
B: [. . .] Do you do ballet practice often? — uq

RGS responses on speaker A’s side
CG: I don’t do ballet myself, I was just watching a performance. [. . .]

— [C, C, C]
B1: I have never done ballet, but I love the music. I listen to it all the

time. — [C, C, C]
⋮

BL: Yes, I do ballet every day. [. . .] — [N, N, N]

In this study, we demonstrate the effectiveness of having access to a vast repository of
RGS-generated contradictory responses in tackling the development of contradiction detec-
tors. We first collect a substantial amount of contradictory responses from various high-
performance RGSs. An example of our dataset is shown in Table 4.1. We then demonstrate
that a contradiction detector trained on human-written contradiction data exhibits limited ac-
curacy in identifying RGS contradictions and confirm that training on our dataset improves
the situation. We also comprehensively analyze our collection from various angles, identify-
ing differences in characteristics between the RGS and human contradictory responses.

4.2 Related studies

4.2.1 Improvement of contradiction detectors with contradictory re-
sponses

The mainstream approaches of prior studies to develop contradiction detectors have been
data-driven. Welleck et al. (2019) developed a dialogue-domain natural language inference
dataset by applying a rule-based method to transform an existing dialogue corpus. They
employed this dataset to train a contradiction detector that automatically identifies contradic-
tions within pairs of dialogue domain sentences. Nie et al. (2021) gathered and employed
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human-written contradictory responses to train a contradiction detector. The efficacy of
these data-driven contradiction detectors could further be enhanced by having access to var-
ious RGS-generated contradictory responses because they need to deal with RGS-generated
contradictions practically. The present study aims to collect these contradictions from RGSs
to provide valuable resources for a wide range of data-driven contradiction suppression meth-
ods including the improvement of contradiction detectors. To the best of our knowledge,
this is the first work to gather a substantial volume of contradictory responses from RGSs
for training data development.

4.2.2 Effective inputs to collect contradictions
Previous studies demonstrated that RGSs tend to generate contradictory responses when
previously stated facts or opinions are repeated (Li et al., 2021; Nie et al., 2021). Neverthe-
less, posing questions that prompt dialogue partners to repeat previously stated information
can be uncommon in natural dialogues. We aim to collect RGS-generated contradictory re-
sponses by identifying RGS response contradictions to follow-up questions. These follow-up
questions are inquiries that seek additional information related to the information previously
stated by the dialogue partner. These types of questions commonly arise during dialogues.
They are similar to queries requesting repetitions of previously mentioned facts or opinions
because they both seek information related to the previously stated content.

4.3 Dataset construction
In this study, we will showcase the vital importance of employing extensive datasets contain-
ing RGS-generated contradictory and noncontradictory responses to improve contradiction
detectors. As stated earlier, large-scale data are currently lacking. To address this issue, we
first performed an extensive collection of RGS-generated instances. This section outlines the
methodology employed to build our dataset, followed by the detailed settings and the data
collection outcomes for this study.

4.3.1 Construction method
Figure 4.1 illustrates our data collection process. We first prepare dialogue contexts as the
inputs and then collect their RGS responses. The collected responses are classified into two
groups, contradictory or noncontradictory, according to context. This process is based on
that used by Nie et al. (2021), with the only differences being the approach to the dialogue
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2. Collect responses

1. !!is Follow-up question
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Ｘ

…
!$ . I live in the US.
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I live in NYC.
In London.

…

Ｘ

…
!$ . I live in the US.
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I live in NYC.
Noncontradictory

…
Contradictory

…
In London.

Figure 4.1 Overview of our data collection process.

context preparation and the focus on RGS-generated responses instead of human-written
ones.

Method of dialogue context preparation

Contradictory responses are inconsistent with dialogue contexts; hence, their appearances
depend on their contexts. For instance, it is improbable that a contradictory response will
be generated in a dialogue context, in which only greetings are exchanged. We gathered
follow-up questions (FQs) as the prime contexts for eliciting contradictions based on previ-
ous insights (Section 4.2.2) and our own small-scale analysis (Appendix 4.7.1).

RGSs do not generate contradictory responses exclusively to FQs; hence, addressing all
contradiction types solely by collecting the contradictions to FQs is impractical. Neverthe-
less, initially concentrating on the representative inputs to efficiently gather a substantial
number of contradictory responses is crucial. We believe that by refining contradiction sup-
pression techniques using a large number of contradictory responses to these representative
inputs, we can establish a groundwork for attempts to address contradictions in a broader
input range.
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A: I live in the US. Where do you live?

B: I live in the US too!

A: Really? I wanna meet you!

B: That’s nice! Where in the US？
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Figure 4.2 Example of Cuq,Cmid
and Cuq,r.

Idea for collecting FQ. In Figure 4.2, C refers to a dialogue context comprising more
than n utterances1 and concluding with an utterance uq that contains a question q. We use
un ∈ C to represent the utterance that precedes uq by n utterances. Note that we only consider
scenarios wherein the un and uq speakers are distinct individuals. When q is a question that
refers to a specific segment r in un,2 as illustrated on the left side of Figure 4.2, we regard q
as an FQ for r. Throughout this paper, the segment r to which q refers will be termed “the
referent of q.” To determine whether r is the referent of q, i.e., whether q is an FQ for r,
we must check if there is relevance between r and q. Fortunately, recent neural RGSs can
generate highly relevant responses to contexts (Adiwardana et al., 2020; Zhang et al., 2020);
hence, these RGSs are expected to capture the relevance between utterances effectively. In
other words, if a large-scale neural RGS deduces the strong relevance between r and q, we
can reasonably consider q as an FQ for r. We introduce herein a new automatic metric that
employs a neural RGS3 to assess the relevance between q and r.

Method for collecting FQ. As Figure 4.2 shows, Cuq,Cmid
refer to C, excluding uq, and

the intervening utterances Cmid between un and uq. Similarly, Cuq,r represents C with both
uq and r removed. If q is an FQ for r, it is improbable for P(uq|Cuq,Cmid

) to exhibit a decrease
compared to uq’s original conditional probability. Moreover, P(uq|Cuq,r) is likely lower than
uq’s original conditional probability. Consequently, the following value is deemed high when
q is an FQ for r:

FQness = P(uq|Cuq,Cmid
)/P(uq|Cuq,r).

1Note that this study’s term “utterance” refers to all sentences within a single turn.
2Consider q as question sentences in uq and r as non-question sentences in un.
3This work employed Blenderbot (Roller et al., 2021), a well-known high-performance RGS.
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Table 4.2 Number of contradictory responses to Cs extracted by RANDOM and TOP．Each value
denotes the count of responses judged contradictory to uns by at least T workers out of 10.

(a) n = 1
T = 1 T = 2 T = 3 T = 4

RANDOM 194 / 700 67 / 700 33 / 700 11 / 700
TOP 238 / 700 101 / 700 50 / 700 23 / 700

(b) n = 3
T = 1 T = 2 T = 3 T = 4

RANDOM 246 / 700 77 / 700 31 / 700 10 / 700
TOP 270 / 700 141 / 700 81 / 700 43 / 700

(c) n = 5
T = 1 T = 2 T = 3 T = 4

RANDOM 98 / 350 20 / 350 6 / 350 3 / 350
TOP 126 / 350 50 / 350 25 / 350 17 / 350

Here, we compute the probabilities using an RGS. We collect the FQs by selecting samples
with the highest FQness from a pool of Cs.

Preliminary experiment for validating the effectiveness of FQness. We initially ex-
tracted samples from a pool of Cs for three different cases (i.e., n = 1, n = 3, and n = 5)
by random sampling (RANDOM) and choosing samples with the highest FQness (TOP). Subse-
quently, we employed seven RGSs to generate responses to the Cs collected by RANDOM and
TOP. We then compared the number of the RGS responses contradictory to the Cs obtained
through the two abovementioned methods. Appendix 4.7.2 presents the detailed settings.
Table 4.2 displays the comparison results, which confirmed that more contradiction labels
were assigned to the C responses with a high FQness. This observation underscored the
tendency of Cs with a higher FQness to provoke more RGS contradictions.

Method for RGS response collection

For every gathered C with a high FQness, multiple RGSs are utilized to collect the responses
to gather diverse contradictory responses from various RGSs efficiently.
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Method for RGS response annotation

We assign three human workers to assess each generated response and categorize it into two
groups, contradictory and noncontradictory, according to their preceding referent r in un. If
at least two workers determine the presence of contradictions in a response, this response is
labeled as contradictory. If all workers agree that a response is consistent, this response is
labeled as noncontradictory.

4.3.2 Construction settings
Settings of dialogue context preparation

Apool ofCs is formed by extracting n ormore consecutive utterances from a dialogue corpus,
ensuring that the final utterance includes questions. From this pool, we gather those with the
highest FQness scores. For this study, we gathered Cs from the Multi-session Chat (MSC)
dataset (Xu et al., 2022). The MSC dataset possesses the following characteristics, making
it an ideal source for collecting Cs:

• low noise (e.g., few misspellings), and

• realistic dialogues between acquaintances, wherein speakers engage in in-depth dis-
cussions on a wide range of topics.

Based on the investigation described in Section 4.3.1, contradictions with n = 5 were
less common than those with n = 1, 3, as evidenced by the RANDOM counts in Table 4.2.
Furthermore, the annotation cost increased as the n value increased. Consequently, for this
study, the highest value assigned to n was 5, and we intensively gathered FQs with n = 1, 3
to prepare for collecting contradictory responses. From the set of approximately 59k Cs in
the MSC dataset, we extracted 3250, 1000, and 100 samples for n = 1, n = 3, and n = 5,
respectively, based on the FQness scores.

Settings for RGS response collection

When gathering the responses for the extracted Cs, we employed a set of eight recent high-
performance neural RGSs: Plato-2 (P2) (Bao et al., 2021), Plato-XL (PX) (Bao et al., 2022),
Blender1-3B (B1) (Roller et al., 2021), Blender2-3B (B2) (Komeili et al., 2022; Xu et al.,
2022), Blender3-3B (B3) (Shuster et al., 2022), Blender3-30B (BL), Opt-66B (O6) (Zhang
et al., 2022), and ChatGPT (CG).4 Each RGS generated one response to an input, resulting
in eight responses for C. Appendix 4.7.3 presents the detailed settings.

4https://openai.com/chatgpt.
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Table 4.3 Summary of our dataset. “# of C” and “# of N” denote the numbers of the collected
contradictory and noncontradictory responses, respectively. The values in parentheses refer
to the number of unique contexts.

Val. of n # of C # of N
1 8108 (2703) 12471 (2920)
3 2175 ( 739) 4378 ( 953)
5 220 ( 74) 422 ( 94)

Total 10503 (3516) 17271 (3967)

Settings for RGS response annotation

We employed Amazon Mechanical Turk (AMT)5 for the worker recruitment. We ensured
the creation of a cost-effective and high-quality dataset by carefully selecting highly skilled
workers. We first presented a task with obviously correct answers. It contained 21 dialogue
responses requiring classification into contradictory or noncontradictory according to their
preceding referent r. We exclusively handpicked workers who scored fewer than two incor-
rect answers in this task. During the data collection phase, we published human intelligence
tasks (HITs) to the selected workers, which required classifying 40 responses for five Cs.

4.3.3 Construction results
Table 4.3 reports several dataset statistics. Throughout the annotation process, the groups of
three workers achieved average Fleiss’ kappa values of 0.405, 0.465, and 0.408 for n = 1,
n = 3, and n = 5, respectively. Given the intricacies involved in identifying contradictions,
the substantial level of consensus signified the successful creation of a high-quality dataset.
Table 4.1 provides examples of our dataset. Each sample comprises a dialogue context C
containing un and uq and a RGS response contradictory or noncontradictory to r in un with
the labels assigned by the three workers.

4.4 Experiments
This section presents compelling evidence to support the hypothesis that employing the RGS-
generated contradiction collection as a training resource yields notable enhancements in the
performance of data-driven contradiction detectors.

5www.mturk.com.
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Existing detectors have been developed by employing automatically synthesized or
human-written contradictions as substituting training resources for RGS contradictions. Our
experiments validate the potency of our dataset by assessing the contradiction detection per-
formance of a detector trained on our dataset against that of a detector trained with human-
written contradictions.

4.4.1 Experimental settings
Contradiction detector model． We conducted a performance analysis of a detector that
underwent training on our dataset, juxtaposed with a detector fashioned similarly to the state-
of-the-art model devised by Nie et al. (2021). Their detector was developed by fine-tuning
RoBERTa (Liu et al., 2019) on the DECODE dataset, a collection of human-written con-
tradictory and noncontradictory responses compiled by Nie et al. (2021). It was trained
specifically for binary classification tasks requiring the prediction of consistency within a
pair of given utterances. Following their settings, we developed a Contradiction Detector by
fine-tuning RoBERTa on our dataset, denoted as CDRGS. Similarly, we constructed a rival
detector, CDHUM, using an equivalent number of instances from the DECODE dataset as
CDRGS.

Training data for CDRGS. Our dataset contains both contradictory and noncontradictory
responses from eight RGSs. Our experiment performed a cross-validation test by selecting
one RGS (i.e., target RGS) and using its responses as the test data. The samples excluding
the target RGS’s responses were used for training. We realized a comprehensive assessment
of the detectors’ performance by conducting the evaluation process eight times, varying the
target RGSs each time. When we selected B2 as the target model, the number of training
data samples wasminimized to 8023 contradictory and 8023 noncontradictory responses; we
reduced the number of training data samples to align with this number when we specified
one of the other RGSs as a target RGS. Appendix 4.7.4 presents the training details.

Training data for CDHUM. We randomly selected 8023 contradictory and 8023 noncon-
tradictory human-written responses from the DECODE dataset. Other settings are the same
as for CDRGS.

In-domain test sets. We randomly selected 100 contradictory and 100 noncontradictory
responses of the target RGS responses from our dataset as test samples. Note that a training
set might also contain responses from other RGSs that share the same contexts as these 200
test samples. We excluded these corresponding samples from the training set to ensure a
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fair evaluation of the detectors’ ability to identify contradictions from unknown RGSs in
unfamiliar contexts.

Out-of-domain test sets. The above RGS-generated test sets were derived from the corpus
used to develop the training set for CDRGS. Furthermore, these sets exclusively comprise
responses to FQs. In order to assess the detector’s effectiveness in identifying contradictions
in RGS responses to non-FQ contexts from unfamiliar dialogue corpora, we prepared two
out-of-domain test sets. One set originated from the Topical-Chat dataset (Gopalakrishnan
et al., 2019), and the other from the DailyDialog dataset (Li et al., 2017). Each of these
sets comprises seven subsets, each containing 50 contradictory and 50 noncontradictory re-
sponses from P2, PX, B1, B2, B3, BL, or O6.6 The contexts in these sets were randomly
selected from all contexts in the corpora concluding with an utterance containing questions
not limited to FQs.7 Appendix 4.7.5 details the construction process. The utilization of the
subsets of these two test sets was the same as that of the subsets of the in-domain test set,
except that even the subsets comprising non-target RGSs’ responses were excluded from the
training set to prevent detectors from being trained on the same domain data. In addition,
we employed Nie et al. (2021)’s Human-Bot dataset, which possesses 382 contradictory and
382 noncontradictory RGS responses in human-bot dialogues.

Human-written test set. We utilized Nie et al. (2021)’s By-Human test set comprising
2108 contradictory and 2108 noncontradictory human-written responses. This allowed us to
verify that CDHUM was reasonably well-trained in our settings, although addressing human-
written contradictions falls beyond the scope of our study.

4.4.2 Results
Table 4.4 (a), (b), and (c) display the accuracy of the contradiction detectors in solving
whether a given response contradicts the specific preceding utterance un for the human-
written, in-domain, and out-of-domain test sets, respectively.

(a) Human-written test set. CDHUM obtained a high accuracy of 0.952 on the By-Human
test set, confirming that CDHUM was properly trained.

6CGwas omitted from the test set construction due to cost considerations, as the frequency of contradictions
from CG was relatively low.

7Considering that non-question contexts may allow contextually irrelevant replies, such as prompting
changes in the topic, we anticipate a lower occurrence of contradictions. Our emphasis on responses only
to questions aligns with cost considerations.
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Table 4.4 Accuracy of the detectors for (a) human-written, (b) in-domain, and
(c) out-of-domain test sets. CDRGS’s score for By-Human is the median of
{0.819, 0.827, 0.838, 0.843, 0.847, 0.857, 0.859, 0.871} since we trained the eight CDRGS
detectors. CDRGS’s score for Human-Bot refers to the accuracy of the one trained with-
out B1’s responses among the eight CDRGS detectors because Human-Bot contains B1’s
responses.

(a) Human-written test set. (b) In-domain test sets. Scores for each target RGS are presented.

Detector By-Human Detector P2 PX B1 B2 B3 BL O6 CG
CDHUM .952 CDHUM .600 .575 .615 .540 .655 .555 .565 .650
CDRGS .845 CDRGS .800 .725 .715 .750 .765 .745 .690 .790

(c) Out-of-domain test sets. For the Topical-Chat and DailyDialog test sets, scores for each target
RGS are presented.

Test set from Nie+’21 Test sets from Topical-Chat / DailyDialog

Detector Human-Bot P2 PX B1 B2 B3 BL O6
CDHUM .749 .55/.52 .58/.60 .61/.55 .60/.59 .68/.61 .67/.55 .59/.53
CDRGS .787 .77/.77 .72/.67 .74/.68 .70/.72 .73/.76 .82/.64 .81/.75

(b) In-domain test sets. However, CDHUM achieved low accuracy for the subsets of our
RGS-generated dataset. Particularly, it had an accuracy of only 0.540 when B2 was the tar-
get RGS, which is problematic in practical applications. In contrast, CDRGS gained higher
accuracy on our RGS-generated test sets. The training process for CDRGS excluded any
contradiction data from the target RGSs and samples that shared the same dialogue contexts
as the test data, thereby effectively detecting contradictions from unknown RGSs when con-
fronted with unfamiliar contexts.

(c)Out-of-domain test sets. For all three test sets, the performance ofCDRGS significantly
outperformed CDHUM. These results emphasize that detectors trained on our dataset can
effectively detect contradictions in RGS responses to out-of-domain and non-FQ contexts.

Note that it has been confirmed that CDRGS exhibited superior performance even when
the entirety of DECODE’s samples was employed for training CDHUM (Appendix 4.7.6),
although the above experiments employed only approximately half of DECODE’s samples
during CDHUM’s training.
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Table 4.5 Example of Opt-66B’s contradictory responses with an intra-utterance inconsis-
tency.

Context
A: I made plans to travel to a new place next month.
B: What attracted you to this new place? Where is it?

RGS responses on speaker A’s side
O6: I’ve been to this place before and I really liked it. It’s in a country I’ve

never been to before.

4.5 Analysis
In the previous section, we confirmed that using the contradictory responses generated by the
RGS as training data improves the accuracy of the contradiction detector. However, the accu-
racy still varies from 100%, leaving room for improvement. To further improve performance,
it may be necessary not only to collect diverse and large amounts of contradictory responses
by RGSs but also to analyze the characteristics of these responses and build a data-driven
method better suited for identifying them. Conveniently, our collections can also be used for
this type of analysis. In this section, we describe the results of our analysis of the character-
istics of the contradictory response by RGS using our collected collections, which may be
used to devise innovative systems to identify RGS-generated contradictions. Section 4.5.1
delves into the intrinsic features of the generated responses, while Section 4.5.2 presents an
examination centered around the dialogue contexts that trigger RGS contradictions.

4.5.1 Analysis of RGS-generated responses
Our analysis revealed two types of characteristic contradictions in the RGS-generated re-
sponses: contradictions arising from intra-utterance inconsistencies and those involving am-
biguous expressions.

Contradiction arising from intra-utterance inconsistency

A qualitative analysis of the RGS-generated contradictory responses in our dataset revealed
that one distinctive way contradictions occur is through intra-utterance inconsistency. Ta-
ble 4.5 provides an example of this contradiction type. In this conversation, Opt-66B gen-
erated inconsistent information within a single utterance, saying, “I’ve been to this place”
while also stating, “It’s in a country I’ve never been to.” When conflicting information co-
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Table 4.6 Example of Plato-2’s contradictory responses with ambiguity. The determination
of whether or not a contradiction exists hinges upon the interpretation assigned to the bolded
term “interview,” particularly if it is construed to differ from the preceding interview.

Context
A: I had a promising interview today!
B: Oh excellent! How did it go, what made it so excellent?

RGS responses on speaker A’s side
P2: i think i did well because they called me back to set up an interview.

exists within a statement, at least one of them contradicting the context becomes highly
probable. Instances of contradictions stemming from intra-utterance inconsistencies are
occasionally observed across multiple RGSs. To delve deeper into this phenomenon, we
counted the inconsistencies among the 50 randomly selected contradictory responses in our
dataset for each of the eight RGSs. Our findings indicated that seven RGSs generated at least
one contradictory response featuring an intra-utterance inconsistency. Conversely, none of
the 50 randomly sampled human-written contradictory responses in DECODE exhibited an
intra-utterance inconsistency. These results suggest contradictory responses featuring intra-
utterance inconsistencies are particularly frequent in RGS responses.

Contradiction involving ambiguous expression

We observed a notable distinction in the human annotation tendency on the existence of con-
tradictions between the set of human-written responses in DECODE and our compilation of
RGS-generated responses. Both our study and that of Nie et al. (2021) employed a similar
approach in selecting the human workers who identified the contradictory responses during
the data creation process (Section 4.3.2). However, within the subset of instances where at
least one worker detected the contradictions, a significant gap was observed in the propor-
tions where the other two workers also concurred on the existence of contradictions. This
proportion was 78.4% for the human-written responses and 30.4% for the RGS-generated
ones. This dissimilarity could have stemmed from the RGS’s propensity to generate am-
biguous expressions concerning consistency, as demonstrated in Table 4.6. Such responses
appeared to result in differing judgments regarding the presence of contradictions, depend-
ing on how individual workers interpreted them. Addressing these contradictory responses
is crucial, even if some workers may miss the inconsistencies, because these responses, once
perceived as contradictory by actual users, can significantly detriment the dialogue quality.
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Effects on data-driven approaches

The experiments in Section 4.4 exhibited that the detector training with the RGS-generated
contradictions led to a noticeable enhancement in the detectors’ capability to identify RGS
contradictions, although it was far from the ideal accuracy. We hypothesized that this out-
come could be attributed, at least in part, to the training on the RGS-generated instances,
which facilitated the acquisition of identifying features typical of RGS-generated contradic-
tions, encompassing those expounded upon in Sections 4.5.1. If this hypothesis is correct,
then identifying the features typical of RGS-generated contradictory responses and then con-
centrating the collection of training data on responses with these characteristics may be im-
portant for achieving a more accurate contradiction detector. We investigated the hypothesis’
validity by taking one of the two abovementioned contradiction types, contradiction with am-
biguous expression, as examples.

Analysis method. Our experiments revealed that 1377 RGS contradictory responses from
our in-domain test sets and the validation sets used when training CDRGS (Appendix 4.7.4)
were missed by CDHUM but successfully flagged by CDRGS. Plausibly, some of these in-
stances may exhibit certain features inherent to the RGS contradictions, which the training
with RGS-generated data facilitated CDRGS to recognize. Therefore, we investigated if they
encompass the distinguishing characteristic, i.e., ambiguous expression.

Results. All contradictory samples in our dataset were deemed contradictory by either
two or three workers. The instances judged contradictory by only two workers may encom-
pass ambiguities regarding consistency. Within those above 1377 contradictory responses,
the proportion of the samples classified as contradictory by only two workers amounted to
51.1%. Conversely, among the 4394 contradictory responses from our validation and test
sets that both CDHUM and CDRGS successfully identified, only 43.4% of the samples were
determined contradictory by two workers. This proportion gap exhibited statistical signifi-
cance at the 1% significance level in the chi-square test, underscoring that training on RGS-
generated data enhanced the detector’s capacity to recognize the contradictions characterized
by ambiguity.

4.5.2 Analysis of dialogue contexts
If specific dialogue contexts induce contradictory responses from various RGSs, identify-
ing their contributing characteristics may become crucial in developing more effective tech-
niques for identifying contradictions. Our dataset is suitable for this investigation because
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Table 4.7 Example of Plato-2’s contradictory responses containing a partner’s bolded state-
ment.

Context
A: Have you taken any new pictures?
B: I managed to get out at the weekend and get loads of shots in the snow

we had. [. . .]
A: Oh wow you had snow!? We just had rain all weekend :) [. . .] Did

you have a nice chilled weekend? [. . .]
RGS responses on speaker B’s side

P2: it was a good weekend here, we got to enjoy the cold rain!

it contains a large number of Cs for which diverse RGSs generate responses. This section
presents our findings, providing a quantitative validation for the presence of these contexts.
We also discerned several attributes associated with them.

Existence of contexts from which multiple RGSs generate contradictions

For every RGS employed in our data collection, we classified each dialogue context within
our dataset based on whether or not it induced contradictions from that particular RGS. We
then assessed the degree of agreement on the classification of all RGSs utilizing Fleiss’
kappa, obtaining a result of 0.098 that demonstrated a slight degree of accord in line with the
criteria by Landis and Koch (1977). This outcome signified the presence of specific dialogue
contexts from which multiple RGSs generated contradictions.

Features of these dialogue contexts

A further examination showcased certain C features in which a relatively large number of
RGSs generated contradictions in our data collection.8 Our analysis was centered around
dialogue act labels and lexical attributes, which are highly interpretable features and appear
well-suited as the first analysis’s focal points.

Analysis results of dialogue acts. When we assigned dialogue act labels to uqs in our
dataset,9 we observed a notable trend, that is, uqs categorized as “Declarative Yes-No-

8When classifying Cs into two sets according to the presence of a feature, a statistically significant disparity
in the average count of the induced contradictory responses from the eight RGSs per C between the two sets
was unveiled through a one-tailed t-test at 1% significance level.

9We trained RoBERTa on the Switchboard corpus (Jurafsky et al., 1997) to develop a dialogue act labeler.
The test set accuracy was 80.4%.
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Questions” or “Statement-non-opinion” were more prone to triggering contradictory re-
sponses. For the former label, among the 193 assigned instances, the average count of the
contradictory responses from the eight RGSs per C was 2.77. The average for the 4084 unas-
signed instances was lower at 2.41. This phenomenon could have arisen from a deficiency in
the RGS’s ability to generate appropriate responses while being cognizant that a repetition
of previous information is being solicited. For the latter label, focusing on 2118 assigned
instances indicated a higher average of 2.49 contradictory responses compared to an average
of 2.36 for the 2159 unassigned ones. This disparity could arise from the RGSs’ inability
to differentiate between the content of the dialogue partners’ statements and their own ut-
terances. Hence, RGSs may generate responses incorporating the partners’ information as
if it were their own, even if it is inconsistent with their past statements, as exemplified in
Table 4.7.

Analysis results of lexical features. The uqs containing the interrogative term “how” can
provoke contradictions. More precisely, the mean count of the contradictory responses
within the 764 applicable contexts stood at 2.60, while that in the 3513 inapplicable con-
texts was 2.39. Expounding upon methods or the extent regarding a subject while upholding
consistency within the context poses a challenge for the current RGSs.

4.6 Conclusion
No attempt has been made to build an extensive collection of RGS-generated contradictory
responses, which results in the scarcity of training data for contradiction detectors.

In this study, we initially built an extensive collection of contradictory and noncontradic-
tory responses generated by various high-performance RGSs. We then showed that a con-
tradiction detector trained on human-written contradictions exhibits low accuracies when
detecting actual RGS contradictions and validated that training on our collection improves
this situation. We performed the contradiction detector training to demonstrate the effective-
ness of leveraging our dataset to improve data-driven contradiction suppression methods.
However, our gathered contradictory and noncontradictory responses can also be employed
in other data-driven approaches. We also comprehensively analyzed our collection from
various angles, producing valuable insights into the RGS-generated contradictory responses,
which we believe are crucial for effective contradiction identification.

Future challenges include collecting data with a broader context variety than the follow-
up questions.
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4.7 Appendix

4.7.1 FQ analysis in existing dataset
We randomly examined 50 responses from a pool of 382 RGS-generated contradictory re-
sponses in the human-bot dialogues collected by Nie et al. (2021). Remarkably, 25 of these
50 contradictory responses were elicited by the FQs, strongly indicating that the FQ plays a
prominent role in provoking RGS contradictions.

4.7.2 Preliminary experiment settings
Settings of dialogue context preparation. We utilized the pool of Cs described in Sec-
tion 4.3.2 as the source for extracting instances using RANDOM and TOP. Each TOP and RANDOM
extracted 100, 100, and 50 samples from the pool for n = 1, n = 3, and n = 5, respectively.

Settings for RGS response collection. Seven RGSs were employed to generate the re-
sponses for each C: Plato-2, Plato-XL, Blender1-3B, Blender2-3B, Blender3-3B, Blender3-
30B, and Opt-66B.10 We specifically had each RGS generate 100 response candidates for
each input through top-p sampling, with a value of p set to 0.5. We chose the response with
the highest generation probability among the 100 candidates.

Settings for RGS response annotation. Each RGS response was manually assessed to
determine its consistency with the context. The 10 AMT workers assigned to each response
performed a binary classification task to distinguish between the contradictory and noncon-
tradictory responses. We solely focused on evaluating the consistency with un due to cost
considerations.

4.7.3 Settings for dataset construction
Each of the eight RGSs generated one response to an input, resulting in eight responses for
each C. We enhanced the efficiency of gathering the contradictions by choosing the final
response of a RGS to an input from the top 100 candidates with the highest contradiction
probability predicted by the state-of-the-art contradiction detector (Nie et al., 2021). We
utilized top-p sampling (Holtzman et al., 2020) to collect the 100 candidates. We set a value
of p to 0.5, which was lower than the default value of 0.9 used in major platforms, such as
ParlAI (Miller et al., 2017), to avoid sampling responses with low generation probabilities.

10Note that the ChatGPT API service was not yet available when the preliminary experiment was conducted.
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This allowed us to gather candidates with a high generation probability by the RGS and a high
likelihood of being contradictory. We employed OpenAI’s API11 for ChatGPT, Knover12 for
Plato-2 and Plato-XL, and ParlAI for the others.

4.7.4 Settings for detector training
Samples for training. A negative pair comprised a contradictory response in our dataset
and the preceding utterance un. In contrast, a positive pair comprised a noncontradictory
response from our dataset and one randomly selected from its preceding utterances by the
same speaker. This was because the responses annotated as noncontradictory with uns were
also likely to be noncontradictory with the other preceding statements. By introducing ran-
domness into the selection of preceding utterances for pairing with a noncontradictory RGS
response, we aimed to create positive pairs comprising unrelated utterances. These pairs
could be valuable for training detectors to recognize that unrelated pairs should be catego-
rized as noncontradictory.

Hyperparameters. We trained detectors by employing the implementation of Hugging
Face (Wolf et al., 2020) with its default settings, excluding a few parameters.13 We updated
the model parameters until we reached a point where early stopping was triggered. Early
stopping was determined by assessing the validation data accuracy, a distinct subset com-
prising 10% of the training data and withheld from the training process. We saved the model
with the highest accuracy on the validation data at each learning rate and ultimately selected
that with the highest validation accuracy among all the saved models.

4.7.5 Settings for test set construction
We first constructed two pools of C by extracting n = 1, 3 or more consecutive utterances
from the Topical-Chat dataset and the DailyDialog dataset, respectively, ensuring that the
final utterance contains questions. From each of the two pools, we randomly sampled those
consecutive utterances. Specifically, for the Topical-Chat dataset, we sampled 300 and 100
samples from the pool for n = 1 and 3, respectively. Similarly, for the DailyDialog dataset,
we sampled 200 and 100 samples from the pool for n = 1 and 3, respectively. The other
settings are the same as in our large-scale dataset construction described in Section 4.3, ex-

11https://platform.openai.com.
12www.github.com/PaddlePaddle/Knover.
13train_batch_size: 128, weight_decay: 0.01, eval_steps: 200, early_stopping_patience: 1,

and learning_rate: {1e-6, 5e-6, 1e-5, 5e-5}.
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Table 4.8 Accuracy of CDRGM and CDHUMF for (a) human-written, (b) in-domain, and (c)
out-of-domain test sets.

(a) Human-written test set. (b) In-domain test sets. Scores for each target RGM are presented.

Detector By-Human Detector P2 PX B1 B2 B3 BL O6 CG
CDHUMF .958 CDHUMF .625 .620 .565 .585 .595 .625 .575 .715
CDRGM .845 CDRGM .800 .725 .715 .750 .765 .745 .690 .790

(c) Out-of-domain test sets. For the Topical-Chat and DailyDialog test sets, scores for each target
RGM are presented.

Test set from Nie+’21 Test sets from Topical-Chat / DailyDialog

Detector Human-Bot P2 PX B1 B2 B3 BL O6
CDHUMF .829 .57/.52 .64/.59 .67/.56 .64/.59 .69/.66 .71/.54 .59/.54
CDRGM .787 .77/.77 .72/.67 .74/.68 .70/.72 .73/.76 .82/.64 .81/.75

cept for the method of collecting C described above and that responses of ChatGPT were not
collected.

4.7.6 Experiments with more human-written contradictions
Table 4.8 presents the outcomes of evaluating the contradiction detection capabilities of
CDRGM in comparison to CDHUMF. CDHUMF was trained using all human-written data
from the DECODE dataset, consisting of 15605 contradictory and 15605 noncontradictory
responses, following the same training procedure as CDHUM. The comparison methodology
aligns with the experimental approach outlined in Section 4.4.

Noteworthy is the observation that, despite CDRGM’s training dataset being approxi-
mately half the size of CDHUMF, it demonstrated superior performance across all RGM-
generated test sets, with the exception of the Human-Bot set. The Human-Bot test data com-
prises only a limited number of conversational exchanges during initial encounters. Given
that CDHUMF’s training dataset also encompasses human-written contradictory responses
following first-meeting dialogues, it is conceivable that the overlap in domains enabled the
detector to recognize contradictions in the Human-Bot test data.
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Chapter 5

Expanding evaluation target to
n-best responses

5.1 Introduction
An RGS finally outputs one response to a given context, but this does not necessarily mean
that the RGS assumes only one response candidate for the final output. Rather, in recent years,
RGS usually outputs a final response by selecting the candidate from an n-best candidate
list (Nie et al., 2021; Welleck et al., 2019). Prior work has demonstrated that generating the
n-best lists with noncontradictory 1-bests is an open challenge (Kim et al., 2020; Li et al.,
2021; Nie et al., 2021). Thus, one practical technique for avoiding contradiction is to have an
accurate contradiction detector that eliminates all contradictory candidates from the n-best
list (Nie et al., 2021). In this scenario, the consistency of all candidates in the n-best list, not
just the 1-best, substantially impacts whether the final output is contradictory because the
final response is chosen from the n-best list. Therefore, the evaluation of CA in anticipation
of the practical use of RGS must take into account not only the 1-best but also all the n-best
candidates. Nonetheless, earlier quantitative investigations of contradiction relied solely on
1-bests from RGSs (Li et al., 2021).

In this study, we propose a framework to evaluate RGSs’ more practical CA by taking the
consistency of all of the n-best candidates into account, assuming the post-processing where
an ideal contradiction detector chooses noncontradictory candidates from the n-best candi-
dates. Specifically, we first consider how evaluating an n-best list should be approached.
Then, we propose a method for statistically evaluating the n-best lists (Figure 5.1). Since it
is impractical to study all conceivable contradictions in a dialogue, we first focus on contra-
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６６６６６６

666
History   : Yeah I’m in North Carolina.
Message : Aren’t you in South Carolina? Inputs

System A

Response1: No, North.
Response2: No. I’m not.
Response3: No. Why?
Response4: No but I used to.
Response5: Yes, I’m.

System B

✗
６６６６６６

Response1: Yes, South.
Response2: Yes.
Response3: Yes!
Response4: No.
Response5: Yes I’m. ✗

✗
✗
✗

✗

✗
✗
✗

✗
✗

✗
✗
✗

✗

Certainty: 3/3=1.00,Variety: (0.8+1+1)/3=0.93 Certainty: 1/3=0.33, Variety: 0.2/1=0.20

(ii) Determine whether responses in n-best list are non-contradictory

(i) Synthesize inputs

(iii) Compute Certainty and Variety

Figure 5.1 Overview of our evaluation framework. The framework evaluates n-best lists by
(i) synthesizing a stimulus input that induces contradictions, (ii) automatically determining
whether responses in the n-best lists are contradictory, and (iii) computing Certainty and
Variety.

dictions in response to polar questions.1 We use our method to highlight the CA of recent
high-performance neural RGSs and methodologies. Our results show that beam search has
limitations in terms of avoiding contradiction and that the newer techniques, such as unlike-
lihood training (Welleck et al., 2020), can help overcome these limitations.

5.2 Evaluation perspectives

5.2.1 Proposed metrics
First, n-best lists must be generated to prevent contradiction, assuming the filters can remove
contradictory responses. An ideal RGS produces output that is noncontradictory and high
quality in many other criteria, such as relevance or informativeness. An RGS must generate
at least one noncontradictory candidate to deliver a noncontradictory output. Furthermore,
even noncontradictory candidates could be eliminated based on other criteria (e.g., relevance,
informativeness). Therefore, it can be hypothesized that having more noncontradictory re-
sponses in an n-best list would enhance the final output quality across various criteria. Tak-

1Codes and test set are available at
https://github.com/shiki-sato/nbest-contradiction-analysis.
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ing the above into account, we examine n-best lists based on the certainty of the existence
of noncontradictory responses (Certainty), and the variety of noncontradictory responses
(Variety):

• Certainty: The proportion of the n-best lists that have at least one noncontradictory
response.

• Variety: The proportion of noncontradictory responses in each n-best list when only
the n-best lists with at least one noncontradictory response are collected.

Given a set of inputs 𝒬, we calculate them as follows:

Certainty = |𝒬′|
|𝒬|

,Variety = 1
|𝒬′| ∑

q∈𝒬′

cnt(f(q))
|f(q)|

𝒬′ = {q ∣ cnt(f(q)) > 0, q ∈ 𝒬}

where f(⋅) is an n-best list generation function and cnt(⋅) is a function that returns the number
of noncontradictory responses from a given n-best list. For example, the Certainty of an
RGS that generates n-best lists with a combination of noncontradictory and contradictory
responses is high, but its Variety is low. However, an RGS that always generates n-best lists
with only noncontradictory or contradictory responses has a high Variety but a lowCertainty.
We anticipate that n-best lists must include noncontradictory responses (Certainty= 1.0),
with a high proportion (high Variety).

5.2.2 Relation with existing metrics
The assessment of n-best output has been a focal point in the realm of natural language
processing. Specifically within the domain of information retrieval, several approaches have
been suggested to evaluate the validity of the n documents retrieved for a given query as
suitable search results. The relationship between existing metrics for information retrieval
and our proposed metrics is delineated below.

Recall. This metric evaluates the percentage of retrieved documents among all documents
that should be retrieved. In the evaluation of response consistency, employing recall is diffi-
cult since it is not possible to define “all documents that should be included.”

Precision. This metric evaluates the percentage of documents that should be retrieved
among all retrieved documents. Our evaluation metrics allow for a more detailed analysis of
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Table 5.1 Acquiring dialogue context by transforming the Natural Language Inference (NLI)
data.

NLI data Dialogue context for our test
Entailment Premise: yeah i’m in North Carolina ⟶ EntQ History: Yeah I’m in North Carolina.

Hypothesis: I’m in North Carolina. Message: Are you in North Carolina?
Contradiction Premise: yeah i’m in North Carolina ⟶ CntQ History: Yeah I’m in North Carolina.

Hypothesis: I’m in South Carolina. Message: Aren’t you in South Carolina?

what precision assesses. For example, when the average of precisions is high, our metrics
can distinguish whether some of the n-bests have extremely high precision or the majority
of the n-bests have a certain degree of precision.

Rank-aware metrics. Rank-aware metrics, such as MRR (Craswell, 2009), evaluate n-
bests considering the rank of each item in the n-bests. Since dialogue response generation
assumes the reranking of n-best items based on other perspectives, our task does not need to
consider their ranks.

5.3 Inputs and evaluation
To evaluate an RGS from the aforementioned viewpoints, we consider how to prepare the
inputs and evaluate the generated responses in this section.

5.3.1 Inputs for highlighting contradictions
Polar echo question. An echo question (Noh, 1998) confirms or clarifies the context infor-
mation by repeating the utterance of another speaker. It is commonly used when the speaker
does not hear or understand what was said correctly, or when the speaker wishes to express
incredulity. Based on Li et al. (2021)’s discovery, contradictions emerge mostly when speak-
ers refer to earlier information communicated in dialogue; we use echo questions as stimulus
input in our evaluation to elicit contradictory responses. We use polar-typed echo questions
to make our evaluation more succinct and quantitative. Since polar questions allow for basi-
cally only two responses, yes or no, we can clearly determine whether the generated response
is contradictory or not. Furthermore, by analyzing the produced responses as a yes/no binary
classification issue, it allows for quantitative discussion of experimental outcomes based on
the probability level.
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Input preparation. We use the dataset from the natural language inference (NLI) task to
effectively obtain the inputs described in the preceding paragraph. This dataset specifies the
logical relationship (i.e., entailment, neutrality, or contradiction) between a premise and its
associated hypothesis. We transform the NLI dataset into dialogue data using a set of basic
rewriting rules.2 Our test involves two types of inputs, which can be classified as follows:

• ENTQ: generating a confirmation response.
• CNTQ: generating a refutation response.

Table 5.1 displays the input samples and how they are transformed from the initial NLI
data. Each input is made up of the following two utterances: the history and message. In
our evaluation, the RGS generates responses to a given message, assuming the RGS has
generated the history in the preceding turn.

5.3.2 Contradiction detection for output
To compute the Certainty and Variety, we must first determine whether each generated re-
sponse in the n-bests compared to the inputs is contradictory. The simplest method for de-
tecting the contradictions is to check whether the response begins with yes or no. However,
in the event of an indirect expression (e.g., Why not?), this method cannot detect the contra-
dictions. Therefore, we use an automated yes-no classifier to categorize the n-best responses
to ENTQ/CNTQ. We train the classifier by fine-tuning RoBERTa (Liu et al., 2019) using the
Circa dataset (Louis et al., 2020), which comprises pairs of polar questions and indirect re-
sponses, as well as annotations for the answer’s interpretation, to categorize utterances as
affirmations or refutations.3

5.4 Experiments
We demonstrate how our framework shows the properties of n-best lists, which could be
quite influential in terms of avoiding contradiction. We demonstrate this by comparing the
n-bests generated by conventional beam search (BS) versus recently proposed techniques.

5.4.1 Experimental settings
Inputs preparation. We used the Multi-Genre NLI Corpus (Williams et al., 2018) to ob-
tain inputs, which is a large scale and is consistent in good quality NLI data. We created

2The details are described in Appendix 5.6.1.
3The details are described in Appendix 5.6.2.
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Table 5.2 Certainty and Variety of 10-best lists using beam search with beam size B = 10.

Certainty Variety

RGS ENTQ CNTQ ENTQ CNTQ
Blender 400M 0.806 0.747 0.780 0.775
Blender 1B 0.832 0.752 0.832 0.753
Blender 3B 0.856 0.768 0.824 0.737
DialoGPT 345M 0.938 0.917 0.750 0.669
DialoGPT 762M 0.883 0.918 0.671 0.713

2,000 ENTQ/CNTQ inputs by extracting 2,000 samples labeled with entailment or contradic-
tion.4

RGSs. We used the following two recently developed high-performance RGSs: Di-
aloGPT (Zhang et al., 2020) and Blender (Roller et al., 2021).5

5.4.2 Evaluation of n-best using beam search
Let B denote the beam size during generation. It has been empirically found that using beam
search withB = 10 to generate a response yields excellent quality results and has a frequently
used value (Roller et al., 2021; Zhang et al., 2020). Table 5.2 displays the Certainty and
Variety of 10-best lists generated using these methods. Figure 5.2 also depicts the Certainty
and Variety of n-best lists generated using different beam sizes.

Certainty. Table 5.2 illustrates that in approximately 10% of CNTQ-type inputs, even the
highest scoring RGS generates 10-best lists full of contradictory responses. Even with a
perfect response filter, the RGSs are unable to provide noncontradictory answers to these
questions. It should be emphasized that the error rate is not low, given that the inputs are polar
questions with highly restricted viable responses. Expanding the beam size can increase the
number of n-best lists with at least one noncontradictory response. Indeed, increasing the
beam size enhances the Certainty ((a) and (b) in Figure 5.2). By increasing B to 40, the
Certainty of using DialoGPT 345M for both ENTQ- and CNTQ-type inputs achieve 1.0.

Variety. With B = 10, all the RGSs’ Variety are more than 0.5 (chance rate) (Table 5.2).
Therefore, rather than being fully random, the RGSs generate n-best lists with a degree of

4We used the samples in the TELEPHONE domain; this domain covers open-domain conversations.
5The details of the settings are described in Appendix 5.6.3.
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Figure 5.2 Certainty and Variety of n-best lists using beam search with various beam sizes.

directionality toward avoiding contradictions. However, increasing the size of beam reduces
the Variety ((c) and (d) in Figure 5.2), resulting in lower output quality. For example, the
Variety of DialoGPT 345M with B = 40 for CNTQ-type inputs (an RGS with Certainty of
1.0 for both ENTQ- and CNTQ-type inputs) decreases to 0.58.

Overall. In terms of avoiding contradiction, our evaluation framework demonstrated the
features of the n-best lists of the beam search. The Certainty did not achieve 1.0 in the
commonly used configuration (B = 10). When the beam size is increased, the Certainty
increases to 1.0, whereas the Variety reduces dramatically. These results show the trade-
off between Certainty and Variety as a function of beam size; in this example, we found
constraints in obtaining high Certainty and Variety with beam search. Furthermore, it is
found that theCertainty obtained using DialoGPT is greater than that obtained using Blender,
whereas the opposite is true for Variety, suggesting that various RGSs behave differently in
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Table 5.3 Certainty and Variety of 10-best lists using various techniques with Blender 3B.

Certainty Variety

Technique ENTQ CNTQ ENTQ CNTQ
BS 0.856 0.768 0.824 0.737
DBS 0.999 0.981 0.758 0.478
NS 1.000 0.994 0.755 0.462
UL (𝛼 = 0) 1.000 0.996 0.406 0.759
UL (𝛼 = 1) 0.943 0.900 0.920 0.938
UL (𝛼 = 10) 0.910 0.937 0.969 0.968

terms of Certainty and Variety. This study emphasizes the significance of examining the
Certainty and Variety of each RGS.

5.4.3 Evaluation of n-best by various techniques
How to achieve highCertainty andVariety? Onemethod to increaseCertainty is to gener-
ate n-best lists with a wider range of responses, such that each n-best list is guaranteed to con-
tain a specific number of noncontradictory responses. The diverse beam search (DBS) (Vi-
jayakumar et al., 2016) and nucleus sampling (NS) (Holtzman et al., 2020) methods are used
to construct such n-best lists. Furthermore, Li et al. (2020) recently proposed RGSs that use
unlikelihood (UL) training to assign low probabilities to contradict responses. Using these
RGSs to generate n-best lists will almost certainly enhance both Certainty and Variety. We
assess the n-best lists generated using these three strategies to see how much these tech-
niques enhance Certainty and Variety (n-best lists generated using DBS and NS, and n-best
lists generated using beam search together with the UL training). Appendix 5.6.3 contains a
description of the techniques used for this evaluation.

Result. Table 5.3 displays the Certainty and Variety of the 10-best lists generated using
BS, DBS, NS, and UL.6 The values of 𝛼 show the degree of UL loss during fine-tuning.
Here UL with 𝛼 = 0 used the RGS fine-tuned with maximum likelihood in the same training
settings as those used for UL with 𝛼 > 0. Thus, note that comparing UL with 𝛼 = 0 and
𝛼 > 0 allows a fair comparison between likelihood and unlikelihood training. The results
reveal the properties of the n-best lists obtained for the three techniques, as well as the extent
to which the techniques increase Certainty and Variety. The Certainty obtained using the

6For the BS, DBS, and UL, we obtained the 10-best lists setting beam size to 10. For the NS, we got the
10-best lists by performing nucleus sampling ten times.
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DBS and NS method reach 1.0 for significantly lower search sizes than that for the BS to
attain a Certainty of 1.0; the Variety for CNTQ-type inputs are less than 0.5 (chance rate).
Thus, using the DBS and NS methods efficiently improves Certainty compared with the
results obtained using the beam search; nevertheless, the methods do not simultaneously
attain high Certainty and Variety. However, the Certainty obtained using UL with 𝛼 > 0
are greater than those obtained using the BS, and this was accomplished while maintaining
higher Variety than those obtained using the BS and UL with 𝛼 = 0 (likelihood training).
Our findings show that RGSs are advancing toward high Certainty and Variety, which is
particularly true for the recently proposed UL loss method. Despite the highly restricted
viable responses, i.e., yes or no, the Certainty obtained using UL with 𝛼 > 0 does not reach
1.0. Thus, we conclude that there is still room for improvement in n-best list generation in
terms of avoiding contradiction.

5.5 Conclusion
Based on the recent development of contradiction detectors, removing contradictory can-
didates from RGSs’ n-best lists is a practical method for avoiding contradiction. In this
method, the consistency of all candidates in the n-best lists substantially affects whether the
final outputs are contradictory, i.e., practical CA.

We quantitatively examined the properties of the n-best lists in terms of avoiding con-
tradiction, using polar-typed questions as inputs. We demonstrated that the proposed frame-
work exhibits the properties of n-best lists based on Certainty and Variety. Certainty de-
termines whether an n-best list has at least one noncontradictory response, whereas Variety
evaluates how many noncontradictory responses each n-best list has. The results, particu-
larly, demonstrated the present limitations on achieving high Certainty and Variety when
using the well-established beam search method. In addition, our method emphasizes the
improvements in Certainty and Variety achieved by recently proposed response generation
strategies.

5.6 Appendix

5.6.1 Details of transforming NLI data
As described in Section 5.3.1, we obtain an input from the NLI dataset. Specifically, we
convert the hypothesis sentence of an NLI sample into a yes-no question. We describe the
procedure as follows:
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1. Detect the first verb of a sentence.

2. Move the verb to the beginning of the sentence, or put one of {Do, Does, Did} at the
front of the sentence, changing the verb back to its base (e.g., made → make).

3. Change first-person pronouns to second-person pronouns and second-person pronouns
to first-person pronouns (e.g., my → your).

4. Change the punctuation mark at the end of the sentence to a question mark.

We used spaCy (en_core_web_sm) (Honnibal and Montani, 2017) to detect the verbs of
hypothesis sentences. We did not use NLI samples with syntactically complex hypothesis
sentences, such as those containing coordinating conjunctions, to avoid obtaining ungram-
matical inputs. Further details are provided in our source codes.7

5.6.2 Details of yes-no classifier
Training settings. On the Circa dataset, we fine-tuned the pretrained RoBERTa
(roberta-large) implemented by Hugging Face (Wolf et al., 2020). We divided the dataset
at random into train∶valid = 8 ∶ 2. The other training parameters were identical to those
used by Louis et al. (2020).

Performance of classifier. To investigate the performance of the classifier, we measured
the classification accuracy. First, we manually labeled the top-1 responses in the 10-best
lists generated by the evaluation presented in Section 5.4.2 with one of the two following
labels: Contradictory or Noncontradictory. The accuracy with which the automated eval-
uation categorized the labeled responses was then evaluated. We selected 500 responses8

from 50 ENTQ/CNTQ inputs drawn at random from our test for the evaluation. The classi-
fier classified 433/500 responses (see Appendix 5.6.3), and the accuracy was 0.921. Some
examples of the classification are shown in Table 5.4. The classifier correctly detected the
contradiction in the RGS response using an indirect expression, in Example 1. However, in
Example 2, the classifier failed to detect the contradiction of the RGS response, having both
a noncontradictory direct expression (“No”) and a contradictory indirect expression (the part
of the response after “No”). We found that the classifier tended to misclassify RGS responses
containing the contradictions with themselves, such as Example 2.

7https://github.com/shiki-sato/nbest-contradiction-analysis
8100 responses generated by each of 5 RGSs.
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Table 5.4 Examples of the response classification results by the yes-no classifier. The RGS
responses were generated by Blender 400M using beam search with beam size B = 10.

(a) Example 1

History: and we didn’t ever call it uh Cokes and such you know we
call it soda.

Message: Don’t you always call it Coke?
RGS Response: We call it coke.
Human Label: Contradictory

Predicted Label: Contradictory

(b) Example 2

History: The buying a house was the last thing that i wanted to do.
Message: Weren’t you desperate to buy a house?

RGS Response: No, I just wanted to buy a house.
Human Label: Contradictory

Predicted Label: Non-contradictory

5.6.3 Details of experiments
Number of evaluated stimulus inputs. To simplify the evaluation, we omitted from Sec-
tion 5.4 and Appendix 5.6.2 the inputs with one or more ambiguous responses in the n-best
lists. We defined ambiguous responses as those that were not identified by the classifier as
either affirmations or refutations.9 Table 5.5 and Table 5.6 display the number of inputs
from the total of 2, 000 ENTQ/CNTQ used for the two evaluations in Section 5.4.

RGS settings. In Section 5.4 experiments, we used DialoGPT (Zhang et al., 2020) and
Blender (Roller et al., 2021) as RGSs. We used the codes of ParlAI (Miller et al., 2017) with
its default settings, except for beam_length_penalty= 0 to generate responses.

Unlikelihood training settings. We used unlikelihood training with Blender 3B for the
study of Section 5.4.3. To use the unlikelihood training proposed by Li et al. (2020), we
require training data that includes the following three elements: input (here, history, and
message), gold response, and negative response. These training samples were created by
altering the NLI data with entailing and contradicting hypotheses.10 Table 5.7 displays the

9Circa dataset has seven different labels such as “Yes” and “Probably/sometimes yes.” We regard the re-
sponses classified into “In the middle” or “I am not sure” as ambiguous ones.

10Note that we did not use the identical NLI samples to synthesize ENTQ/CNTQ.
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5.6 Appendix

Table 5.5 Number of stimulus inputs evaluated to calculate the Certainty and Variety de-
scribed in Table 5.2.

RGS ENTQ CNTQ
Blender 400M 1331 / 2000 1270 / 2000
Blender 1B 1413 / 2000 1316 / 2000
Blender 3B 1566 / 2000 1403 / 2000
DialoGPT 345M 1126 / 2000 924 / 2000
DialoGPT 762M 1044 / 2000 956 / 2000

Table 5.6 Number of stimulus inputs evaluated to calculate the Certainty and Variety de-
scribed in Table 5.3.

RGS ENTQ CNTQ
BS 1566 / 2000 1403 / 2000
DBS 991 / 2000 882 / 2000
NS 818 / 2000 684 / 2000
UL (𝛼 = 0) 1914 / 2000 1871 / 2000
UL (𝛼 = 1) 1806 / 2000 1887 / 2000
UL (𝛼 = 10) 1654 / 2000 1811 / 2000

original NLI data and the transformed training samples. One NLI data set yields four types
of questions (PositiveQ1, PositiveQ2, NegativeQ1, and NegativeQ2). We synthesized 8,000
samples from 2,000 NLI data and randomly divided them into train ∶ valid = 9 ∶ 1. We
tuned the learning rate {7.0 × 10–4, 7.0 × 10–5, 7.0 × 10–6, 7.0 × 10–7, 7.0 × 10–8} and the
number of warmup updates {50, 100} for each 𝛼 = {0, 1, 10} for training. The rest of the
training parameters are identical to those used by Roller et al. (2021). It is worth noting that
we only trained the RGSs marked as UL in Section 5.4.3 on these transformed data.
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5.6 Appendix

Table 5.7 Example of transforming (a) original NLI data to (b) training sample for UL. We
synthesized four questions, i.e., PositiveQ1, PositiveQ2, NegativeQ1, and NegativeQ2, from
each NLI sample.

(a) Original NLI data

Premise: yeah i’m in North Carolina
Hypothesis – Entailment: I’m in North Carolina.
Hypothesis – Contradict: I’m in South Carolina.

(b) Training samples for UL

PositiveQ1
History: Yeah I’m in North Carolina.

Message: Are you in North Carolina?
Gold: Yes, I’m in North Carolina.

Negative: No, I’m in South Carolina.

PositiveQ2
History: Yeah I’m in North Carolina.

Message: Are you in South Carolina?
Gold: No, I’m in North Carolina.

Negative: Yes, I’m in South Carolina.

NegativeQ1
History: Yeah I’m in North Carolina.

Message: Aren’t you in North Carolina?
Gold: Yes, I’m in North Carolina.

Negative: No, I’m in South Carolina.

NegativeQ2
History: Yeah I’m in North Carolina.

Message: Aren’t you in South Carolina?
Gold: No, I’m in North Carolina.

Negative: Yes, I’m in South Carolina.
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Chapter 6

Conclusion

This thesis aimed to explore and construct a highly effective and practical framework for the
automatic evaluation of CA. In particular, this thesis addressed the following research issues:

• Which approach should we employ for automatic CA evaluation? As described
in Chapter 1, there are two evaluation approaches for CA: probability-based and
generation-based. While the assessment through probability-based automatic evalu-
ation presents an advantage over generation-based methods by eliminating the need
for a high-performance contradiction detector, the validity of this approach remains
unexplored.

• Can we realize effective generation-based CA evaluation? If the efficacy of
probability-based evaluation falls short, an alternative recourse lies in adopting a
generation-based approach. The merit of this method lies in its capacity to directly
assess the actual responses generated by the RGS. However, the existing contradic-
tion detector’s accuracy does not meet the requisite standards for a pragmatic auto-
matic generation-based evaluation. To achieve a proficient automatic CA evaluation,
enhancements in its performance are imperative.

• Can we realize practical generation-based CA evaluation? As discussed in Chap-
ter 5, it is important to consider the n-best generation of RGS in contradiction suppres-
sion. Therefore, in addition to improving contradiction detectors, it is also imperative
to evaluate the consistency of all candidates within the n-best list generated by RGS
in the context of CA assessment. Despite this, traditional generation-based automatic
evaluation methods concentrate solely on the consistency of the 1-best candidates, ne-
glecting a comprehensive analysis of the features exhibited by the n-best candidates
generated by RGS.
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This thesis made noteworthy contributions that can be succinctly outlined as follows:

• Confirmed that we need to employ generation-based evaluation for efficient
RGS improvement. Our experimental findings conclusively demonstrated that, at
the instance level, there was no significant correlation between the outcomes from
probability-based automatic evaluation (i.e., response selection task for this study) and
those derived from human evaluation. It is noteworthy, however, that a certain level
of correlation was observed when considering evaluations at the rougher system level.

• Improved the accuracy of data-driven contradiction detectors. We hypothesized
that the scarcity of contradiction data actually generated by RGSs constitutes a barrier
to enhancing the performance of contradiction detectors. Consequently, we collected
an extensive dataset comprising contradictory responses generated by RGSs to serve
as training data for data-driven contradiction detectors. Our empirical investigations
illustrated that training detectors on our dataset resulted in enhanced accuracy in iden-
tifying contradictions.

• Proposed an n-best-aware CA evaluation framework. We suggested assessing
CA by examining the consistency of n-best candidates generated by RGSs, assum-
ing the post-processing, wherein an optimal contradiction detector can select non-
contradictory candidates from the pool of n-best candidates. Our experimental results
with this framework showed the properties of n-best lists, which could be influential
in suppressing contradictions. For example, beam search has limitations in avoiding
contradiction, and recent techniques, such as unlikelihood training, can help these sit-
uations.

Around 2015, research on neural response generation models began to flourish (Shang
et al., 2015), and with the advancement of hardware and software, the performance of open-
domain response generation has dramatically improved. Initially, issues such as dull re-
sponse generation were a concern, but by the time this study began in 2019, the scalability
of the models allowed for the generation of informative responses maintaining relevance to
the context (Zhang et al., 2020). However, as the ability to generate responses with relevance
to context improved, more advanced challenges related to semantic appropriateness became
apparent. Specifically, challenges related to consistency, non-toxicity, and factual correct-
ness, as shown in Figure 2.1, emerged as serious problems. As a result, the focus in the field
shifted towards addressing challenges associated with higher-level perspectives compared to
relevance. However, as of 2024, despite various efforts, it is challenging to claim that these
issues have been fully resolved. Even large-scale generative models like ChatGPT, which
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have addressed various challenges of traditional systems, struggle with these issues. This
suggests that these challenges related to semantic appropriateness, unlike those related to
relevance, cannot be simply overcome by scaling up the model. Instead, tailored solutions
need to be developed for each problem.

In this context, this thesis focuses on improving CA. As mentioned in Chapter 2, CA is
closely tied to the improvement of other unresolved challenges. However, the progress in
enhancing CA is still in its early stages. In particular, attempting to improve it faced the
obstacle of lacking an automatic evaluation framework for trial and error. Therefore, this
thesis initiates the establishment of an automatic evaluation metric for CA.

Note that the scope of this thesis is to establish an effective and practical framework for
automatically evaluating CA. The subsequent step involves exploring strategies for the effec-
tive improvement of CA. One viable approach entails leveraging our evaluation frameworks
themselves to actively enhance CA capabilities. As an illustration, reinforcement training of
RGSs could be implemented using automatic evaluation results as rewards.

It is also important to note that merely suppressing contradictions is insufficient for ensur-
ing error-free RGSs; addressing other errors is also essential. As for representative domain-
independent challenges, as listed in Figure 2.1, issues related to non-toxicity and factual cor-
rectness persist. In terms of non-toxicity, it is known that the technology foundation for CA
improvement can be leveraged, thus suggesting the potential for enhancing non-toxicity us-
ing CA improvement techniques developed based on our evaluation framework. Regarding
factual correctness, there are indications that it may improve alongside CA enhancements.
Furthermore, the appropriateness of responses is not solely domain-independent. For in-
stance, the appropriate behavior from the RGS varies significantly between dialogues aimed
at encouraging users and thosewhere the system should act as a listener to the user’s narrative.
Improvements in domain-specific appropriateness still have ample room for exploration.
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